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The construction industry is rapidly adopting Industry 4.0 technologies, creating 
new opportunities to address persistent environmental and operational challenges. 
This review focuses on how Artificial Intelligence (AI), Machine Learning (ML), and 
Deep Learning (DL) are being leveraged to tackle these issues. It specifically explores 
AI’s role in predicting air pollution, improving material quality, monitoring worker 
health and safety, and enhancing Cyber-Physical Systems (CPS) for construction. 
This study evaluates various AI and ML models, including Artificial Neural Networks 
(ANNs) and Support Vector Machines SVMs, as well as optimization techniques like 
whale and moth flame optimization. These tools are assessed for their ability to 
predict air pollutant levels, improve concrete quality, and monitor worker safety 
in real time. Research papers were also reviewed to understand AI’s application in 
predicting the compressive strength of materials like cement mortar, fly ash, and 
stabilized clay soil. The performance of these models is measured using metrics 
such as coefficient of determination (R2), Root Mean Squared Error (RMSE) and 
Mean Absolute Error (MAE). Furthermore, AI has shown promise in predicting and 
reducing emissions of air pollutants such as PM2.5, PM10, NO2, CO, SO2, and O3. 
In addition, it improves construction material quality and ensures worker safety by 
monitoring health indicators like standing postures, electrocardiogram, and galvanic 
skin response. It is also concluded that AI technologies, including Explainable AI 
and Petri Nets, are also making advancements in CPS for the construction industry. 
The models’ performance metrics indicate they are well-suited for real-time 
construction operations. The study highlights the adaptability and effectiveness of 
these technologies in meeting current and future construction needs. However, 
gaps remain in certain areas of research, such as broader AI integration across 
diverse construction environments and the need for further validation of models 
in real-world applications. Finally, this research underscores the potential of AI and 
ML to revolutionize the construction industry by promoting sustainable practices, 
improving operational efficiency, and addressing safety concerns. It also provides 
a roadmap for future research, offering valuable insights for industry stakeholders 
interested in adopting AI technologies.
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1 Introduction

Combining the technologies of AI and ML with construction 
techniques has a lot of potential in solving long-standing problems. 
Furthermore, the AI and ML literature in construction expands 
beyond individual examples to create a structure of methods, data, 
and results. Thus, every research endeavor proves the scalability and 
versatility of AI and ML algorithms in handling construction-related 
issues in various fields. In the literature, different papers describe the 
expedition of assessment models as the cutting-edge sole solution for 
the construction industry where the approximation of air pollutant 
concentrations in the atmospheric environment, concrete 
performance, and workforce safety are identified. It is a prerequisite 
to display the distribution of the AI techniques concerning Industry 
4.0 (see Figure  1). The present work introduces a more extensive 
research field in which AI and ML requirements are lodged in the 
construction industry. In particular, the research initiatives’ objective, 
importance, and findings have been described, thus outlining the 
nature of AI and ML development in the construction sector. Looking 
at the collected data, we identify recurrent patterns, practices, and 
innovations in AI and ML within construction.

The application of AI in analyzing air pollutants, workforce 
safety, CPS, and construction materials has led to significant 

advancements in sustainability and performance optimization. For 
instance, studying the impact of incorporating waste tire rubber into 
concrete found that AI models, particularly those using ANN, were 
able to accurately predict how the size and content of rubber affect 
the compressive strength of concrete. Moreover, it is also seen that 
the findings revealed that as the maximum size of the rubber 
increased, compressive strength decreased more significantly. 
However, AI-based models like ANN proved adept at maintaining 
the balance between utilizing recycled materials and preserving 
structural integrity. Furthermore, the inclusion of supplementary 
cementitious materials such as metakaolin and fly ash was shown to 
enhance mechanical properties while reducing environmental 
impacts, emphasizing AI’s role in promoting sustainability without 
compromising material performance.

Across multiple studies, ANNs have consistently emerged as 
powerful tools for various predictive tasks in construction. When 
predicting the compressive strength of modified mortars, models 
using ANN demonstrated a high degree of accuracy across diverse 
datasets, which tend to R2 as high as 0.96. This predictive capability 
extends to estimating the effects of different materials and 
environmental factors, as well as predicting concrete strength over 
various curing times, highlighting the versatility and power of ANN 
models (Anumba and Messner, 2020; Abdalla and Mohammed, 2022; 

FIGURE 1

Mind mapping illustration of the ML/DL techniques applied in the construction sector (Al-Janabi et al., 2019).
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Mohammed et  al., 2020; Abdalla and Salih, 2022; Mawlood 
et al., 2021).

Likewise, papers focusing on AI and ML for construction 
forecasting and decision-making bring attention to how AI optimizes 
construction activities. For example, the use of ML models for 
predicting Tunnel Boring Machine (TBM) performance showed that 
ANN models and SVM-based models could predict operational 
parameters with up to 95% accuracy. Similarly, it is noted that when 
applied to deep foundation bearing capacity, optimized SVM models 
enhanced predictions with high precision (R2 values up to 0.99), 
showcasing AI’s ability to reduce costs, improve timelines, and ensure 
reliability in construction operations.

Hence, in terms of predicting compressive strength, studies 
leveraging ML techniques like ANN, Multi-Expression Programming 
(MEP), and Multivariate Adaptive Regression Splines (MARS) were 
able to estimate the model’s behavior on cement mortars modified 
with additives. The findings consistently highlighted ANN’s superior 
performance compared to traditional statistical models, particularly 
in contexts where materials like metakaolin or fly ash were used. These 
studies confirmed that ANN models outperformed other techniques, 
such as Non-Linear Regression (NLR), in achieving lower RMSE 
and MAE.

Consequently, an important contribution to AI in construction 
safety comes from research on using optimized SVM combined with 
evolutionary random forests to predict back-break caused by blasting 
operations. Moreover, the model demonstrated a strong ability to 
forecast blasting effects, achieving greater predictive accuracy 
compared to conventional models and further demonstrating the 
reliability of AI-based tools for complex construction scenarios.

Additionally, AI has been effectively used in ensuring construction 
safety. Studies utilizing ANNs to predict soil and foundation stability 
or to optimize grouting processes with polymers, illustrated how these 
tools help forecast material behavior under varying conditions. The 
use of AI algorithms has led to improvements in safety protocols and 
operational efficiency by providing real-time predictive insights into 
construction material performance (Jaf et al., 2024; Mahmood and 
Mohammed, 2022; Omer et al., 2024; Wang et al., 2022; Yu et al., 2021).

Thus, by aggregating these study’s results, we  sum up the 
contributions of those researchers and underline the role of research 
in many significant fields which emphasize the need to enhance 
environmental sustainability, safety, and efficiency. However, it must 
be highlighted that effectively integrating AI and ML has a tremendous 
positive impact on environmental sustainability by achieving high 
efficiency in resource consumption and eliminating waste. It is noted 
that air pollution contributes to climate change, harms ecosystems, 
and poses severe health risks to humans, including respiratory and 
cardiovascular diseases. Therefore, monitoring air pollutants is 
essential for mitigating these adverse effects.

Similarly, these technologies also increase safety requirements 
because every process is analyzed and controlled with the help of 
predictive analysis and automation to eliminate risks and incidents. 
Also, monitoring health parameters within the construction work is 
crucial due to the high-risk nature of construction work. It is seen that 
the construction workers are often exposed to hazardous conditions 
that can lead to accidents and long-term health issues. By integrating 
health monitoring systems, potential risks can be  identified and 
mitigated in real time, ensuring a safer working environment. Several 
studies indicate that the integration of AI and ML in the field is used 

to enhance productivity and expand operations in areas of forecasting 
and decision-making.

Therefore, this study reveals the possibilities that AI and ML have 
brought to transform the construction industry, how such 
transformations have written history, and how they have opened paths 
for other works. The increasing field of AI and ML applications within 
the construction sector offers great potential for altering industrial 
practices, promoting sustainability, and improving overall 
performance. This study is vital for understanding the complexities of 
this revolutionary nexus, as it delivers an extensive summary of 
previous research efforts, emphasizing important patterns and 
frameworks as a road map for additional studies. With increasing 
application of AI and ML techniques in the construction industry, this 
study is well-positioned to educate researchers and professionals 
toward a future where technology underpins safe, effective, and 
sustainable construction methods. This survey has real-world 
implications for all participants in the construction sector.

Conclusively, to the very best of our knowledge, this is the first 
survey study that emphasizes AI and ML techniques in the 
construction sector, specifically on pollutants, construction materials, 
CPS and physiological signals. A vital part of this analysis is examining 
the survey’s uniqueness and innovation as a contribution to the 
scientific conversation. Despite the growing popularity of AI and ML 
in construction, there is a severe lack of comprehensive surveys that 
compile research results and provide a systematic overview of the 
topic. This review aims to close this critical gap by providing a 
comprehensive summary of existing knowledge, identifying essential 
research gaps, and suggesting directions for future investigation.

This study is organized as follows. Section 2 presents a literature 
review to comprehensively understand the existing research and 
developments related to pollutants, CPSs, construction materials and 
physiological activity monitoring within the construction industry. 
Section 3 summarizes key studies, highlighting their methodologies, 
datasets, results, and limitations. Hence, these studies cover various 
applications, from environmental forecasting to safety management 
and productivity enhancement. Section 4 highlights the wide range of 
applications covered by the reviewed studies, from forecasting air 
pollutant concentrations to estimating concrete performance and 
automating activity recognition for enhancing worker safety. Finally, 
Section 5 draws conclusions about the proposed study in terms of 
findings, recommendations, limitations, implications, summary of 
novelty and contribution.

2 Literature review

We collected studies and data from various sources (PubMed, 
Scopus, WoS, MedRxiv, ArXiv, Google Scholar, and Scispace) to 
discover relevant publications.

In particular, we have considered, besides the primary term “AI 
and ML Technique in Industry 4.0,” multiple synonyms: “Construction 
Industry 4.0,” “Air pollutant in Construction Industry,” “Physiological 
Signals of Workers in Construction Industry,” “Air Pollution and 
Hazard prevention through AI in Industry,” “Cyber Physical Systems,” 
“Cybersecurity” and “Compressive strength of construction materials.” 
These terms have been used in combination with “artificial 
intelligence,” “machine learning,” “deep learning,” “industry revolution 
4.0,” and “Digital Industrial Transformation.”
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The search yielded substantial literature (150 papers selected from 
PubMed, Scopus, and Google Scholar, including only two documents 
from Scispace), including research articles, review articles, case 
studies, and reports. Among these articles, we selected all the contents 
about the application of AI methods to construction site and ended 
up with 36 papers. The criteria used to select the papers were:

 • Relevance of the topic: we selected only papers with an innovative 
approach to AI. Accordingly, we  discharged papers with 
fundamental statistical analysis.

 • Completeness and significance of the results: we  selected the 
papers where AI is used to achieve some critical result, removing 
those papers where AI was only discussed and not a clear result 
was obtained.

Figure 2 shows the flowchart of the steps performed during the 
preparation. In the rest of the paper, we first analyze the literature in 
Section 2.1, where ML and DL models are developed on air pollutants 
and construction materials. In Section 2.2, the studies show how these 
AI methods have been applied to workers’ activity. In Section 2.3, the 
studies conducted on CPS have been discussed and finally, in Section 

2.4, the studies included with the prediction of compressive strength 
of the construction material have been taken into consideration.

2.1 AI techniques applied on air pollutants 
and construction materials

This section presents recent research studies utilizing traditional 
and novel AI methods to detect air pollutants and features of 
construction materials. The authors start by applying AI techniques to 
pollutants and concrete in the construction industry. Accordingly, 
Table 1 summarizes the reported contributions.

Al-Janabi et al. (2019) introduced an intelligent forecasting model 
for air pollutants’ concentrations in the next two days by using DL 
techniques, mainly a Recurrent Neural Network (RNN), enhanced by 
a Particle Swarm Optimization (PSO) algorithm. This model is named 
the Smart Air Quality Prediction Model (SAQPM). The AI method 
adopted in the paper is based on unsupervised learning with an 
extended short-term memory network, which was formerly improved 
with a functional PSO algorithm to predict the concentrations of 
numerous types of air pollutants. The dataset includes data on six 

FIGURE 2

Flowchart of the research approach.
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TABLE 1 AI research contributions for predicting pollutants and features of construction materials in construction site.

Authors Methods Research objective Inputs Results

Al-Janabi et al. (2019) RNN with PSO Prediction of the concentration of 

six air pollutants (PM2.5, PM10, 

NO2, CO, O3, and SO2)

Data of air pollutants collected, 

preprocessed and normalized

Average sMAPE over the selected 

time frame is between 4.34 for 

SO2 and 12.93 for PM2.5

Mastromatteo and Amelio 

(2024)

LSTM Prediction of the diffusion level of 

PM2.5

Environmental features, i.e., drew 

point, temperature, pressure, 

wind direction, wind speed, snow 

and rain levels, past levels of 

PM2.5

RMSE and R2 are, respectively, 

43.79 and 0.77 in predicting 

PM2.5 levels 6-h in advance

Baduge et al. (2022) ANN, SVM, GANs, VAEs, CNNs Implementation of AI in 

architectural design, health and 

safety, security, and emission 

controls

Data collected by IoT devices Impact of energy and emission on 

construction and control through 

AI

Liu et al. (2022) ANN with backpropagation Prediction of dust particle 

concentration and pollutant

Dust emission characteristics 

using air characteristics: 

temperature, pressure, humidity 

and velocity of wind

Concentration of dust in different 

working areas under different 

environmental conditions: R2 is 

0.98, 0.99, 0.97, and 0.97 in the 

foundation area, rebar processing 

area, concrete rebar area, and 

road area of the foundation stage, 

respectively

Asadi et al. (2014) Levenberg–Marquardt ANN and 

NF model

Prediction of the concentration of 

NO2

Traffic count, air humidity, 

temperature and speed, solar 

radiation

From the NF model: R2 is 0.97, 

0.95, and 0.94 on training, 

validation and test sets, 

respectively

Jassim et al. (2017) Multilayer perceptron ANN Hourly energy consumption and 

CO2 emissions of different models 

of Caterpillar excavators in distinct 

earthwork conditions

Digging depth, total cycle time, 

bucket size and payload, load 

factor and horsepower

R2 is 0.997

Hendi et al. (2017) Feedforward ANN with 

backpropagation

Estimating the concrete specimens’ 

mass loss and volume loss

Experimental data of 14 concrete 

mix designs subjected to H₂SO₄ 

medium data

Loss in mass and volume of the 

specimen.

RSME is 0.44 for mass loss and 

1.18 for volume loss

Kwon and Song (2010) ANN with backpropagation Determining the change in 

porosity due to carbonization 

estimating the diffusion coefficient 

of CO2

Cement content, water-cement 

ratio, volume of the aggregate, 

and relative humidity

Maximum error between 

estimated and experimental data 

is 6.3% for the estimation of the 

depth of the carbonation under a 

range of relative humidity levels

Shahnavaz and Akhavian (2022) ANN, RT, RF, linear regression Determination of the emissions of 

CO, NOX and CO2

Different measurements from 

accelerometer and gyroscope 

sensors

Emission of air pollutant by 

utilization of different algorithms. 

RF algorithm: R2 is 0.94, 0.91 and 

0.94, while normalized RMSE is 

4.25, 6.42, and 5.17 for predicting 

CO, NOX and CO2, respectively

Milivojević et al. (2023) Fundamental statistical and 

correlation analysis

Determination of the pollution 

level at the construction site

Air pollutants (NO2, PM2.5, and 

PM10) and meteorological 

parameters (wind speed and 

direction, humidity, pressure, and 

temperature)

Average concentrations of dust 

emission are 16.42 μg/m3 for 

PM10 and 8.37 μg/m3 for PM2.5. 

Construction activities 

significantly increased PM10 and 

PM2.5 concentrations downwind 

by approximately 70 and 35%

Farahzadi and Kioumarsi (2023) Genetic algorithms, regression 

models, ANN, SVM, RF, DT

Finding AI and ML techniques 

that have contributed to reduce 

CO2 emissions in construction

78 papers selected from an initial 

pool of 678 identified papers 

through a systematic review 

process

ANN models showed promising 

results in predicting CO2 

emissions with a MAPE below 

10%
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kinds of air pollution (PM2.5, PM10, NO2, CO, O3, and SO2) collected 
from multiple monitoring stations, which was then preprocessed to 
handle missing values and standardized using the MinMaxScaler 
method. The data has been normalized to a range (0,1). Furthermore, 
a ten-fold cross-validation principle was applied to split the dataset 
into training and testing sets in the experimental setting. The 
functional PSO algorithm aided in tuning hyperparameters to build 
an effective predictor. The predictor’s performance was assessed for 
each station by average symmetric Mean Absolute Percentage Error 
(MAPE) over 25 days, based on hourly readings of pollutant 
concentrations for up to 30 days. The metric evaluation uses the 
sMAPE over the selected time frame, which shows average values in 
predicting air pollutant concentrations between 4.34 for SO2 and 12.93 
for PM2.5.

Also, Mastromatteo and Amelio (2024) developed a novel DL 
framework using RNNs to monitor and predict the spread of air 
pollutants over time, specifically PM2.5, on construction sites. Input 
data are environmental features acquired from sensors positioned in 
the construction site, i.e., drew point, temperature, pressure, wind 
direction, wind speed, snow and rain levels. A Long-Short Term 
Memory network (LSTM) was pre-trained to predict future PM2.5 
levels from the known environmental conditions and past levels of 
PM2.5. The methodology included four steps: (i) data preprocessing, 
(ii) model training, (iii) model testing, and (iv) model deployment on 
construction site. The dataset used for pre-training the model included 
43,824 hourly timesteps of environmental features and PM2.5 over 
five years. Data was pre-processed through visual inspection, binary 
transformation, handling missing data, box plots and statistical 
analysis of variables, data aggregation, analysis of cross-correlation 
and autocorrelation, verification of data stationarity, data 
normalization and standardization. For the analysis, data was 
aggregated in 6-h blocks, and divided into training, validation and test 
sets (70, 10 and 20%, respectively). Also, a random search procedure 
was performed to optimally set the model hyperparameters, resulting 
in a number of units of 100, dropout rate of 0.1, learning rate of 0.01, 
batch size of 32, and Adam optimizer. For each trial of the random 
search, a 3-fold cross validation was performed and average 
performance measures were computed. The LSTM model predicted 
PM2.5 levels 6-h in advance with values of RMSE and R2 which are, 
respectively, 43.79 and 0.77 on the test set. It indicates very promising 
pre-training results.

Finally, Baduge et al. (2022) provided a comprehensive overview 
of the application of AI, ML and DL approaches in various facets of 
the building and construction Industry 4.0. The review paper 
introduced the use of ANN and SVM to predict the mechanical 
properties of construction materials like concrete, steel, and timber. 
Generative Adversarial Networks (GANs) and Variational 
Autoencoders (VAEs) were also used for automated architectural 
generative design. Convolutional Neural Networks (CNNs) were 
adopted for other architectural design tasks, like house style 
recognition and indoor scene synthesis. Other AI techniques were also 
applied in structural design and analysis, offsite manufacturing 
automation, construction management, intelligent building operation, 
detection of hazardous chemical pollutants and sustainability. The 
article reviewed various datasets used in different AI applications 
within the construction industry, e.g., design data, material property 
data, sensor data, seismic data, construction site data, and big data 
from offsite manufacturing. Overall, the review highlights the 

transformative potential of AI/ML/DL in the construction industry, 
paving the way for more intelligent, efficient, and sustainable 
construction practices.

Regarding the application of ML techniques, Liu et  al. (2022) 
proposed a dust concentration model with construction phases and 
site climate conditions. It has been developed to fill the lack of a 
sample model for predictions concerning dust concentration for 
further implementation of measures to minimize it. A backpropagation 
ANN model was used in the study to model and forecast the 
concentrations of dust emanation in construction site areas under 
diverse conditions using the results of dust generation monitoring. 
Applying the data obtained from the dust generation monitoring, the 
backpropagation ANN model was used to simulate and estimate the 
emanation concentrations of the dust in the site areas due to the 
influence of the pre-set condition on the construction site. The data 
considered in the work are the dust emissions received during two 
stages of a residential construction object (laying the foundation and 
constructing a load-bearing structure). The data concerns such factors 
as temperature, humidity, and velocity of the wind. Hence, the given 
data set was split into training and test data sets to evaluate the model’s 
efficiency. There were 60 samples collected in total, whereby the first 
set of 50 samples was proposed for training purposes, while the last 10 
samples were proposed for testing purposes. The conclusion and 
observation of this paper also synthesize that the application of the 
backpropagation ANN model is helpful in predicting the different 
alterations of the dust concentration in the different work areas and 
climates. The efficacy of the model was established through a 
comparison of the results with those of the conventional regression 
models, thus evaluating the viability of the model. The results in terms 
of R2 between measured and predicted dust emission concentration of 
different work areas of the foundation stage show a high fitting degree, 
with values of 0.98, 0.99, 0.97, and 0.97 in the foundation area, rebar 
processing area, concrete rebar area, and road area of the foundation 
stage, respectively.

A backpropagation ANN model was also adopted by Asadi et al. 
(2014) to predict NOx concentration in the air as a function of traffic 
count and climatic conditions before and after applying titanium 
dioxide (TiO2) on asphalt pavements. The study employed ANN 
models and Neuro-Fuzzy (NF) models to estimate NOx concentrations, 
providing early warnings. The study adopted two ML methods. The 
feed-forward neural network was trained with the Levenberg–
Marquardt algorithm. Also, the NF model was combined with the 
ANN, employing a hybrid algorithm that integrates least squares and 
backpropagation gradient descent methods. The data set was obtained 
from a field investigation at Baton Rouge, LA, where an aqueous 
solution of nano-TiO2 was sprayed on asphalt concrete. Therefore, the 
proposed NF model successfully fitted the NOx measurements better 
than the ANN model and gave a better-enhanced R2 measures in all 
steps of the training, validation, and testing processes, which are 0.97, 
0.95, and 0.94, respectively. The analysis established that both models 
are viable for estimating NOx concentrations and can contribute to 
the scientific foundation of pollution prevention.

Unlike the above works, Jassim et  al. (2017) proved the 
applicability of the ANN model to predict the hourly energy 
consumption and CO2 emissions of different models of Caterpillar 
excavators in distinct earthwork conditions. The study employed a 
multilayer perceptron ANN with a sigmoid activation function and 
backpropagation training technique for the analysis. As for the data, 
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5,092 operation modes for 25 models of Caterpillar excavators are 
included in the dataset and obtained from the Caterpillar manual. 
Specifically, a 9:1 ratio was applied wherein 9 parts were used for 
training and 1 part for testing. The performance of the model was 
checked based on the minimum square error and the R2 measure. The 
proposed model proved to be  very accurate in predicting hourly 
energy and CO2 consumption with R2 values of 0.997%. Therefore, the 
study provides the logical conclusion that the ANN model is sufficient 
for generating forecasts of energy and CO2 consumption. It 
demonstrates its possibilities of expansion for predicting energy 
consumption and greenhouse gas emissions using the discrete event 
simulation data from constructions.

Furthermore, Hendi et  al. (2017) studied the resilience of the 
concrete regarding sulfuric acid corrosion, which is prevalent in 
sewage systems. The concern of the research is on the effectiveness of 
incorporating glass powder and micro-silica in concrete mixes with 
reference to durability against acids. Accordingly, an ANN model was 
applied for estimating the concrete specimens’ mass loss and volume 
loss. The ANN model used for the study was a feedforward neural 
network with backpropagation used in the error computation. The 
model calculates mass loss and volume loss at a given time of 
treatment. The dataset includes experimental data of 14 concrete mix 
designs subjected to H₂SO₄ medium data, whose 60% was adopted for 
training the model, 20% for validating the model, and the final 20% 
for testing the model. The ANN’s short-term mass loss forecast was 
promising, with a RMSE of 0.44 and volume loss with an RMSE of 
1.18; the results show high prediction accuracy. A study conducted in 
an acidic environment showed that glass powder and micro-silica help 
considerably increase concrete’s durability. The findings established 
that the concrete with a greater content of micro-silica and glass 
powder provides better performance in sulfuric acid regardless of the 
lower compressive strengths.

The ANN model was also employed by Kwon and Song (2010), 
which analyzed the carbonation behavior in concrete structures 
through the creation of a numerical technique based on ANN. The 
latter, adopting a backpropagation method for training, was employed 
to estimate the diffusion coefficient of CO2, thus extending the chances 
of enhancing its efficiency over that of the expensive experimental 
approaches. The input parameters are cement content, water-cement 
ratio, volume of the aggregate, and relative humidity. The data 
collected in the analyzed study is based on experimental data. The 
maximum error between estimated and experimental data is shown 
to be 6.3% for the estimation of the depth of the carbonation under a 
range of relative humidity levels. This work describes a feasible 
numerical analysis based on ANN for forecasting the carbonation 
kinetics in concrete structures.

Another different approach was proposed by Shahnavaz and 
Akhavian (2022). The work aims to develop and deploy a ML 
framework to predict emissions from heavy construction equipment. 
Different ML algorithms have been utilized, ANN, Regression Trees 
(RT), Random Forest (RF), and linear regression. Data was collected 
from a Caterpillar 305D CR excavator performing real-world 
construction work. The input data includes different measurements 
from accelerometer and gyroscope sensors, while the output data are 
the emission levels of CO, NOX, CO2, SO2, and CH4 recorded using a 
portable emission measurement system. Additionally, 70% of the 
dataset was used for training and 30% for testing. The RF model 
demonstrated the best performance with R2 equal to 0.94, 0.91 and 

0.94 and normalized RMSE of 4.25, 6.42, and 5.17 for predicting CO, 
NOX and CO2, respectively. Hence, the study successfully predicted the 
emissions of heavy construction equipment using ML models trained 
on sensor data, achieving high accuracy and demonstrating the 
potential for broader application and future research enhancements.

Retrospective research conducted by Milivojević et  al. (2023) 
involved implementing a distributed sensor network to collect real-
time data on air pollutants and meteorological parameters to manage 
construction operations effectively to reduce environmental impact. 
The dataset comprised real-time measurements of air pollutants (NO2, 
PM2.5, and PM10) and meteorological parameters (wind speed and 
direction, humidity, pressure, and temperature). The possibility of 
using ANN for predictive modeling has been mentioned but excluded 
due to the very low correlation between PM particle concentration 
and meteorological parameters. The study is interesting but involved 
fundamental statistical and correlation analysis without using a 
validation strategy like K-fold cross-validation. The study found high 
dust emission levels at the construction site. Average concentrations 
were 16.42 μg/m3 for PM10 and 8.37 μg/m3 for PM2.5. Construction 
activities significantly increased PM10 and PM2.5 concentrations 
downwind by approximately 70 and 35%, respectively. PM2.5 levels 
posed a far more significant health hazard due to higher values than 
prescribed daily limits.

Farahzadi and Kioumarsi (2023) proposed a survey work on how 
AI and ML technologies have contributed to reducing CO2 emissions 
in the construction sector. The study identifies and discusses various 
ML techniques used in the literature, including genetic algorithms, 
regression models, ANN, SVM, RF and Decision Trees (DTs). The 
dataset for this review consists of 78 papers selected from an initial 
pool of 678 identified papers through a systematic review process. The 
study follows a systematic review methodology, with the following 
steps: (i) database selection, (ii) filtering, (iii) initial identification of 
678 papers. Bibliographic and content analyses were conducted on the 
selected documents to categorize and analyze the significance. Most 
studies in this review paper focused on sustainable materials and 
components design/production. ANN models showed promising 
results in predicting CO2 emissions with a MAPE below 10%. The 
paper is crucial in optimizing and predicting CO2 emissions reduction 
in the construction sector using AI.

2.2 AI techniques applied to physiological 
activity

This section presents recent research studies utilizing traditional 
and novel AI methods to detect physiological activity. The authors 
start by applying AI techniques to worker activity in the construction 
industry (Table 2).

Mäkela et  al. (2021) performed a study to utilize working 
conditions and safety in labor-intensive fields, mostly in construction, 
by implementing IoT technology and wearable sensors for human 
activity recognition. The classifiers included RF, extra trees, XGBoost, 
Linear Discriminant Analysis (LDA), SVM and Logistic Regression 
(LR), which were used in this study to identify human activities. The 
classifiers were trained using the standard configuration because fine-
tuning of hyperparameters did not significantly affect performance. 
The data was further divided into training, validation, and testing sets 
based on the Leave-One-Subject-Out (LOSO) evaluation which 
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reflected the model’s performance with different perspective. The 
dataset aims to benchmark Human Activity Recognition (HAR) and 
improve occupational safety and wellbeing in professional 
construction settings. The experiment introduced the VTT-ConIoT 
dataset, which contains data from 13 users performing 16 different 
construction-related activities, collected from accelerometers which 
are placed on hip, upper arm and back shoulders. This study attained 
classification accuracy of 89% in the six-class setup and 78% in the 
sixteen-class setup. The results indicated the potential for 
generalization to different individuals and suggested the usefulness of 
a sensor-based approach to recognize recommended and 
non-recommended activities in construction settings.

Furthermore, Aryal et al. (2017) defined a novel technique for 
real-time monitoring of physical fatigue in construction workers using 
heart rate monitor, infrared temperature sensors and EEG sensors. 
The aim was to improve the safety trials, which tends to strengthen 
work-rest schedules. Based on physiological data, boosted tree 
classifiers were employed to predict physical fatigue levels. The dataset 
comprised data collected from 12 participants wearing sensors for 
20 min at rest, recording baseline heart rate, skin temperatures, and 
EEG waves. Subjective fatigue levels were recorded using Borg’s Rating 
Of Perceived Exertion (RPE) scale. The experimental setting involved 
participants wearing sensors and resting for 20 min to record baseline 
physiological data. The material handling task, which broke every 50 
trials for the completion of the Psychomotor Vigilance Test (PVT) test, 
was performed. Moreover, different classification algorithms were 
tested, and a ten-fold cross-validation approach was used for 
assessment. The accuracy achieved by the boosted tree was 82% with 
all extracted features like heart rate and temperature sensors yielded 
in predicting physical fatigue levels, on the other hand with 
monitoring from the temple showing promising results of 79% 
accuracy. On the other hand, monitoring of the only temple 
temperature showed promising results of 79% accuracy whereas 
relying on the only heart rate the accuracy was 59%.

By contrast, Akhavian and Behzadan (2018) addressed the 
challenges of input modeling in construction simulation models by 
applying smartphone sensors, i.e., accelerometer and gyroscope, to 
track construction worker’s body movement activities. The dataset 
consisted of timestamped sensor data from multiple construction 
workers performing various activities such as sawing, loading, hauling, 
unloading, hammering, and turning a wrench in a controlled outdoor 
environment simulating a construction job site. Moreover, the 
experiment tests were performed on 30 cycles, and then recordings 
were observed for each activity. Two simulation models that were 
based on the Activity Cycle Diagram (ACD) concerning different 
probability distributions for activity periods were developed. The 
study focused on supervised learning approaches to forecast workers’ 
activities, testing various classifiers like ANN, SVM, K-Nearest 
Neighbor (KNN), LR, and DTs. The performance was determined by 
using ten-fold cross-validation after many trials, with ANN showing 
the highest accuracy, followed by KNN. For the data-driven simulation 
model, which was composed of real-time sensor data, it was shown 
that the ANN outperformed the other techniques, with accuracy of 
90.74%, which depended on the estimated activity intervals.

Additionally, Karataş and Budak (2021) improved labor control 
and management efficiency in construction projects by developing AI 
models for activity recognition. The study used sensor data to 
automatically recognize construction activities performed by laborers 

on construction sites. The AI-adopted method involved collecting 
data from 3-axis accelerometer, gyroscope, and magnetometer sensors 
worn by laborers. The raw data underwent preprocessing, including 
segmentation and statistical feature extraction. The dataset used in the 
analysis consisted of 76,080 data points collected from activities such 
as logging, carrying, surfacing, vibrating, and waiting. ML algorithms 
such as LR, SVM, DT, and KNN were utilized for training and 
modeling. The experimentation analysis adopted ten-fold cross-
validation to minimize bias. The SVM algorithm attained a maximum 
accuracy of 90%, followed by the KNN algorithm with an accuracy of 
87%. In contrast, the LR and DT algorithms achieved approximately 
80% accuracy. Precision, recall, and F1-score values also highlighted 
the superior performance of the SVM algorithm in predicting 
construction activities.

A review work was proposed by Sherafat et al. (2020) with the 
integration of different ML and DL methods. The goal was to improve 
productivity in construction by monitoring workers and equipment. 
In the paper, the workforce monitoring system was described as 
composed of four levels: (i) tracking location, (ii) recognizing 
activities, (iii) monitoring activities, and (iv) assessing performance. 
The data sampling was done by built-in sensors of smartphone, i.e., 
accelerometer and gyroscope. The study integrated mechanized 
activity recognition techniques, focusing on ML algorithms like SVM, 
ANN, DTs, KNN, LR, and RF, emphasizing ANNs and DL, remarkably 
Naïve Bayes, CNNs and RNNs. The paper included studies on 
automated activity recognition regarding construction categorized 
into audio-based, kinematic-based, and computer vision-based 
techniques. The experimental setting investigated automated activity 
recognition, focusing on proof-of-concept stage experiments and 
discussing trials such as limited ground-truth data. The paper focused 
on the need for commercially applicable methods to detect and 
recognize equipment activities accurately, highlighting the importance 
of different approaches and asserting the limits of automated activity 
recognition methods in construction sites.

Akhavian and Behzadan (2016) developed advanced construction 
project management, which automated the identification of workers’ 
logs using mobile phone sensors, i.e., accelerometer and gyroscope. 
The data captured body movement using simulated construction 
activities (e.g., loading, sawing, dumping). ML approaches were used 
to accurately determine data from smartphone sensors and then 
recognize the different construction tasks, reflecting the improvement 
of productivity and safety management. The classifiers used in this 
research are ANNs, DTs, LR, SVM and ensemble models. The dataset 
comprised data collected from smartphone sensors and logging apps 
on mobile platforms. The study employed a ten-fold stratified cross-
validation approach, where 90% of the data was used for training and 
10% for testing. The study defined the fine-tuning model parameters 
based on regularization factors to optimize performance. The 
investigation demonstrated high accuracy rates of over 90% across 
various activity categories, with classifiers like ANNs, which 
accomplish accuracies of 87–97% for user-dependent activities and 
62–96% for user-independent categories.

Al Jassmi et  al. (2020) proposed a method for automating 
construction worker performance monitoring using wearable 
sensors to gather physiological data, enabling remote and automatic 
activity recognition. The study addressed classification challenges 
in distinguishing between productive and nonproductive activities 
and identifying specific types of productive tasks based on 
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physiological signals. The proposed method involved training 
various ML classifiers using physiological signals such as blood 
volume pulse, respiration rate, heart rate, Galvanic Skin Response 
(GSR), and skin temperature. The dataset used in the analysis was 
obtained through an Android mobile application designed for data 
fusion, integrating real-time physiological readings from sensors 
like Zephyr Bioharness™ and Empatica E4 wristbands via 
Bluetooth. The experimental setting involved a pilot study with 
three pre-fabrication stone construction workers. The dataset 
underwent a ten-fold cross-validation split for training and testing 
the ML classifiers. The study achieved promising results, with an 
accuracy of up to 88% in activity recognition using an ANN 
classifier. Two classification problems were addressed: classification 
of various activities as productive and nonproductive for identifying 
the productive tasks and activities based on a nonproductive task 
(binary model) and for accomplishing some productive tasks based 
on a (multi-class) model.

Furthermore, Ouyang et al. (2023) proposed a predictive model 
based on electrocardiogram (ECG) and GSR sensors to assess the 
inattention of construction workers due to physical fatigue. The study 
determined the relationship between workers’ physiological features 
and attention levels during attention-demanding tasks. For the 
computational models, several supervised learning techniques, 
including SVM, KNN and RF, as well as LDA, were used to predict 
cognitive states, which are based on ECG and GSR sensor data 
features. These models aim to predict the workers’ attentional states, 
with Heart Rate Variability (HRV) features derived from ECG signals 
and skin electric activity features derived from GSR signals. The data 
set was composed of 30 participants who completed cognitive tasks 
twice. The first practice was under non-fatigued circumstances. In 
contrast, the second one was done after the physical exertion of 
fatigue. Additionally, the experimental setup described each subject 
performing cognitive tasks twice, which were randomly split into two 
groups to avoid order effects. Hyperparameters were selected using 
grid search, and LOSO was used for model evaluation. Results showed 
that using HRV features alone achieved an 88.33% prediction accuracy 
with the KNN algorithm, while GSR features alone achieved 76.67% 
accuracy, also with KNN. Combining HRV and GSR features 
enhanced accuracy by 96.67% through the SVM algorithm.

A different approach proposed by Joshua and Koshy (2011) 
presented a task of accelerometer-based activity classification to 
automate work sampling on construction sites (brick lying on an 
uncompleted wall of 450 mm in height). The main objective was 
to improve safety, productivity, and quality control. The study 
aimed to evaluate different classification techniques, focusing on 
masonry activities combined with the multilayer perceptron ANN, 
which reflected good results. Data sampling was collected from 
masons evaluated while performing instructed and uninstructed 
activities with accelerometers attached to their waists. Ten runs of 
ten-fold cross-validation per classifier were performed and 
ANOVA tests used for comparing data from sensors that are 
placed at different positions. Data was segmented into windows of 
lengths 2, 4, and 4.23 s with a 50% overlap. The multilayer 
perceptron achieved 80% accuracy in uninstructed mode. It 
motivated the emphasized segment overlap’s importance for 
classifier performance and used only the best features to reduce 
runtime without accuracy loss. The study examined the 
significance of underscoring data collection mode, feature types, 

and segment overlap in accelerometer-based activity recognition 
for construction work-sampling automation.

Finally, Peddi et al. (2009) presented a computerized productivity 
measurement system for on-site construction using computer vision and 
AI principles. The system captured real-time construction task images, 
which extract human poses, categorized them, and utilized an ANN to 
measure worker productivity. The goal was to expedite construction 
processes through instantaneous, automated productivity assessment. The 
study used a neural network-based approach for pose classification. 
Specifically, it employed feedforward ANNs with backpropagation 
learning to classify poses as effective, ineffective, and contributory. Data 
was sourced from the Wireless Real-time Productivity Measurement 
(WRITE) system, which communicated construction activity image 
classifications through video camera (having pan, tilt and zooming 
features) over the Internet. The established algorithms attained an 
accuracy of about 85%, equivalent to manual methods, offering instant 
feedback to construction teams and enhancing the efficiency of 
construction processes. This progression eliminated biases and limitations 
related to traditional manual procedures, allowing real-time productivity 
valuation in the construction sector.

2.3 AI techniques for cyber-physical 
systems in construction industry

This section presents recent research studies leveraging the 
integration of traditional and novel AI methods with CPS 
methodologies which leads to the enhancement of the effectiveness of 
Industry 4.0. The authors start by applying AI techniques for CPS to 
the construction industry. Accordingly, Table  3 summarizes the 
reported contributions.

Moosavi et al. (2024) explored the integration of Explainable AI 
within manufacturing and industrial CPS. The study highlighted that 
Explainable AI methodologies are crucial for validating that CPSs 
meet their dynamic operational requirements. The formal 
representation of requirements, such as process control, predictive 
maintenance, and fault diagnosis, was achieved using interpretability 
techniques like Shapley values and Local Interpretable Model Agnostic 
Explanation. Verification was performed through model-agnostic 
methods to ensure consistency. Moreover, it allows experts to 
understand and trust the decision-making process. The paper also 
discussed the need for lifecycle adaptability in Industry 4.0 systems, 
emphasizing how CPS requirements must be adaptable corresponding 
toward changing of environmental aspects.

Also, Radanliev et al. (2021) conducted a detailed survey on the 
intersection of AI, CPS, and Industry 4.0, focusing on how CPS 
requirements are represented and verified across their lifecycle. The 
authors proposed the integration of CPS and IoT into a unified 
CPS-IoT framework that allows real-time sensing, processing, and 
actuation. This framework emphasized the need for formal verification 
of requirements, especially in terms of security and interoperability, 
given the criticality of Industry 4.0 systems. By utilizing AI-based 
methods for requirement representation, such as ML algorithms that 
predict system behaviors, the study highlighted the importance of 
transparency and explainability to ensure that CPS remains compliant 
with lifecycle requirements. Verification was facilitated through 
scenario-based testing and continuous monitoring to adapt to 
operational changes and emerging cybersecurity threats.
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TABLE 2 AI research contributions for monitoring of physiological signals in construction site.

Authors Methods Research objective Inputs Results

Mäkela et al. (2021) XGBoost, LDA, LR, RF, 

SVM

Enhancing safety and improving 

work conditions and health

Utilization of wearable 

sensors like IMU to get 

real-time data

Comparison of datasets of workers’ activities 

based on ML algorithms and definition of 

their work’s safety and ergonomics. The 

model accuracy is 89% for six classes and 

78% for sixteen classes

Aryal et al. (2017) SVM, DT Establishing methods for assessing 

fatigue

Heart rate, brain wave, and 

temperature sensor data

Thermoregulation from the temple is more 

valuable than heart rate. There was a ten-fold 

cross-validation with 82% accuracy of heart 

rate and temperature sensors. The accuracy 

was 59% and 79%, considering alone the 

heart rate and the temple temperature 

respectively

Akhavian and Behzadan 

(2018)

ANN, SVM, LR, DT and 

KNN

Investigating, detecting, and 

classifying construction workers’ 

activities

Data captured from the 

smartphone’s built-in 

gyroscope and 

accelerometer

Comparison of data-driven and static 

simulation values with ten-fold cross-

validation. ANN model attained an accuracy 

of 90.74%

Karataş and Budak (2021) LR, SVM, DT and KNN Build AI models to recognize 

activities in construction work and 

effectively utilize project 

management and control

Data collected by axis 

accelerometer, gyroscope, 

and magnetometer

The best prediction was obtained with the 

SVM algorithm, which had an accuracy of 

90%. In other algorithms, 887% and 80% 

accuracy values were achieved with the KNN 

and DT algorithms, respectively

Sherafat et al. (2020) SVM, ANN, DT, KNN, LR, 

RF, Naïve Bayes, RNNs

Investigation of the performance-

based issues and productivity rate at 

construction job sites

Location tracking, activity 

recognition tracking, and 

performance monitoring

Providing a comprehensive review and 

comparison of different conducted studies

Akhavian and Behzadan 

(2016)

SVM, DT, LR, ANN Understanding the behavior and 

surrounding context of construction 

workers

Data collection by 

smartphone built-in and 

sensor logging apps

Low-cost pervasive construction workers’ 

activities recognition system proposed. The 

model attained with ten-fold cross-validation 

accuracy of 87–97% (user-dependent), and 

62–96% (user-independent)

Al Jassmi et al. (2020) ANN, SVM, KNN Proposing a novel approach for 

construction workers to capture 

physiological signals using remote 

and automatic activity recognition

Data collected by Zephyr 

Bioharness™ and Empatica 

E4 wristband

The blood volume pulse (BVP), respiration 

rate (RR), heart rate (HR), GSR and skin 

temperature (TEMP) values were extracted 

through the sensor; hence, the ANN 

achieved an 88% accuracy level with ten-fold 

cross-validation

Ouyang et al. (2023) KNN, SVM, RF and LDA Developed a predictive method to 

analyze fatigue by using ECG and 

GSR

HR variability, GSR Findings indicate that ECG sensors used 

alone or in combination with GSR sensors 

can be applied to monitor construction 

workers’ inattention on job sites. Model 

accuracy with KNN and HRV features: 

88.33%, GSR features: 76.67%, and combined 

features (SVM): 96.67%

Joshua and Koshy (2011) DT, multilayer perceptron 

ANN and backpropagation 

learning

Recognition of activities of workers 

to enhance productivity at the 

construction site

Accelerometer data 

sampling

Different classifier techniques were analyzed 

to evaluate the best classifier for activity 

recognition. The model attained 80% 

accuracy with accelerometers attached at 

both sides of the waist

Peddi et al. (2009) Feedforward ANNs with 

backpropagation learning

Recognition of human poses images 

based on effective, ineffective and 

contributory work

Initial data acquired from 

wireless real time 

productivity measurement 

capturing the images of the 

activities using a video 

camera

Determine two parameters: image processing 

and productivity at construction site. The 

model attained 85% of accuracy
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Unlike the previous approaches, Anumba and Messner (2020) 
examined the development of CPS in construction to facilitate 
improved consistency between digital models and physical 
components. The study emphasized the need for bi-directional 
consistency between components and their digital replicas, 
underscoring how sensors and actuators provide real-time feedback 
and actuation for monitoring construction progress. The research 
introduced the importance of real-time data acquisition, coordination, 
and adaptability. The use of Petri Nets was suggested for formal 
requirement modeling, offering a means for structured simulation and 
optimization of CPS processes. Verification was achieved by assessing 
consistency in system feedback loops to ensure requirements for 
safety, functionality, and performance parameters.

Also, Correa and Maciel (2018) proposed a comprehensive 
framework for the application of CPS in construction, focusing from 
initial design to construction and subsequent operation. The 
framework’s core idea was the representation of construction process 
requirements through the use of Petri Nets, which enabled simulation, 
validation, and real-time monitoring of progress against expected 
milestones. The framework emphasized modularity and traceability 
of requirements, enabling continuous verification through data from 
sensors and actuators. Additionally, the study addressed the need to 
balance the complexity of requirement models with their 
interpretability, suggesting a hierarchical approach for both macro and 
micro-level activities, ensuring that all operational stages of CPS are 
covered from design to execution.

Finally, Anumba et  al. (2010) delved into the opportunities 
provided by CPS in integrating virtual models with physical 

construction processes, with a strong focus on requirement 
verification and validation (V&V) throughout the project. The 
study reviewed the state-of-the-art in real-time consistency 
monitoring between digital and physical assets, identifying how 
embedded systems, sensors, and data fusion tools contribute to 
verifying that system requirements are met during each stage of 
development. To formally represent these requirements, the 
research advocated for the use of virtual prototyping, 4D Building 
Information Modeling (BIM), and runtime monitoring to align 
digital models with on-ground construction. Verification 
techniques, such as model checking and runtime validation, 
ensured that the CPS met safety, reliability, and interoperability 
standards throughout its lifecycle.

2.4 AI techniques to predict compressive 
strength of modeling construction 
materials

This section presents recent research studies describing the AI 
methods in terms of predicting compressive strength of construction 
materials which leads to the enhancement of the effectiveness of 
Industry 4.0. The authors started forecasting the evaluation regarding 
the compressive strength of construction materials using AI 
techniques to the construction industry. Accordingly, Table  4 
summarizes the reported contributions.

Abdalla and Mohammed (2022) introduced a novel approach for 
predicting the compressive strength of metakaolin-modified cement 

TABLE 3 AI research contributions toward CPSs in construction industry.

Authors Methods Research objective Inputs Results

Moosavi et al. (2024) Explainable AI techniques

Exploring XAI techniques in 

manufacturing and industrial 

CPS, enhancing the transparency 

and interpretability of AI models 

in critical applications

Academic and industry 

publications on AI and XAI 

applications in industrial CPS 

and manufacturing

Role of XAI in improving AI 

reliability and human 

comprehension in 

manufacturing systems

Radanliev et al. (2021)

Development for AI use in CPS, 

focusing on anomaly detection 

and system resilience

Developing a conceptual 

framework for AI’s evolving role 

in CPS, highlighting challenges 

and transparency in AI-based 

decision-making

Academic and industry papers 

from 2010–2020, focusing on 

AI and CPS in Industry 4.0

Hierarchical cascading 

framework for transparent AI 

decision-making in CPS, 

addressing the challenges of AI 

evolution

Anumba and Messner (2020)
Implementation of CPS 

prototypes using sensors

Enhancing construction project 

operations through 

implementation of digital 

models for real-time tracking, 

monitoring, and control

Data from construction 

components, structures, and 

mobile cranes monitored via 

sensors and tracking systems

Enhanced project control 

through real-time feedback; 

prototypes demonstrating CPS 

applicability in construction 

sites

Correa and Maciel (2018)

CPS framework based on virtual 

models using Petri Nets 

connected to BIM models and 

hardware sensors

Integrating computational 

resources with construction 

processes to improve the 

efficiency and sustainability of 

project delivery

Data from real-time 

construction processes, BIM 

models, and computational 

tools like wireless sensors and 

visualization

Highlighted potential benefits of 

CPS for intelligent and 

sustainable construction, 

ensuring project task 

completion

Anumba et al. (2010)
Development of models using 

wireless sensors and data fusion

Integrating BIM and CPS in 

construction processes, enabling 

bi-directional communication 

between virtual models and 

on-site construction activities

Virtual 3D and 4D BIM models, 

on-site hardware like sensors 

and actuators and data from 

construction progression

Framework for real-time 

monitoring and optimization of 

construction processes, bridging 

BIM and on-site activities
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mortar by utilizing a hybrid AI model. It is seen that this model 
integrates MARS, MEP, and ANN to enhance accuracy in forecasting 
strength parameters. The study collected 230 data samples, which were 
used as input for modeling. MARS was employed to develop the 
primary prediction model due to its ability to handle high-dimensional 
data and complex nonlinear relationships. Additionally, comparative 
analysis showed that MARS achieved superior accuracy, with an R2 of 
0.95 and RMSE of 2.89, when tested against MEP and ANN models. 
Hence, this model’s accuracy demonstrated a significant advancement 
in automated strength prediction, reducing reliance on manual testing 
methods and providing an efficient, computerized system for 
predicting mortar performance in real time.

Also, Mohammed et al. (2020) proposed a robust method for 
evaluating the compressive strength of fly ash-modified cement 
mortar using ANN, M5P-tree, and NLR approaches. Moreover, the 
study utilized a comprehensive dataset of 450 samples with diverse 
fly ash content, water-to-binder ratios, and curing times. It was 
processed through ANN to classify compressive strength outputs 
based on curing ages, fly ash content, and water-to-binder ratios. The 
ANN model, trained with a backpropagation algorithm, achieved an 
R2 of 0.92 and an RMSE of 3.15, showing higher predictive accuracy 
over NLR with an R2 of 0.90 and RMSE of 3.35, and M5P-tree with a 
MAE of 2.45. Finally, by automating the strength classification 
process and reducing errors associated with manual evaluation, this 
study emphasized the capability of AI-driven modeling to enhance 
efficiency in material assessment and processing.

Abdalla and Salih (2022) developed a predictive AI framework for 
forecasting the compressive strength of cement-based mortar 
modified by calcium hydroxide. Therefore, employing MEP, ANN, 
and M5P-tree models, the system leveraged a dataset with varying 
calcium hydroxide content and curing times, comprising mix 
variations up to 45% calcium hydroxide content and curing ages of 
1–28 days. It is noted that the MEP model demonstrated an enhanced 
predictive capacity, achieving an R2 of 0.93, MAE of 2.01 and RMSE 
of 2.64, compared to ANN and M5P-tree models. Hence, this 
automated assessment framework facilitated real-time evaluation of 
material properties, reducing human errors and improving the 
reliability of strength predictions for modified mortars.

Mawlood et al. (2021) presented a ML-based prediction system 
for assessing the Unconfined Compressive Strength (UCS) and 
Compression index (Cc) of soils. Furthermore, using ANN and linear 
regression models, the study processed a wide array of soil parameters, 
including Atterberg limits and dry density, to predict UCS and Cc. By 
using a mix of 253 test samples and over 350 academic data points, the 
ANN’s feedforward backpropagation approach achieved an R2 of 0.88 
and RMSE of 7.25 for UCS prediction, making it a highly reliable 
predictive tool, while the linear regression model showed an R2 of 0.85 
and RMSE of 8.12. Hence, the implementation of this AI-based system 
allows for efficient soil strength evaluation and reduces dependency 
on extensive manual testing, thereby expediting geotechnical analyses 
in construction projects.

Jaf et al. (2024) explored the influence of waste tire rubber on the 
compressive strength of concrete through advanced AI modeling 
techniques. Moreover, using MEP, ANN, MARS, and NLR models, the 
study processed a dataset of 135 points, focusing on rubber size, 
percentage, and curing duration. The ANN model, equipped with a 
backpropagation learning mechanism, achieved an R2 of 0.94 and 

RMSE of 2.54, showing a high degree of accuracy in predicting 
strength outcomes. Hence, the study effectively demonstrated how AI 
can streamline the assessment of rubber-modified concrete mixtures, 
providing instantaneous and accurate evaluations that traditionally 
required manual testing.

Mohammed et al. (2020) implemented an ANN-based model to 
predict the compressive strength of cement-grouted sands modified 
with polymers. The study compared the efficacy of American Society 
for Testing and Materials (ASTM) and British Standards (BS) in 
strength assessment, applying a neural network approach to analyze 
the impact of polymer content and curing conditions. The dataset 
included features like hand-mixed cement-grouted sands with 
polymer content, sand grain size, w/c ratio. Tests conducted under 
ASTM and BS standards revealed that the ANN model achieved an R2 
of 0.91 and an RMSE of 3.02, with compressive strength values 71% 
higher under BS, outperforming M5P-tree and other regression-based 
models. Conclusively, this AI-driven system enhances predictive 
accuracy, provides immediate feedback on material properties, and 
improves the evaluation process for polymer-modified sands 
in construction.

Omer et al. (2024) leveraged ML algorithms, including XGBoost, 
MEP, MARS, and ANN, to predict the compressive strength of 
recycled aggregate concrete modified with fly ash. Furthermore, a 
dataset of 295 samples was analyzed to determine the impact of 
variables like water-to-binder ratio and curing time. The XGBoost 
model excelled with an R2 of 0.97 and RMSE of 2.14. Hence, this study 
underscores the potential of AI models to accurately predict recycled 
concrete properties, ensuring real-time, precise evaluations that 
support sustainable construction practices and minimize manual 
testing efforts.

Wang et al. (2022) presented an AI-enhanced system combining 
Principal Component Analysis (PCA) with ANN-Artificial Bee 
Colony (ABC) to predict the advance rate of TBMs. Moreover, the 
model processed a variety of inputs to optimize the prediction 
accuracy of TBM advance rate. It is noted that the model could 
achieve an R2 of 0.96 for training and 0.96 for testing, with an RMSE 
of 0.87 and MAE of 0.65. Hence, this innovative approach enabled 
instant feedback on TBM performance, reducing biases and 
inaccuracies in manual assessments and enhancing the efficiency of 
tunnel construction operations over other regression-
based approaches.

Yu et  al. (2021) applied optimized SVM models, using Whale 
Optimization Algorithm (WOA) and Moth-Flame Optimization (MFO), 
to predict back-break occurrences in blasting operations. Furthermore, 
data was sourced and preprocessed to identify key variables influencing 
back-break. Dataset included 10 inputs affecting back-break magnitude, 
parameters related to blast design, explosive material, rock mass. It is seen 
that the SVM-MFO model achieved an R2 of 0.95 and RMSE of 0.45, 
which outperformed SVM-WOA and standard SVM models, whereas 
sensitivity evaluations confirmed the SVM-MFO’s effectiveness in 
forecasting back-break magnitude and enhancing blasting operation 
safety. By providing instant, AI-driven predictions, this study effectively 
enhanced the accuracy of back-break evaluations, thereby aiding in safer 
and more efficient mining operations.

Finally, Jahed Armaghani et al. (2023) examined various SVM 
kernel functions to predict the bearing capacity of deep foundations. 
Hence, by utilizing a dataset of 141 piles including pile geometry, soil 
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conditions, and field test settings, different models, including Radial 
Basis Function (RBF), dot, neural, ANOVA and polynomial kernels, 
were tested. Furthermore, the SVM-RBF model emerged as the top 
performer, with R2 values of 0.97 (training) and 0.99 (testing), and an 
RMSE of 24.8. Conclusively, this AI-based prediction system 
provides a reliable alternative to traditional pile capacity evaluation, 
offering real-time results and minimizing human error in 
foundation design.

3 Task description

This section describes the main tasks of the different papers 
reported in Subsections 2.1–2.4. Tables 1–4 provide a detailed 
description of the input data and results obtained in the context of air 
pollutants and construction materials (see Table  1), physiological 
activity (see Table 2), CPSs (see Table 3), and compressive strength of 
construction materials (see Table 4).

TABLE 4 AI research contributions to predict compressive strength of modeling construction materials.

Authors Methods Research objective Inputs Results

Abdalla and Mohammed (2022) MARS, MEP, ANN

Predicting compressive strength 

of cement mortar modified 

with metakaolin

230 data samples of cement 

mortar mix proportions with 

varying w/b ratio, sand/binder 

ratio, metakaolin content

MARS model had highest R2 of 

0.95, and lowest RMSE of 2.89

Mohammed et al. (2020) ANN, M5P-tree, NLR

Determining model 

compressive strength of fly 

ash-modified cement mortar

450 samples of cement mortar 

with varying fly ash content, 

w/b ratios

ANN model had R2 of 0.92, 

RMSE of 3.15; best model for 

compressive strength prediction

Abdalla and Salih (2022) MEP, ANN, M5P-tree

Forecasting compressive 

strength of cement-based 

mortar modified by calcium 

hydroxide

Data samples comprising mix 

variations up to 45% calcium 

hydroxide content, w/c ratio, 

curing age of 1–28 days

MEP model performed best 

with R2 of 0.93, RMSE of 2.64, 

MAE of 2.01

Mawlood et al. (2021) ANN, linear regression

Predicting UCS and Cc of soils 

based on various geotechnical 

properties

253 test samples combined with 

350 academic data points; 

features include Atterberg 

limits, moisture content, 

density

ANN had slightly better 

performance with R2 of 0.88 

and RMSE of 7.25

Jaf et al. (2024) MEP, ANN, MARS, NLR

Evaluating the impact of waste 

tire rubber on concrete 

compressive strength

135 data points on rubber 

content, size, cement content, 

water content, and aggregate 

content

ANN model had R2 of 0.94, 

RMSE of 2.54, indicating 

reliable compressive strength 

prediction

Mohammed et al. (2020)
ANN, M5P-tree, linear 

regression, NLR

Predicting compressive strength 

of cement-grouted sands 

modified with polymers

Hand-mixed cement-grouted 

sands with polymer content, 

sand grain size, w/c ratio

ANN achieved R2 of 0.91, 

RMSE of 3.02; BS showed 71% 

higher strength than ASTM

Omer et al. (2024) XGBoost, MEP, MARS, ANN

Predicting compressive strength 

in fly ash- and modified 

recycled aggregate concrete

295 data points on concrete 

mixtures with cement, w/b 

ratio, natural/recycled 

aggregates, fly ash, and 

superplasticizer

XGBoost model outperformed 

others with R2 value of 0.97, 

and RMSE of 2.14

Wang et al. (2022)
PCA with ANN-ABC 

algorithm

Identifying key factors and 

predicting TBM advance rate

Factors influencing TBM 

advance rate using PCA to 

reduce dimensionality

PCA-ANN-ABC model 

achieved R2 of 0.96 (training), 

0.96 (testing), with RMSE of 

0.87 and MAE of 0.65

Yu et al. (2021)
SVM optimized with WOA and 

MFO algorithm

Predicting back-break caused 

by blasting operations

Dataset includes 10 inputs 

affecting back-break 

magnitude, parameters related 

to blast design, explosive 

material, rock mass

SVM-MFO had best 

performance with R2 of 0.95 

and RMSE of 0.45

Jahed Armaghani et al. (2023)

SVM with different kernels 

(RBF, polynomial, dot, neural, 

ANOVA)

Assessment of bearing capacity 

of deep foundations

141 pile datasets; features 

include pile geometry, soil 

conditions, and field test 

settings

SVM-RBF kernel achieved R2 of 

0.97 (training), 0.99 (testing) 

and RMSE of 24.8
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 • Al-Janabi et al. (2019) proposes an intelligent forecaster for air 
pollutant concentrations using DL techniques enhanced by a 
PSO algorithm. The study focuses on predicting concentrations 
of various air pollutants using unsupervised learning with RNNs. 
The study demonstrates the effectiveness of DL in 
environmental forecasting.

 • Mastromatteo and Amelio (2024) develops a novel framework 
using LSTM to monitor and predict the spread of air pollutants, 
specifically PM2.5, on construction sites from known 
environmental conditions. The methodology includes data 
preprocessing, model training, model testing, and model 
deployment on construction sites. The LSTM model predicts 
PM2.5 levels 6-h in advance with good RMSE and R2 values 
which indicate promising pre-training results.

 • Baduge et  al. (2022) provides an overview of ML and DL 
techniques in the construction industry, emphasizing their role 
in project lifecycle management and safety enhancement. The 
study showcases a range of AI techniques implemented in 
construction safety and management, highlighting the 
integration of intelligent vision technologies with AI. It provides 
valuable insights into AI applications in construction.

 • Liu et al. (2022) studies the emission appearances of construction 
work dust particles using a backpropagation ANN model. The 
research mainly focuses on assessing and forecasting dust 
concentrations at construction sites, utilizing real-life data from 
dust generation monitoring. By pretending and forecasting dust 
concentrations under differential conditions, the study gives the 
importance of proactive mitigation measures for dust pollution.

 • Asadi et al. (2014) examines the effectiveness of photocatalytic 
asphalt pavement in removing air pollutants from traffic exhausts. 
The study employs ANNs and neuro-fuzzy models to analyze the 
impact of traffic volume, humidity, and solar radiation on 
predicting NOx concentration in the air. The findings, therefore, 
are useful in holding the promise toward photocatalytic material 
in environmental sustainability.

 • Jassim et al. (2017) aims to predict hourly energy consumption 
and CO2 emissions of different models of Caterpillar excavators 
in distinct earthwork conditions using ANNs. The study 
demonstrates that the ANN model is a suitable technique to 
forecast energy and CO2 consumption and is also capable of 
predicting energy consumption and greenhouse gas emissions 
using discrete event simulation data from constructions.

 • Hendi et al. (2017) proves the effectiveness of glass powder in 
stimulating concrete resilience in contrast to sulfuric acid-
induced degradation using an ANN model. The study focuses on 
forecasting the mass and volume reduction of concrete in 
interaction with acids, thus highlighting the efficiency of glass 
powder and micro-silica in increasing concrete intensity.

 • Kwon and Song (2010) designs a technique to incorporate ANN 
algorithms with carbonation modeling for deterministic 
structure behavior. The study focuses on developing a relationship 
between CO2 diffusion rates under the different conditions set for 
mixture composition and exposure, which leads to the expansion 
of knowledge on concrete carbonation depth.

 • Shahnavaz and Akhavian (2022) develops a ML framework with 
different algorithms, i.e., ANN, RT, RF and linear regression, to 
predict emissions by construction equipment from inertial 
sensors. The objective is to compare the efficiency of different ML 

models on emission prediction. Accordingly, the RF model is 
proven to be the most accurate and precise.

 • Milivojević et al. (2023) implements IoT technologies for real-
time monitoring of air quality at construction sites, focusing on 
suspended particle concentrations and NO2 levels. The study 
highlights the correlation between construction activities and air 
pollution, provides insights for mitigating emissions, and 
demonstrates the feasibility of the IoT-based monitoring system.

 • Farahzadi and Kioumarsi (2023) describes the role of AI and ML 
techniques in predicting CO2 emissions in the construction 
industry, focusing on hyperparameter tuning in estimating them 
from precast concrete production. The research proves the AI 
ability to optimize construction operations and decrease 
environmental impact. The study provides useful insights 
regarding CO2 emission modeling.

 • Mäkela et al. (2021) uses wearable sensors to monitor the activity 
data of the people practicing labor-oriented jobs to enhance 
construction safety and production. The investigation also sets 
up ML classifiers that distinguish construction work activities. 
Thus, these activities aim to achieve practical objectives with the 
help of safety control based on physiological data.

 • Aryal et al. (2017) proposes and develops a wearable sensor-
based procedure for real-time monitoring of physical fatigue 
among construction workers. The physiological data are utilized 
to analyze the rationale for choosing retrospective sleep EEG 
indices, estimate the degree of physical fatigue, and show the 
effectiveness of wearable technologies in modifying work-
rest schedules.

 • Akhavian and Behzadan (2018) develops a smartphone-based 
system for monitoring the workers’ movements and activities to 
overwhelm the problems in input modeling in the simulation 
models. The study also demonstrates the prospect of applying 
supervised learning to improve the simulation of worker 
scenarios by predicting the worker’s actions based on the input 
sensor data.

 • Karataş and Budak (2021) carries out a study to improve 
construction projects’ general working and management using 
AI models in activity recognition. Input data are captured from 
the implemented sensors on employees. Then, data are processed, 
and ML techniques are used to enhance performance.

 • Sherafat et al. (2020) reviews different ML and DL-based systems 
that can capture construction project activities. This study 
discusses the use of diverse classifiers to perceive equipment 
actions and the prospects and issues of automated monitoring 
systems. Moreover, the paper helps readers understand the 
current state of activity recognition in the construction industry.

 • Akhavian and Behzadan (2016) develops a project management 
system for construction that incorporates the use of mobile 
phones’ sensory features to monitor construction workers’ 
activities. In this paper, the authors use ML to identify 
construction activities and prove that smartphone sensors could 
improve work and safety management. According to the findings, 
sensor-based task recognition is practical.

 • Al Jassmi et al. (2020) suggests a wearable technology system to 
streamline the assessment of the construction worker’s 
effectiveness. The study focuses on distinguishing between work-
related and non-work-related activities using physiological 
signals, thus underlining the advantages of sensor-based 
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monitoring systems in performance enhancement. This paper 
also offers important findings on the technologies that can 
be used to monitor worker’s activities.

 • Ouyang et al. (2023) proposes a model that uses the ECG and 
GSR sensors to predict construction workers’ unawareness 
resulting from physical fatigue. The paper identifies the 
physiological measures that can be  employed to estimate 
cognitive functions or tasks. It also indicates how sensor data can 
be  used to track attention levels. Nevertheless, the general 
assessment indicates that cognitive states are quite effectively 
predictable in construction.

 • Joshua and Koshy (2011) proposes a study that employs 
accelerometer-based activity classification for automated job 
sampling on construction sites. The study underlines the 
necessity of automation to improve construction safety, 
productivity, and quality control. The study provides significant 
results. The findings are generalizable beyond masonry tasks. 
Although the paper discusses masonry, the efficiency of 
accelerometer-based activity classification may differ amongst 
building tasks.

 • Peddi et al. (2009) creates an automatic productivity measurement 
system for on-site construction using computer vision and AI 
principles. The paper demonstrates how AI can speed up 
construction procedures by automating productivity assessment 
through real-time image processing.

 • Moosavi et al. (2024) conducts a comprehensive survey on the 
application of Explainable AI in manufacturing and industrial 
CPS. The paper  analyzes the need for transparency and 
interpretability in AI models used in critical industrial contexts, 
discussing how Explainable AI techniques enhance the reliability 
and trustworthiness of intelligent systems in areas like predictive 
maintenance, cybersecurity, and fault detection. Moreover, the 
authors categorize Explainable AI methods and assess their role 
in improving human comprehension and decision-making 
within industrial environments, suggesting that Explainable AI 
bridges the gap between advanced AI models and practical 
deployment in industrial CPS.

 • Radanliev et al. (2021) performs a literature review to address the 
evolving role of AI within CPS and IoT ecosystems, with a 
particular focus on anomaly detection and system resilience. 
Additionally, the study proposes a hierarchical conceptual 
framework for AI decision-making in CPS, suggesting an 
inevitable evolution of AI cognition due to increased IoT 
integration. Furthermore, the paper covers challenges in AI 
transparency and implications for Industry 4.0, arguing for a 
cascading model that enhances the transparency of AI in Cyber-
Physical contexts and outlines AI’s role in safety-critical decision-
making for intelligent systems.

 • Anumba and Messner (2020) explores the development and 
implementation of CPS in construction, emphasizing their 
role in bridging the gap between digital models and physical 
construction activities. Moreover, the study focuses on 
utilizing sensors and data acquisition technologies to enable 
bi-directional coordination, enhancing component tracking, 
temporary structure monitoring, and mobile crane safety. 
Hence, the paper presents various prototypes that 
demonstrate CPS capabilities, highlighting that the 
construction industry can benefit significantly from these 

systems through improved real-time feedback and 
control mechanisms.

 • Correa and Maciel (2018) introduces a framework that integrates 
BIM and CPS for the construction industry, using virtual models 
based on Petri Nets. Furthermore, the framework connects BIM 
models to on-site hardware, such as sensors and actuators, to 
facilitate real-time monitoring and process optimization. It is 
seen that the paper discusses the application of Industry 4.0 
technologies like IoT and big data analytics to construction, 
aiming to improve automation, enhance monitoring, and 
simulate processes in a real-time context to reduce manual 
information gathering and optimize resource allocation on 
construction sites.

 • Anumba et  al. (2010) argues for a paradigm shift in the 
construction industry toward a CPS approach, to improve project 
delivery through real-time consistency between virtual models 
and physical construction. Furthermore, the study emphasizes 
the integration of computational resources like wireless sensors, 
virtual prototyping, real-time tracking, and data fusion with 
construction activities. Hence, it proposes a framework for 
bi-directional coordination, enabling enhanced control and 
sustainability in construction processes, ultimately reducing 
inefficiencies and making construction operations more 
intelligent and streamlined.

 • Abdalla and Mohammed (2022) develops predictive models 
using MARS, MEP, and ANN to estimate the compressive 
strength of cement-based mortar modified with metakaolin. The 
MARS model demonstrates superior accuracy, outperforming 
other techniques. Hence, this model provides a fast, cost-effective 
prediction of mortar properties, making it suitable for 
construction material assessments.

 • Mohammed et al. (2020) employs ANN, M5P-tree, and NLR to 
model compressive strength in cement-based mortar containing 
fly ash. The ANN model shows higher predictive accuracy over 
NLR and M5P-tree, being effective in enhancing the accuracy of 
strength prediction in cementitious materials.

 • Abdalla and Salih (2022) develops models using MEP, ANN, and 
M5P-tree to forecast the compressive strength of mortar modified 
with calcium hydroxide. The MEP model is found to be the most 
accurate, providing reliable predictions for strength properties, 
reducing the need for extensive physical testing.

 • Mawlood et  al. (2021) compares ANN and linear regression 
models to predict UCS and Cc of clay soils. Both models 
demonstrate robust predictive abilities for soil properties, with 
ANN slightly outperforming linear regression. Realizing such 
AI-based system allows to efficiently evaluate soil strength and 
reduce dependency on extensive manual testing, thereby 
expediting geotechnical analyses in construction projects.

 • Jaf et al. (2024) examines the effects of waste tire rubber on the 
compressive strength of concrete through models developed 
using MEP, ANN, MARS, and NLR. The ANN model 
outperforms effectively in predicting compressive strength. 
Hence, the study revealed that increased rubber size significantly 
affects concrete strength, especially when replacing 
coarse aggregates.

 • Mohammed et al. (2020) utilizes an ANN model to predict the 
compressive strength of polymer-modified cement-grouted 
sands. Tests conducted under ASTM and BS standards reveal that 
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the ANN model achieves better results under BS standards. It is 
noted that the ANN model proves to be  more accurate than 
M5P-tree and other regression-based models for predicting the 
strength of polymer-modified mixtures.

 • Omer et al. (2024) utilizes advanced AI models such as XGBoost, 
MEP, MARS, and ANN to predict compressive strength in fly 
ash-modified Recycled Aggregate Concrete (RAC). The XGBoost 
model exhibits the best performance, whereas sensitivity analysis 
via SHAP values highlights that curing time, water-to-binder 
ratio, and cement content are key predictors for RAC strength.

 • Wang et al. (2022) combines PCA with an ANN-ABC model to 
forecast TBM advance rates. The PCA-ANN-ABC model is 
validated, demonstrating high prediction accuracy. Finally, this 
model provides a precise method for assessing TBM performance 
over other regression-based approaches.

 • Yu et al. (2021) applies optimized SVM models using WOA and 
MFO to predict back-break in blasting operations. Moreover, the 
SVM-MFO model achieves the highest accuracy, outperforming 
other hybrid SVM models, whereas sensitivity evaluations 
confirm the SVM-MFO’s effectiveness in forecasting back-break 
magnitude and enhancing blasting operation safety.

 • Jahed Armaghani et  al. (2023) explores the performance of 
different SVM kernel functions in predicting the bearing capacity 
of deep foundations. It is noted that the study finds that the 
SVM-RBF kernel achieves the best results. Additionally, the 
model demonstrates high accuracy and reliability, making it a 
robust solution for pile bearing capacity prediction in 
geotechnical engineering.

4 Discussion

All the papers reported in Table 1 discuss AI techniques applied 
to air pollutants and construction materials. Similarly, the papers in 
Table 2 discuss AI techniques applied to physiological signals in the 
construction sector. Also, the papers in Tables 3, 4 discuss AI 
techniques applied, respectively, to CPSs and compressive strength of 
modeling construction materials.

The interesting observation across the reviewed papers is the 
presence of various methodologies utilized to determine the 
construction challenges. Some have used ML and DL algorithms, 
including RNNs and backpropagation ANNs. In contrast, other 
studies have used IoT technologies for real-time monitoring or 
wearable sensors for samples of valid physiological data.

The analyzed research papers discussed and showed the possible 
applications of AI, ML, and DL techniques in the construction sector. 
These technologies hold immense potential for addressing challenges 
in the construction sector, from predicting concentrations of air 
pollutants and features of construction materials to automating 
activity recognition and enhancing worker safety. These studies 
indicate how modern technologies can revolutionize different aspects 
of construction-related tasks, instilling a sense of optimism for the 
industry’s future.

The data set collected in each study has been gathered using 
different setups and sensors. Hence, various experiments 
collaboratively collected large-scale data on air pollutants, 
construction materials and physiological signals. The air pollutants 
data consist of many parameters like demographic and geographic 

conditions, temperature, pressure, humidity, and gases (e.g., CO2, 
NOx) diffusion coefficients. By contrast, physiological signals data are 
gathered by measuring heart rate, brain waves, GSR, and standing 
postures. Finally, the features of construction materials include 
concrete specimens’ mass loss and volume loss.

Table 1 shows that three papers use DL techniques (Al-Janabi 
et al., 2019; Mastromatteo and Amelio, 2024; Baduge et al., 2022), 
which can produce more accurate results than traditional methods. 
We believe that the reason could be the robustness of this approach, 
which can better handle noise and outliers in the data. Air pollution 
is a complex and multifaceted condition with different manifestations 
and risk factors. AI techniques can handle this complexity by 
combining various aspects of the data to enable a more comprehensive 
analysis and enhance the model’s ability to capture the data 
complexities. The highest-performing methodology is the ANN 
model by Jassim et al. (2017) with an R2 value of 0.997 for predicting 
CO2 concentrations. The second one is the backpropagation ANN 
model by Liu et  al. (2022) with an average R2 value of 0.98 for 
predicting the dust emission concentration of different work areas of 
the foundation stage.

Also, Al-Janabi et  al. (2019) proposed an effective SAQPM 
dealing with the data of six pollutants, including PM2.5, PM10, NO2, 
CO, O3, and SO2. The model has an excellent sMAPE of 0.007 when 
evaluated over 25 days and thus can be used to enlighten the trends 
in air quality. Still, Liu et  al. (2022) worked on dust emissions at 
construction sites with high precision but with some drawbacks 
regarding the scope due to restricted weather conditions and working 
zones. The model’s specificity highlights a common issue in 
environmental AI applications: the trade-off between precision 
and generalizability.

A brief analysis of Table 1 shows that scholars have preferred 
ensemble methods and models based on ANNs. These models 
outperform others in the manipulation of huge datasets. 
Shahnavaz and Akhavian (2022) obtained very high values of R2 
of 0.94 for CO and CO2 and 0.91 for NOx using RF, proving that 
RF, an ensemble method, can handle variability and outliers in 
data. Likewise, Asadi et al. (2014) used the neuro-fuzzy model 
compared to ANN to predict NOx concentration; the research 
found enhanced results of NF model with R2 measures of 0.97, 
0.95, and 0.94  in training, validation, and testing processes, 
respectively. This indicates that more complicated models are 
sometimes needed based on the data and the problem at hand. 
This finding agrees with the view that one must choose the most 
appropriate model given the characteristics of the data used.

Based on the above, Milivojević et  al. (2023) proposed an 
integration of DL with IoT to predict air quality, which affirms the 
effectiveness of real-time data in environmental management. 
However, Jassim et al. (2017) identified this problem in the cross-
regional air quality prediction study, and the challenge lies in ensuring 
the robustness and reliability of these models in different areas 
and conditions.

Table 1 also reveals that most of the approaches emphasize basic 
objectives, for instance, managing and monitoring the releases of 
pollutants with the purpose of determining the levels of CO2, NOx, 
and even H2SO4. This also contains the method applied by Hendi et al. 
(2017) and Al-Janabi et al. (2019) where they used ANN and RNN 
with PSO to investigate the correlation between risk variables and the 
formation of diverse air pollutants. Finally, Baduge et al. (2022) and 
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Shahnavaz and Akhavian (2022) adopted multi-class classification and 
regression to evaluate air pollutants.

Shifting the focus to Table 2, the emphasis is on construction 
worker safety and activity recognition. The innovative use of IoT 
technology and wearable sensors by Mäkela et al. (2021) achieved 
impressive classification accuracies (89% for a six-class setup and 78% 
for a sixteen-class setup). However, the reliance on wearable sensors 
raises concerns about practicality in real-world construction sites, 
where maintaining sensor usage consistently can be challenging. For 
instance, Aryal et al. (2017) employed wearable sensors and boosted 
tree classifiers to predict physical fatigue, and the accuracy was 82%. 
Nevertheless, the model might be restricted by the type of sensors 
used in the dataset.

In the approaches reflected in Table 2, multiclass models prevail 
to identify the specific states, including fatigue or types of activity. 
Karataş and Budak (2021) obtained 90% accuracy with the help of an 
SVM for identifying the worker’s activities, thus proving SVM to 
be quite useful. However, these models may provide an oversimplified 
picture of construction sites and their functioning. In their study of 
inattention assessment in construction workers, Ouyang et al. (2023) 
employed ECG and GSR sensors, thus increasing the accuracy to 
96.67% with the SVM algorithm demonstrating the efficacy of using 
multiple features.

ML methods discussed in the paper by Akhavian and Behzadan 
(2018) for workers’ activity recognition combine sensor data, activity 
logs, and environmental factors, allowing for detailed analysis of 
construction site dynamics. By contrast, Akhavian and Behzadan 
(2016) automated construction task identification using smartphone 
sensors, achieving over 90% accuracy across various activities. This 
demonstrates AI’s potential to boost productivity and safety on 
construction sites. However, reliance on smartphone sensors might 
limit applicability, as workers cannot always carry or interact with 
these devices.

Regarding data, it is worth noting that most techniques are based 
on the worker’s activity. Among these techniques, three out of four are 
based on ANN (Peddi et al., 2009; Al Jassmi et al., 2020; Akhavian and 
Behzadan, 2018), DT (Joshua and Koshy, 2011), and vision-based 
methods (Sherafat et  al., 2020). These techniques are adopted for 
activity identification and co-occurrence, while two of them (Aryal 
et al., 2017; Ouyang et al., 2023) aim to establish methods for fatigue.

From a comparison of Tables 1, 2, we can observe that most of the 
approaches in Table 1 are related to predicting air pollutants using 
regression strategies. Only one paper in Table 1 (Hendi et al., 2017) 
aims to predict the concrete specimens’ mass loss and volume loss in 
the construction site. By contrast, the approaches based on 
physiological activity in Table 2 are mainly related to the identification 
of worker’s gestures (see Aryal et  al., 2017; Al Jassmi et  al., 2020; 
Akhavian and Behzadan, 2018; Karataş and Budak, 2021; Joshua and 
Koshy, 2011; Peddi et al., 2009).

Regarding the complexities of the analysis of air pollutants, 
we can observe that Asadi et al. (2014) and Jassim et al. (2017) used 
input data characterized by a specific duration of time. It is worth 
noting that both Liu et al. (2022) and Hendi et al. (2017) adopted a 
neural learning model (i.e., backpropagation), which is a more robust 
and reliable approach than traditional classifiers. Baduge et al. (2022) 
used GANs and VAEs, which are DL methods specifically adopted 
for prediction tasks on temporal data. In the determination of real-
time monitoring of the worker’s performed tasks on the construction 

site by physiological signal processing, Sherafat et al. (2020) described 
the use of CNN with a vision-based method model, a highly potent 
and effective network for a real-time demonstration of the performed 
task of the workers. Likewise, Akhavian and Behzadan (2018) 
analyzed and classified the data gathered from the cell phone’s 
gyroscope and accelerometer motion sensor. Finally, Al Jassmi et al. 
(2020) presented an additional novel solution for how remote-
generated physiological signals and activity can 
be automatically provided.

Table  3 showcases the transformative role of AI and CPS in 
enhancing cybersecurity and operational efficiency in the 
construction industry.

In particular, Anumba et al. (2010) emphasized the integration of 
CPS with virtual models for real-time accuracy on construction sites, 
reducing costly errors and improving project outcomes. Similarly, 
Anumba and Messner (2020) advocated for a comprehensive 
integration of information technologies into project delivery, 
promoting sustainability and intelligence in construction processes.

Still, Moosavi et al. (2024) highlighted the need for Explainable AI 
in construction, ensuring transparency and trust in AI decision-
making. On the other hand, Correa and Maciel (2018) discussed the 
optimization of planning and real-time monitoring through BIM, 
while Radanliev et al. (2021) presented a framework for AI decision-
making that enhances resilience against cyber threats.

Finally, the diverse methodologies across these studies, from real-
time monitoring with sensors to systematic classifications of 
Explainable AI techniques, reflect the multifaceted challenges faced in 
the construction sector.

Recent research has significantly advanced the prediction of 
compressive strength in various construction materials, reflecting a 
trend toward improved modeling techniques and sustainability in 
construction practices as comprised in Table 4.

Abdalla and Mohammed (2022) began by exploring the effects of 
metakaolin on mortar strength through the analysis of 230 data 
samples. Their findings revealed that MARS model outperformed 
others in accuracy, highlighting the importance of model selection in 
predicting material properties.

In contrast, with the perspective of material modification, 
Mohammed et  al. (2020) focused on fly ash-modified mortar, 
analyzing 450 samples and underscoring the critical role of curing 
time in strength development. They found that NLR and ANNs 
provided the most accurate predictions, illustrating how advanced ML 
techniques enhance predictive capabilities in concrete research.

In a complementary study, Abdalla and Salih (2022) investigated 
calcium hydroxide in mortar, demonstrating that while calcium 
hydroxide can improve certain properties, excessive amounts may 
reduce compressive strength. Hence, this finding emphasizes the need 
for careful material composition, giving balance between different 
additives and the resulting material performance.

Shifting focus to soil materials, Mawlood et al. (2021) developed 
predictive models for clay soils and discovered that linear regression 
models could achieve performance comparable to ANNs. Their 
research identified dry density as a key factor, suggesting that simpler 
models can be effective in specific contexts, thus offering accessible 
solutions for practitioners in geotechnical engineering.

In comparison, Jaf et al. (2024) further expanded the discussion 
on sustainability by addressing the incorporation of recycled tire 
rubber in concrete. Although their findings indicated that rubber 
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could reduce compressive strength, the ANN model effectively 
predicted the strength of rubberized concrete, thus promoting 
recycling practices in construction and showcasing innovative uses for 
waste materials.

Similarly, Mohammed et al. (2020) examined how different sand 
grain sizes impact the compressive strength of polymer-modified 
cement grouts. Moreover, they found that coarser sands yield higher 
strengths at lower water/cement ratios, reinforcing the idea that 
aggregate properties significantly influence strength predictions, 
echoing earlier findings on the importance of material characteristics.

In the pursuit of eco-friendliness, Omer et al. (2024) investigated 
the use of fly ash and recycled aggregates in concrete. Furthermore, 
their study concluded that the XGBoost model provided the best 
predictions, having R2 of 0.97, with curing time identified as a crucial 
factor, thus aligning with previous findings on the importance of 
curing conditions in achieving optimal strength.

Moreover, Wang et al. (2022) contributed to the field by utilizing 
PCA to enhance predictions for TBM performance. Additionally, their 
PCA-ANN-ABC model achieved good accuracy with an R2 of 0.96, 
demonstrating the effectiveness of integrating statistical methods with 
ML to address engineering challenges, paralleling the advancements 
made in other studies.

Considering the theme of optimization, Yu et al. (2021) developed 
optimized SVM models to forecast back-break caused by blasting. 
They proved that SVM-MFO model outperforms other methods, with 
an R2 of 0.95 and RSME of 0.45, illustrating how advanced algorithms 
can tackle specific issues in mining and construction.

Finally, Jahed Armaghani et al. (2023) focused on predicting pile 
bearing capacity and found that the SVM-RBF model provided the 
highest reliability in predictions with R2 of 0.99 on the test set. Hence, 
this study underscores the critical role of robust modeling techniques 
in ensuring safety and efficiency in construction projects and tying 
back to the overarching theme of improving prediction accuracy 
across various construction materials.

In a nutshell, the models presented in Table 1 intend to predict the 
environmental conditions and emissions with considerable reliability, 
whereas Table 2, on the other hand, relies on wearable and sensor 
technologies to improve the safety of the construction workers and 
their activity identification. Similarly, the papers in Table 3 have a 
significant importance in the construction industry, as AI and CPS 
technologies ultimately foster a more integrated approach to project 
management and delivery. Finally, papers comprised in Table 4 reflect 
a comprehensive effort to enhance predictive modeling in construction 
materials, and careful material selection to drive innovation in the 
industry. This indicates that applying AI and ML techniques 
encompasses almost all industries. The research studies underscore 
critical scalability, practicality, and generalizability challenges that 
need addressing to realize these technologies’ potential in real-world 
scenarios. Moreover, these approaches promote the safety 
enhancement, efficiency, and resilience, emphasizing the integration 
of advanced methodologies, and sustainable practices.

5 Conclusion

This review study brings together a hub of research on how AI and 
ML are being used in the construction industry, showcasing their 
powerful impact on key areas like sustainability, CPS implementation, 
material quality, and worker safety. Additionally, it provides a clear 

understanding of where the field stands now and where it might 
be headed. To make this analysis easy to follow, the conclusion is 
divided into five parts: findings, recommendations, and limitations, 
implementation of the current study and summary of novelty and 
contribution offering a structured look at the present state and future 
possibilities of AI in construction. A detailed graphical abstract of the 
findings and conclusion of the present study is shown in Figure 3.

5.1 Findings

This review highlights how AI and ML technologies are reshaping 
the construction industry by offering groundbreaking solutions in 
four main areas: sustainability, material quality, worker safety, and 
CPS. AI models, such as ANN and SVM, have shown remarkable 
accuracy in predicting complex variables like air pollutant levels 
(R2 = 0.997 for CO2 emissions) and material strength. These models 
demonstrate their ability to handle intricate data and address real-
world challenges.

Beyond predictive analytics, AI has a crucial role in materials science. 
It optimizes the use of recycled materials like fly ash and rubber, balancing 
sustainability with structural integrity. For worker safety, advanced 
models using IoT, and wearable sensors allow real-time monitoring of 
physiological signals such as heart rate and brain activity, enabling timely 
interventions to reduce risks like fatigue. In CPS, AI-driven systems have 
greatly improved threat detection and response, ensuring that 
construction projects are protected from emerging digital threats. By 
integrating these technologies, the construction sector can significantly 
enhance efficiency, reduce its environmental footprint, improve material 
quality, and protect workers, marking a new era in smarter, more resilient 
construction practices.

5.2 Recommendations

Besides, regarding the current data on air pollutants, most 
strategies in Table 1 involve a linear or non-linear regression problem 
to identify pollutant levels. We believe that regression analyses and 
more advanced multi-class approaches could bring more insightful 
results. In conclusion, the approaches in Table 2, aiming to detect 
physiological signals and worker activities, are quite different from 
those in Table 1, focusing on air pollutants, environmental factors and 
construction materials. Also, note that most works in Table 1 deal with 
predicting environmental factors and emissions and identifying the 
concentration of pollutants like CO2, NOx, and H2SO4. We believe that 
predicting prognosis in construction worker safety and activity 
recognition could be interesting for understanding the duration and 
severity of physiological responses. For example, DL analyses could 
detect early signs of worker fatigue or stress using temporal data such 
as heart rate and brain wave monitoring over time, allowing timely 
interventions and personalized safety measures to improve 
worker outcomes.

5.3 Limitations

Despite the potential, the AI models discussed in this review face 
some limitations. Many rely on small, localized datasets, which restrict 
their use in different geographic and climatic conditions. Models like 
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the one by Liu et al. (2022), tailored to specific environments, may 
struggle to generalize across broader contexts. The reliance on 
historical data makes it hard to predict future unknown variables, and 
the complexity of AI models can limit their practical use in the fast-
changing construction environment. In terms of CPSs, Anumba and 
Messner (2020), some models may lack the flexibility to tackle evolving 
threats. Similarly, AI models for material performance Radanliev et al. 
(2021) often do not consider long-term durability under changing 
conditions. While models like Ouyang et al. (2023) show promise for 
tracking worker fatigue, scaling them to real-world construction sites, 
where continuous sensor use may not be feasible, presents a challenge.

5.4 Implications of the current study

This review underscores AI’s game-changing role in solving 
critical construction challenges. From improving material quality and 
reducing environmental pollutants to enhancing worker safety and 
boosting cybersecurity, AI offers powerful tools that can make 
construction projects more sustainable, efficient, and secure. However, 
to fully harness these technologies in large-scale, real-world scenarios, 
it is essential to address current limitations in scalability, data 
availability, and adaptability.

5.5 Summary of novelty and contribution

This is the first comprehensive review that explores the use of AI, ML, 
and DL in areas such as air quality management, material performance, 

worker safety, and CPS within the construction industry. It identifies 
significant research gaps—such as model scalability and reliance on 
specific datasets—and provides a roadmap for future studies. By 
showcasing the diverse applications of AI and its potential to revolutionize 
construction practices, this review highlights both the immense 
opportunities and challenges in integrating AI across the sector.
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