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Optimizingwarehouse layouts is crucial due to its significant impact on e�ciency

and productivity. We present an AI-driven framework for automated warehouse

layout generation. This framework employs constrained beam search to derive

optimal layouts within given spatial parameters, adhering to all functional

requirements. The feasibility of the generated layouts is verified based on criteria

such as item accessibility, required minimum clearances, and aisle connectivity.

A scoring function is then used to evaluate the feasible layouts considering

the number of storage locations, access points, and accessibility costs. We

demonstrate our method’s ability to produce feasible, optimal layouts for a

variety of warehouse dimensions and shapes, diverse door placements, and

interconnections. This approach, currently being prepared for deployment, will

enable human designers to rapidly explore and confirm options, facilitating the

selection of the most appropriate layout for their use-case.
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1 Introduction

The main goal of Warehouse Management Systems (WMS) is running operations as

efficiently as possible to improve profitability through increasing productivity, reducing

labor costs, and ultimately increasing customer satisfaction. While the majority of the

literature aiming to boostWMS efficiency focuses on improving slotting, order sequencing,

and fulfillment methods (Boysen and de Koster, 2024), another key component of a

WMS is optimal space utilization. It reduces the need for a larger capacity warehouse by

maximizing inventory storage and minimizing wasted or underutilized areas. Moreover,

warehouse configuration has a direct impact on all warehouse operations, especially the

worker routing and picking processes. Efficient warehouse configurations (i.e., layouts)

can enhance the order fulfillment process by eliminating unnecessary movement and

related errors, resulting in time and cost savings (Mohamud et al., 2023; Richards, 2017).

However, the vast majority of warehouses worldwide still continue to rely on manual

management or basic automation (Albert et al., 2023). There are a range of traditional

and non-traditional manual layout designs that have been proposed over the years to

speed up warehouse operations and minimize operating costs (Bortolini et al., 2020;

Kocaman et al., 2021; Zhang et al., 2021). Although manually-designed layouts might be

feasible for small warehouses with limited options, for larger scales, they are a less efficient

use of warehouse designer time and more prone to human error. Hence, an automated

process for candidate layout generation would be beneficial to all stakeholders. Moreover,
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an automated warehouse layout process would allow users to

change specifications over time to meet shifting product demand

and facilitate the expansion or restructuring of the warehouse while

preserving efficiency and productivity.

To automatically generate optimal candidate layouts, we must

first establish clear criteria for what constitutes an optimal layout;

In this work, we define an optimal layout as one that maximizes

both space usage (storage capacity) and the number of accessible

storage points (pick faces), while penalizing the number of long-

term storage points (locations that are less desirable due to reduced

accessibility), all while adhering to the physical and functional

constraints of the space. We aim to design layouts that account

for different user preferences among the competing priorities of

maximizing storage and accessibility. Therefore, there is generally

more than one optimal layout, given the multi-objective nature

of the problem. Hence, we must solve a constrained optimization

problem that maximizes storage capacity and number of pick

faces while penalizing long-term storage points and satisfying

a set of constraints. It is worth mentioning that this problem

differs from general floor planning, which is a partitioning

problem with a given list of rooms and their adjacency, size, and

position constraints. Thus, the approaches do not quite apply to

our problem.

Unlike automatic floor plan generation (Medjdoub and

Yannou, 2000; Che et al., 2017; Wu et al., 2018; Hu et al.,

2020; Laignel et al., 2021; Morisset de Pérdigo, 2021; Tamarana

and Kumari, 2024; Ślusarczyk et al., 2023), automatic warehouse

layout generation has not been fully explored in the literature.

In warehouse environments, there are additional challenges not

included in those analyzes, such as industrial constraints, changing

preferences, and real impact on warehousing operational activities.

Prior attempts to automate warehouse layout design have focused

on using mathematical optimization methods (Yener and Yazgan,

2019). For example, Zhang and Lai (2006) formulate the problem

as an Integer Linear Program (ILP) with the combination of

path relinking and a Genetic Algorithm (GA). Gu (2005) uses

Generalized Benders Decomposition (GBD) to find the optimal

solution. Mathematical approaches have some limitations, such as

modeling complexity, lack of flexibility in case of any changes in

the requirements, and large computational costs. In recent years,

Storage Compact Systems (CCS) have been proposed for more

compact warehouses to maximize space utilization by extending

in height instead of the surface (Yener and Yazgan, 2023; Tutam

et al., 2023; Trost and Eder, 2024). However, the main structure

of compact warehouses is different as they use storage towers with

no aisles.

We propose a new framework to address the gap in the

existing literature and to build a tool applicable to real-world

scenarios. We present an interactive and iterative tool that

allows warehouse designers to impose operational constraints or

preferences and evaluate the optimality using objective measures

such as capacity and accessibility. This leads the users to an

informed decision on the final configuration based on the existing

demands and solves a constrained optimization problem that

maximizes storage capacity with fewer long-term storage points

and maximizes the number of pick faces while satisfying given

warehouse constraints.

2 Methodology

A warehouse consists of multiple spaces (i.e., rooms) that need

to be carefully configured for different usage purposes, such as

storage or picking. We aim to create space layouts that balance

factors such as storage capacity and number of access points

tailored to the specific requirements of each space. This would

result in easier navigation and better average projected throughput

during item retrieval. After generating a range of candidate layouts

for a specific space, an experienced warehouse designer can select

from the candidates or further refine them. For any candidate

chosen in this interactive selection process, the layout would

then undergo a thorough validation by an on-site team prior

to implementation. The overview of our proposed framework is

illustrated in Figure 1. The process is repeated for all warehouse

spaces.

We propose a novel candidate layout generation algorithm (see

Algorithm 1) to generate optimal layouts based on tree search. A

given space is specified by a discrete two-dimensional grid of cells

with two masks marking the positions of walls Mwalls and door

connections Mdoor_connections. Figure 2 shows a running example

of a sample space from our industry partner. Each unit cell in

the grid is colored based on what category it belongs to: walls,

door connections, aisles, storage, or pick face. In the tree search,

the grid is initialized with all available cells designated for storage

Lfull. The tree search then explores the space of possible layouts by

systematically carving new aisles (explained in Section 2.1). Invalid

nodes (i.e., layouts violating any constraints) are filtered in the

Layout Filtering step (explained in Section 2.2). The valid layouts

are scored using a custom scoring function (explained in Section

2.3), and those with the highest score are designated as optimal. As

discussed before, there are typically multiple optimal (and viable)

layouts for consideration by a customer. In Figure 3, each colored

path represents a route that leads to the best solution for a particular

setting.

2.1 Tree search

Due to the time-intensive nature and memory constraints of

exhaustive tree search at scale, we employ beam search for exploring

the tree. Beam search is a heuristic Breadth-First Search (BFS)

algorithm that helps to make local decisions and limit the search

space. Although beam search yields local optima, it offers a practical

and efficient solution considering the constraints and nature of

our problem. In the default setting (beam size: b = 1), for each

node in the tree: (i) all children are generated by carving new

potential horizontal or vertical aisles in each block store1; (ii) child

nodes at the first level are always expanded (to promote diversity of

solutions). For deeper levels, only valid child nodes are expanded;

and (iii) all valid children are scored and the most promising child

(the one with the highest score) is selected for further expansion.

The remaining child nodes are pruned. This process continues until

there are no more child nodes left for expansion in the tree. This

1 A group of contiguous storage cells is called a block store.
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FIGURE 1

Overview of automated warehouse layout generation framework. The flowchart details the steps from starting with an empty warehouse (with given

input masks) through to producing an interactive Pareto plot for warehouse operators to engage with and ultimately select a final layout.

Algorithm 1, discussed in more detail in the text, is utilized to generate candidate layouts and is embedded within an iterative process that stores

multiple solutions for a range of parameter combinations.

indicates that the terminal state has been reached and the layouts

with the highest score are taken to be optimal. For larger beam sizes

(b > 1) however, b top-scored children are selected at each level.

To generate all children for a layout node in the tree, we add

new potential aisles2 by sliding a box (which represents a new aisle)

both horizontally and vertically across each block store, freeing up

all the cells inside the box. We refer to this process as "carving"

because we are removing a portion of the block store and dividing

it into two.

2.2 Layout filtering

To ensure that only viable and efficient layouts are selected,

we sift through all generated children layouts and reject those that

violate any functional or efficiency constraints as defined below:

Functional constraints:

1. Aisles that are connected to pick faces can not be narrower than

the specified aisle width,

2. All aisles need to be reachable by all doors into the warehouse

space,

2 Aisles are pathways that connect block stores to door connections and

do not contain any stored items (all cells within aisles are empty). They have

a fixed width but can vary in length.

3. No item is allowed to be placed in doorways or areas marked as

"reserved," and

4. No pillar can block an aisle.

Efficiency constraints:

5. Aisles wider than the minimum required size are not allowed as

they waste space,

6. Two-sided access block stores should contain at least two rows,

and

7. Each block store should containmore than one item as it is never

efficient or desirable to store a single item at a given location.

2.3 Layout scoring

Candidate solutions are evaluated and the underperforming

tree nodes are pruned. The scoring function is a critical component

used as a heuristic in the tree search. A misspecified score

will be detrimental to the node expansion of the tree search

resulting in sub-optimal solutions.We introduce a scoring function

(Equation 1), which not only enables trade-offs between important

performance factors (e.g., storage and accessibility) but also

facilitates diverse layout generation. We use normalization and

define the term weights carefully in the scoring function to ensure

the layout assessment is accurate and unbiased. Formally, we aim
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1: Inputs: Mwalls,Mdoor_connections //input masks

2: Initialize: Start from the full space : Lfull

3: Q← Queue() //create an empty queue

4: Q.push(Lfull)

5: Loptimal ← Lfull

6: while not Q.empty() do

7: L← Q.pop()

8: Generate all children by carving aisles

horizontally and vertically for all block stores

in L (Section 2.1)

9: Check validity (Section 2.2) for all children

10: if L == Lfull then // first level

11: Score (Section 2.3) valid children

12: if highest score > Loptimal score then

13: Loptimal ← valid children with highest score

14: Q.push(all children)

15: continue

16: for All children (c1, . . . , cn) do

17: if ci is valid then //filtering step

18: Score ci (Section 2.3)

19: if children highest score >= L score then

20: Q.push(children with highest score)

21: if children highest score > Loptimal score then

22: Loptimal ←children with highest score

23: return Loptimal

Algorithm 1. Candidate layout generation (beam size =1).

to solve the following optimization problem:

maximize Score = αTs + βTpf + c1To (1)

subject to Constraints (1)-(7),

where the constraints have been listed in Section 2.2. The

scoring function is a weighted combination of three terms, namely,

the normalized storage capacity Ts, the normalized number of pick

faces Tpf , and the normalized number of block stores in a specific

orientation (vertical or horizontal) To. The coefficients α and β

specify the relative importance of the first two terms, while the

coefficient c1 is a fixed hyperparameter selected empirically (more

details later).

The normalized storage capacity Ts is defined as,

Ts =
Ns − c2θPa

Total open area
, (2)

where Ns is the storage capacity; θ is a weighting coefficient; c1
and c2 are hyperparameters (discussed in more details later), and

Pa is an accessibility penalty defined as,

Pa : =
∑

BSi

ωi max
j∈BSi

(hj − 1)2, (3)

with ω, and h corresponding to the width and item heights of a

block store BS. The penalty is related to the number of items that

need to be removed to access the deepest row in a block store.

The chosen quadratic scaling has desirable symmetry properties

ensuring that higher depths are appropriately penalized.

The second term in Equation 1, Tpf , the normalized number of

pick faces is defined as,

Tpf = Npf /Ns, (4)

where Npf is the number of pick faces.

Finally, the third term in Equation 1, To represents the

normalized number of block stores in a specific orientation

(vertical or horizontal) if that orientation is opposite to the space

orientation.Without using this term, block stores tend to be aligned

with the space orientation. However, sometimes the opposite

orientation is preferable due to the location of the staging area3.

To provides a control to allow the dominated layout orientations

thereby promoting more diversity in the results.

The weighting coefficients, α, β , and θ , adjust the balance

between the different terms. The term α ∈ {0.1, . . . , 1} controls the

balance between storage capacity and number of pick faces, β =

min(0.1, 1−α), and θ ∈ {0.1, . . . ,α/2} are defined based on α. The

term θ controls the accessibility penalty Pa. The maximum of θ is

set based on α to avoid over-penalizing. Hyperparameters c1 = 0.01

and c2 = 0.1 are set empirically to scale the corresponding terms.

Each combination of α and θ represents a particular preference

for the properties of the generated optimal layout/s discovered

by the tree search. The process for selecting the final layout

involves the warehouse designer, and is discussed in more details

in Section 3.

2.4 Connectivity score

In addition to the scoring function presented above, we define

another score term, connectivity to estimate the likely relative

throughput expected from different candidate layouts. Note that

the exact throughput cannot be known a priori as it will depend on

specific product assignment and order lists. Our estimates here are

used only to determine the ranking order of different candidates as

a tool to select among several optimal candidates generated above.

The connectivity score is defined as the average cumulative ratios

of shortest distances to the Manhattan distances (Black, 2006) for

pairs of pick faces:

C =
1

Npf

∑

i≤j

1

DShortest
i,j /DManhattan

i,j

, (5)

where Npf is the number of pick faces, and Di,j is the distance

(i.e., shortest or Manhattan) between two pick face locations.

This is based on the intuition that for a high-throughput (i.e.,

more connected) layout, the shortest distances (between pairs of

pick faces) will on average be closer in value to the Manhattan

distance. This function has the additional desired property that it is

normalized to one, facilitating simple direct comparisons between

different layouts. Note that we decided not to include connectivity

as an independent scoring term in Equation 1 to simplify the

process and minimize instabilities in the search.

3 Staging area is where items are loaded to or unloaded from the

warehouse.
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FIGURE 2

Running example of beam search (b = 1) for a sample space with specified aisle width = 3. (A) Input masks indicate the positions of walls and door

connections respectively. (B) The tree search for a sample α = 0.7, θ = 0.4. In the initial state, all available space is designated for storage. At the first

level of the search tree, all unique child nodes are generated by carving aisles. This is done by sliding horizontal and vertical aisle templates across all

block stores. Depending on the particular α − θ combination specified, di�erent configuration/s may be found as the highest score solution/s for that

setting. Here, two children have the same score. The carving process is undertaken again on the chosen configuration/s in subsequent levels until

the terminal state is reached. In the figure, colored paths represent routes that lead to the best solutions with the same number of pick faces and

number of storage. Space specifications: Walls, Door connections, Aisles, Storage, Pick face.

2.5 Post-refinement

The objective of the post-refinement step is to apply any

additional constraints to arrive at the final layouts. While every

application will require some customization by the on-site team

often these constraints and requirements can be codified to save

time. In one application, the pallet racking system only allowed

even numbers of racking units along the total block store (due

to how the racking infrastructure was constructed). In another

application, clear paths were necessary to access pillars that

contained fire safety equipment. In both cases, the flexibility of

our algorithm allowed for these constraints to be programmatically

applied as a final step, only passing layouts that fulfilled the criteria.

2.6 Implementation details

The computational complexity of our method primarily

depends on the beam size, space dimensions, and aisle width. We

use Beam Search, a variant of Breadth-First Search (BFS), which

explores all children at each depth level and selects a beam of

highest-scoring valid children. The time and space complexity are

bothO(bd), where b is the beam size (number of candidates kept at

each step), d = max(1, ⌊h/(aisle width+1)⌋+⌊w/(aisle width+1)⌋)

is the maximum tree depth, and h and w are the height and width

of the space. The space complexity arises from the need to store the

best b candidates at each of the d levels of the search tree.

By increasing the beam size, the search space is expanded as

more children are explored at a time. However, it also increases

the exploration time. In practice, b = 1–3 showed a good balance

between performance and computational efficiency depending on

the space size.

Moreover, we use multiprocessing to expedite the search

process, especially for larger beam sizes. We used eight CPU cores

with 16 GB of memory to run experiments. The average processing

time for generating the Pareto plot for a small-sized space (16× 23)

is 33 s, for a medium-sized space (28 × 21) is 82 s, and for a

large-sized space (17× 47) is 954 s.
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FIGURE 3

Combined tree searches for di�erent α − θ combinations. Each colored path represents a route that leads to the best solution for a particular α − θ

combination. For each of these solutions, the α, θ , number of pick faces, and number of storage are shown. Space specifications: Walls, Door

connections, Aisles, Storage, Pick face.

3 Results

To generate all possible optimal layouts for a given space, the

layout generation process is run separately for all combinations

of α and θ in their defined ranges. Drawing from the pool of

generated optimal layouts, we create a Pareto plot that visualizes

possibilities with respect to the storage capacity and number of pick

faces. The Pareto plot is used as an interactive decision-making tool.

Figure 4 shows the Pareto plot for a medium-sized space from our

industry partner. The Pareto front comprises optimal layouts that

dominate the other candidates by striking a better trade-off between

the storage capacity and number of pick faces. The Pareto front is

downward sloping, illustrating that the storage capacity decreases

with increasing number of pick faces. When two candidate layouts

have the same score in the same α − θ setting (e.g., Figure 2B), the

connectivity score comes into play and decides which one is likely

to lead to a higher-throughput design.

In Figure 4, we compare the auto-generated optimal layouts

in the Pareto plot with the existing manually-designed layout

(indicated by the red star added to the plot). We observe notable

improvements across both number of pick faces and storage

capacity.

We closely collaborated with expert warehouse designers to

validate the quality of the generated layouts and compare the results

with manually-generated versions. The designers reported that the

process was user-friendly and served as an effective collaborative

tool, significantly streamlining their efforts to achieve good layouts.

4 Discussion

Warehouse layout design plays a vital role in warehouse

operations performance. We proposed a novel automated optimal

layout candidate generation framework using beam search that
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FIGURE 4

Pareto visualization for a medium-sized space from our industry partner with specified door connections and aisle width = 3. The pink dashed line

shows the Pareto front. Zoomed layouts correspond to the data points on the Pareto front. The red star at the bottom shows the manually-designed

layout which has been specified by the red dashed border. Space specifications include the following: Walls, Door connections, Aisles,

Storage, Pick face.

satisfies a set of constraints. We also introduced a new scoring

function that handles a balance between storage capacity, number

of access points, and accessibility cost. Our method can generate

a wide variety of candidate layouts for different ranges of picking

and storage areas and we demonstrated this in various spaces of two

real-world warehouses. The simplicity of themethodmakes it easily

adaptable to any changes in user specifications and requirements.

Despite all these strengths, our approach is not without

limitations. One limitation is that we were unable to measure

the throughput of the layouts and compare their performances

comprehensively. Throughput depends on order lists and item

allocation, which would add a layer of complexity that is beyond

the scope of this work. As throughput is the ultimate measure of

effectiveness, not being able to account for these factors restricts

our ability to fully evaluate the efficiency of the different layouts.

Despite this limitation, the proposed solution was tested on nine

available physical spaces through the partnership betweenAmii and

Routeique. In the experiments, the framework generalized well to

both large and small spaces as well as those with non-rectangular

shapes and the expert warehouse designers verified the feasibility

and quality of the generated layouts.

Finally, we did not incorporate some relevant constraints,

for example varying heights of rows, and larger-sized

doorways/entryways. However, we found that it was relatively

straightforward to programmatically add those additional

constraints for the unique artifacts found in spaces such as

fire extinguishers (see Section 2.5). While it is challenging to

comprehensively anticipate and account for all unique elements

found in specific real-world scenarios, our method is flexible and

could incorporate the majority of such constraints.

In the future, we will continue to validate and refine our tool in

more diverse settings and in different warehouses. Feedback from

a larger number of warehouse designers will guide the direction of

future development.
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