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Background: The algorithmic patient preference predictor (PPP) has been 
proposed to aid in decision making for incapacitated patients in the absence 
of advanced directives. Ethical and legal challenges aside, multiple practical 
barriers exist for building a personalized PPP. Here, we examine previous work 
using machine learning to predict patient reported outcome measures (PROMs) 
for capacitated patients undergoing diverse procedures, therapies, and life 
events. Demonstrating robust performance in predicting PROMs for capacitated 
patients could suggest opportunities for developing a model tailored to 
incapacitated ones.

Methods: We performed a scoping review of PubMed, Embase, and Scopus 
using the PRISMA-ScR guidelines to capture studies using machine learning to 
predict PROMs following a medical event alongside qualitative studies exploring 
a theoretical PPP.

Results: Sixty-eight studies used machine learning to evaluate PROMs; an 
additional 20 studies focused on a theoretical PPP. For PROMs, orthopedic 
surgeries (n  =  33) and spinal surgeries (n  =  12) were the most common 
medical event. Studies used demographic (n =  30), pre-event PROMs (n =  52), 
comorbidities (n =  29), social determinants of health (n =  30), and intraoperative 
variables (n =  124) as predictors. Thirty-four different PROMs were used as the 
target outcome. Evaluation metrics varied by task, but performance was overall 
poor to moderate for the best reported scores. In models that used feature 
importance, pre-event PROMs were the most predictive of post-event PROMs. 
Fairness assessments were rare (n =  6). These findings reinforce the necessity 
of the integrating patient values and preferences, beyond demographic factors, 
to improve the development of personalized PPP models for incapacitated 
patients.

Conclusion: The primary objective of a PPP is to estimate patient-reported 
quality of life following an intervention. Use of machine learning to predict 
PROMs for capacitated patients introduces challenges and opportunities 
for building a personalized PPP for incapacitated patients without advanced 
directives.

OPEN ACCESS

EDITED BY

Fabrizio Riguzzi,  
University of Ferrara, Italy

REVIEWED BY

Sheng-Chieh Lu,  
University of Texas MD Anderson Cancer 
Center, United States
Yuxuan Jin,  
Cleveland Clinic, United States

*CORRESPONDENCE

Jeremy A. Balch  
 Jeremy.balch@surgery.ufl.edu

RECEIVED 24 August 2024
ACCEPTED 18 October 2024
PUBLISHED 05 November 2024

CITATION

Balch JA, Chatham AH, Hong PKW, 
Manganiello L, Baskaran N, Bihorac A, 
Shickel B, Moseley RE and Loftus TJ (2024) 
Predicting patient reported outcome 
measures: a scoping review for the artificial 
intelligence-guided patient preference 
predictor.
Front. Artif. Intell. 7:1477447.
doi: 10.3389/frai.2024.1477447

COPYRIGHT

© 2024 Balch, Chatham, Hong, Manganiello, 
Baskaran, Bihorac, Shickel, Moseley and 
Loftus. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Review
PUBLISHED  05 November 2024
DOI  10.3389/frai.2024.1477447

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1477447&domain=pdf&date_stamp=2024-11-05
https://www.frontiersin.org/articles/10.3389/frai.2024.1477447/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1477447/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1477447/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1477447/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1477447/full
mailto:Jeremy.balch@surgery.ufl.edu
https://doi.org/10.3389/frai.2024.1477447
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1477447


Balch et al.� 10.3389/frai.2024.1477447

Frontiers in Artificial Intelligence 02 frontiersin.org

KEYWORDS

machine learn, palliative care, patient reported outcome, fairness, clinical decision 
support

Introduction

Machine learning and artificial intelligence-based algorithms are 
predicting our preferences on a daily basis. Using aggregated data 
from past actions—such as a purchase, click, or prolonged gaze—we 
are continuously offered things to buy, watch, and experience. In 
advertising, their accuracy can exceed 95% in some instances 
(Assistant et al., 2023). However, algorithmic preference predictors 
have not yet extended to the more somber, consequential domain of 
patient medical decision making.

The Patient Preference Predictor (PPP) for incapacitated patients 
has been debated in the literature for over 10 years (Rid, 2014). 
Defined as a tool to help clinicians and surrogate decision makers 
decided on life-sustaining treatment decisions, several authors have 
more recently proposed using artificial intelligence to gauge patients 
preferences when they are unable to make decisions for themselves 
(Biller-Andorno and Biller, 2019; Wendler et  al., 2016). The 
psychosocial, ethical, and legal implications of using static, statistical 
evidence to predict end-of-life choices are substantial and complex. 
While it has been shown that they may provide a better indication of 
patient preferences than estranged family, friends, and court-
designated surrogates–whose decisions are unfortunately often no 
better than chance (Rid and Wendler, 2010; Shalowitz et al., 2006)–
these models would still leave myriad concerns related to loss of 
autonomy, fairness, lack of trust, and reproducibility (Rid, 2014; Jardas 
et al., 2021; Rid and Wendler, 2014a; Sharadin, 2018).

Many had hoped that widespread adoption of advanced directives 
would improve end-of-life decision making. Unfortunately, these 
documents, in addition to being sparsely available, are frequently too 
limited in scope for highly morbid interventions. They typically 
describe preferences for cardiopulmonary resuscitation (Do-Not-
Resuscitate, DNR), intubation (Do-Not-Intubate, DNI), or 
hospitalization (Do-Not-Hospitalize, DNH), but fail to account for 
complex choices around feeding tube placement, prolonged 
mechanical ventilation, artificial cardiopulmonary support, or any 
procedure that leads to substantial change in quality of life (Fagerlin 
and Schneider, 2004; Detering et  al., 2010). Moreover, patient 
preferences are protean. In the case of survival, they are subject to 
hindsight bias (Becerra Pérez et al., 2016), and in the case of death, are 
without a ground truth to know whether the patient received the care 
they wanted (Rid, 2014). The current practice is to hold the last stated 
desires as that ground truth (Rid, 2014; Jardas et al., 2021).

Artificial intelligence is currently being studied in thousands of 
predictive tasks in health care (Rajkomar et al., 2018; Rajpurkar 
et  al., 2022). While these include complications and medical 
outcomes of interest, they are also increasingly focused on 
predicting Patient Reported Outcomes Measures (PROMs). 
PROMs reflect patient quality-of-life in a numeric form and may 
be a more personalized metric, unlike mortality or a complication 
defined by a diagnostic code (McGlothlin and Lewis, 2014; 
Weinfurt and Reeve, 2022). There is a small but rapidly growing 
interest in using pre-intervention variables, including quality-of-
life metrics, to predict post-intervention patient perceptions of 

their care. PROMs are also expanding their presence in national 
databases, providing rich data sources for predictive tasks (Temple 
et  al., 2024). We  consider the PPP to be, at its core, a task of 
predicting patient-reported outcomes. Therefore, inclusion of 
PROMs for capacitated patients represent a potential ground truth 
for researchers interested in the feasibility and fairness of predicting 
preferences of incapacitated patients. In other words, if we know 
with reasonable certainty how a patient of certain characteristics 
and perceptions of their current quality of life would assess their 
life post-intervention, we can know whether or not they would 
prefer the intervention.

In this scoping review, we reconcile the philosophical and ethical 
debates of predicting incapacitated patient preferences with the 
current applications of machine learning in the real world for 
capacitated ones.

Materials and methods

We searched PubMed, Embase, and Scopus from January 1, 2019 
to May 30, 2024 for terms related to machine learning for predicting 
PROMs to capture the most recent modeling techniques. Since PPPs 
for incapacitated patients are still theoretical, articles debating the 
ethical and practical issues of such models were reviewed separately. 
Search terms are shown in Supplementary file 1 and the PriSMA-ScR 
checklist is shown in Supplementary file 2. We identified 621 abstracts 
in the literature, which were reviewed by JAB, AHC, PH, LM, and 
NB. Cohen Kappa inter agreement scores ranged from 0.35–0.59. 
Disagreements were reviewed and resolved between the first author 
and the individual rater without need for arbitration. 115 full texts 
were reviewed by the first author. Twenty-seven studies were excluded 
leaving 88 studies for extraction. Eligible studies employed machine 
learning for a distinct, health-related event (surgical intervention, 
medical treatment, therapy secession, or diagnosis), and omitted post-
event variables to predict the PROM in the outcome analysis. Twenty 
were theoretical discussions of patient preference predictors and 68 
used machine learning to predict PROMs. Article flow is shown in 
Figure 1.

We extracted separate variables for the two sets of studies. For 
PROM studies, we gathered information on the study’s main findings, 
independent and dependent variables, data origin (intraoperative, 
in-patient, out-patient), data quality assessments, data source (single 
institution, multi-institution, national database, etc.), machine 
learning techniques, population characteristics, participant count, 
performance metrics, fairness metrics, and explainability techniques. 
Data quality was judged according to the TRIPOD+AI guidelines for 
machine learning tasks; studies were considered “excellent” if 
TRIPOD-AI or CONSORT-AI guidelines were followed, “good” if the 
methods described data preprocessing steps, handling missingness, 
and adjusting for class imbalance, and “fair” if they missed one or 
more of those qualities. Studies were excluded if methods failed to 
describe data cleaning, validation, and model development. For 
ethical studies, we performed a narrative thematic analysis for the 
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ethical and legal principles identified, theoretical model inputs, 
fairness metrics, and proposed evaluation methods.

We employed Covidence® (Melbourne, Australia) software to 
manage multiple reviewers. Elicit® (Oakland, California) was used for 
initial data extraction, followed by manual confirmation and 
extraction of additional information (Elicit: The AI research 
Assistant, 2023).

Results

Study characteristics

Sixty-eight studies used machine learning to evaluate PROMs. 
All studies were retrospective, though three developed a web or 
smart phone based application (Karhade et al., 2021; Martin et al., 
2022; Polce et  al., 2021) and one study performed an external 
validation (Simmons et al., 2024). No studies examined how their 

findings altered clinical practice. The number of participants ranged 
from 2223 to 130,945 (Zrubka et al., 2022). Studies were performed 
either at a single hospital (n = 36), multiple hospitals (n = 23), or 
employed regional or national registries (n  = 8). As shown in 
Figure 2, most studies were related to extremity orthopedic surgeries 
(n = 33) or spinal surgeries (n = 11), followed by oncology (n = 8 for 
breast; n  = 7 for head and neck, prostate, and general), and 
psychotherapy (n  = 5). Clinical events for before and after 
comparisons included invasive procedures (n  = 48), medical and 
psychological therapy (n = 7), diagnoses (n = 6), physical therapy 
(n = 2), and a medical device (n = 1), with some studies examining 
surgical and adjuvant therapy for cancer (n  = 3). A substantial 
amount of research has been performed in predicting PROMs 
following total knee arthroplasty (TKA), with 17 studies examining 
this question alone and an additional 13 examining other extremity 
joint surgeries. 22% (n  = 15) followed either the TRIPOD-AI or 
CONSORT-AI guidelines, 35.3% (n = 24) were ranked as “good,” and 
41.2% (n = 28) were “fair.”

FIGURE 1

Article flow diagram.
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Outcomes

Over a dozen PROM instruments were found in this literature review 
and are listed in Table 1. No one score predominated. The orthopedic 
studies focused on validated orthopedic PROM metrics. These include 
the ASES and ESES scores (American and European Shoulder and Elbow 
Surgeons) (Kumar et al., 2020; Alaiti et al., 2023; Taneja et al., 2024), 
COMI (Core Outcome Measures Index) (Halicka et al., 2023), Global 
Perceived Effect (Verma et al., 2023; Verma et al., 2022), KOOS (Knee 
Injury and Osteoarthritis Outcome Score) (Martin et al., 2022; Harris 
et al., 2021; Katakam et al., 2022; Ramkumar et al., 2021; Klemt et al., 
2023; Fontana et  al., 2019; Twiggs et  al., 2021), Lysholm functional 
protocol (Ye et al., 2022), Oswestry Disability Index (Staartjes et al., 2019; 
Siccoli et al., 2019), QuickDASH (Quick Disabilities of the Arm, Shoulder, 
and Hand) (Brinkman et  al., 2023; Harrison et  al., 2022), Oswestry 
Disability Index (Staartjes et al., 2019), iHOT (International Hip Outcome 
Tool) (Pettit et al., 2023), HOS (Hip Outcome Score) (Kunze et al., 2021), 
HOOS (Hip Disability and Osteoarthritis Outcome Score) (Klemt et al., 
2023; Fontana et al., 2019; Sniderman et al., 2021), IKDC (International 
Knee Documentation Committee) (Ramkumar et al., 2021; Ye et al., 2022; 
Ramkumar et al., 2021), MHQ (Michigan Hand outcomes Questionnaire) 
(Loos et al., 2022), Q score (Oxford Hip and Knee Score) (Huber et al., 
2019), SRS-22r (Sociolois Research Society) (Ames et al., 2019; Nnamdi 
et  al., 2023), and the WOMAC (Western Ontario and McMaster 
Universities Osteoarthritis Index) (Munn et al., 2022; Tschuggnall et al., 
2021; Zhang et al., 2022; Zhou et al., 2023). These scores capture pain, 
symptoms, mobility/functionality, activities of daily living, and quality of 
life metrics related to the joint of interest, including the spine. 

Cancer-related tools included the BREAST-Q (Pfob et al., 2021; Pfob et al., 
2023; Xu et al., 2023), Cancer Related Fatigue (Beenhakker et al., 2023), 
Lee Fatigue Scale (Kober et al., 2023; Kober et al., 2021), EORTC QLQ-C3 
(European Organization for Research and Treatment of Cancer quality-
of-life questionnaires) (Lee et  al., 2020a), MDADI (MD Anderson 
Dysphagia Inventory) (Paetkau et al., 2024), IPSS (International Prostate 
Symptom Score) (Ghoreifi et al., 2023), EPIC 26 (Expanded Prostate 
Cancer Index Composite 26) (Agochukwu-Mmonu et al., 2022), and 
THYCA-QoL (Thyroid Cancer Quality of Life) (Lian et al., 2023). These 
score focus on measures related to symptoms following treatment, such 
as mastectomy results, fatigue, dry mouth, erectile dysfunction, etc. More 
universal quality-of-life PROMs included instruments and 
sub-instruments of the COST (COmprehensive Score for financial 
Toxicity) (Sidey-Gibbons et  al., 2021), HAQ (Health Assessment 
Questionnaire) (Tschuggnall et  al., 2021), EQ-5D-3L (EuroQol 
5-Dimension 3-Level) (Zrubka et al., 2022; Harrison et al., 2022; Huber 
et  al., 2019; Tschuggnall et  al., 2021), PHQ-9 (Patient Health 
Questionnaire-9) (Coley et al., 2021; Bone et al., 2021), PASS (Patient 
Acceptable Symptom State) (Twiggs et  al., 2021), PROMIS (Patient-
Reported Outcomes Measurement Information System) (Karhade et al., 
2021; Klemt et al., 2023; Brinkman et al., 2023; Hunter et al., 2024; Reps 
et al., 2022), and several versions of SF (Short Form Survey) (Ramkumar 
et al., 2021; Fontana et al., 2019; Ramkumar et al., 2021; Munn et al., 2022; 
Zhang et al., 2022; Zhou et al., 2023; Lian et al., 2023). In addition, several 
studies employed more basic instruments, capturing Visual Analogue 
Scores of Pain (Kumar et al., 2020; Halicka et al., 2023; Harris et al., 2021; 
Staartjes et al., 2019; Dolendo et al., 2022; Finkelstein et al., 2021; Park 
et  al., 2023), numeric pain scores (Siccoli et  al., 2019), and patient 

FIGURE 2

Distribution of studies by field.
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satisfaction scores on a Likert scale (Polce et al., 2021; Kumar et al., 2020; 
Munn et al., 2022; Farooq et al., 2020; Kunze et al., 2021; Kunze et al., 
2020; Nam et al., 2023; Ulivi et al., 2023; Wang et al., 2023; Werneburg 
et al., 2023). Psychological measurements included GAD-7 (Generalized 
Anxiety Disorder) (Bone et al., 2021; Reps et al., 2022). One studied used 
the COSI (Client Oriented Scale of Improvement) for audiology (Suresh 
et al., 2023). Overall, these scores capture both cognitive, pain-related, and 
functional aspects of quality of life. 20 studies used minimally clinical 
important difference (MCID) on before and after scores of the PROMs to 
create a binary classification task.

Input data

Nearly all studies included demographic data as model features 
(n = 65). The three remaining studies examined unstructured text 
(Lian et al., 2023; Wang et al., 2023; Matsuda et al., 2023). Twenty-nine 
studies included medical comorbidities. Thirty studies included 
sociodemographic data, including marital status, employment status, 
insurance information, drug use, and zip-code level income and 
education indices. Five studies assessed health care resource 
utilization, including hospitalizations and emergency room visits. 
Twenty-three of 36 studies involving surgeries included intraoperative 
characteristics, including surgeon, technical approach, types of 
implants used, characteristics of the tumor, and operative time. 
Fifty-two studies employed pre-event PROMs and included both the 
PROM outcome of interest alongside addition PROM metrics. 
Proportions of input variables are visualized in Figure 3.

Machine learning models

A range of machine learning techniques were employed. The 
majority (n = 47) included some logistic or linear regression task as a 
base of comparison. All common machine learning models were 
employed, including linear and logistic regression, naive bayes, 
support vector machines, decision trees, random forest, and ensemble 
methods. These are shown in Figure 4. Only three studies employed 
large language models, both using the Bidirectional Encoder 
Representations from Transformers (BERT) architecture (Lian et al., 
2023; Wang et al., 2023; Matsuda et al., 2023). Of note, 50 studies had 
some mention of data quality assessment. The majority addressed 
methods for handling missing data, largely through imputation or 
exclusion. Ten studies mentioned methods of handling class imbalance 
(Alaiti et al., 2023; Taneja et al., 2024; Ramkumar et al., 2021; Staartjes 
et al., 2019; Siccoli et al., 2019; Ramkumar et al., 2021; Ames et al., 
2019; Zhang et al., 2022; Zhang et al., 2021; Chen et al., 2023).

Evaluation metrics

Overall, models performed poorly or moderately well, with few 
models approaching excellent discriminative capacity of AUROC 
exceeding 0.9. AUROC results ranged from 0.42 to 0.94 for any 
binary prediction task, with a mean of 0.78 and median of 0.77 

TABLE 1  Patient reported outcome measure (PROM) instruments.

Orthopedic PROM

ASES and ESES scores (American and 

European shoulder and elbow 

surgeons) (Kumar et al., 2020; Alaiti 

et al., 2023; Taneja et al., 2024)

COMI (Core outcome measures index) 

(Halicka et al., 2023)

Global perceived effect (Verma et al., 

2023; Verma et al., 2022)

KOOS (Knee injury and osteoarthritis 

outcome score) (Martin et al., 2022; 

Harris et al., 2021; Katakam et al., 2022; 

Ramkumar et al., 2021; Klemt et al., 

2023; Fontana et al., 2019; Twiggs et al., 

2021)

Lysholm functional protocol (Ye et al., 

2022)

Oswestry disability index (Staartjes 

et al., 2019; Siccoli et al., 2019)

QuickDASH (Quick disabilities of the 

arm, shoulder, and hand) (Brinkman 

et al., 2023; Harrison et al., 2022)

Oswestry disability index (Staartjes 

et al., 2019)

iHOT (International hip outcome tool) 

(Pettit et al., 2023)

HOS (Hip outcome score) (Kunze 

et al., 2021)

HOOS (Hip disability and 

osteoarthritis outcome score) (Klemt 

et al., 2023; Fontana et al., 2019; 

Sniderman et al., 2021)

IKDC (International knee 

documentation committee) 

(Ramkumar et al., 2021; Ye et al., 2022; 

Ramkumar et al., 2021)

MHQ (Michigan hand outcomes 

questionnaire) (Loos et al., 2022)

Q score (Oxford hip and knee score) 

(Huber et al., 2019)

SRS-22r (Sociolois research society) 

(Ames et al., 2019; Nnamdi et al., 2023)

WOMAC (Western ontario and 

mcmaster universities osteoarthritis 

index) (Munn et al., 2022; Tschuggnall 

et al., 2021; Zhang et al., 2022; Zhou 

et al., 2023)

Oncologic PROM

BREAST-Q (Pfob et al., 2021; Pfob 

et al., 2023; Xu et al., 2023)

Cancer related fatigue (Beenhakker 

et al., 2023)

Lee Fatigue Scale (Kober et al., 2023; 

Kober et al., 2021)

EORTC QLQ-C3 (European 

organization for research and treatment 

of cancer quality-of-life questionnaires) 

(Lee et al., 2020a; Lee et al., 2020b)

MDADI (MD Anderson dysphagia 

inventory) (Paetkau et al., 2024)

IPSS (International prostate symptom 

score) (Ghoreifi et al., 2023)

EPIC 26 (Expanded prostate cancer 

index composite 26) (Agochukwu-

Mmonu et al., 2022) and

THYCA-QoL (Thyroid cancer quality 

of life) (Lian et al., 2023)

General PROM

COST (Comprehensive score for 

financial Toxicity) (Sidey-Gibbons 

et al., 2021)

HAQ (Health assessment 

Questionnaire) (Tschuggnall et al., 

2021)

EQ-5D-3 L (EuroQol 5-dimension 

3-Level) (Zrubka et al., 2022; Harrison 

et al., 2022; Huber et al., 2019; 

Tschuggnall et al., 2021)

PHQ-9 (Patient health questionnaire-9) 

(Coley et al., 2021; Bone et al., 2021)

PASS (Patient acceptable symptom 

state) (Twiggs et al., 2021)

PROMIS (Patient-reported outcomes 

measurement information system) 

(Karhade et al., 2021; Klemt et al., 2023; 

Brinkman et al., 2023; Hunter et al., 

2024; Reps et al., 2022)

SF (Short form survey) (Ramkumar 

et al., 2021; Fontana et al., 2019; 

Ramkumar et al., 2021; Munn et al., 

2022; Zhang et al., 2022; Zhou et al., 

2023; Lian et al., 2023)

GAD-7 (Generalized anxiety disorder) 

(Bone et al., 2021; Reps et al., 2022)

Pain, visual analogue score (Kumar et al., 2020; Halicka et al., 2023; Harris et al., 

2021; Staartjes et al., 2019; Dolendo et al., 2022; Finkelstein et al., 2021; Park et al., 

2023)

Patient satisfaction scores, Likert scale (Polce et al., 2021; Kumar et al., 2020; 

Munn et al., 2022; Farooq et al., 2020; Kunze et al., 2021; Kunze et al., 2020; Nam 

et al., 2023; Ulivi et al., 2023; Wang et al., 2023; Werneburg et al., 2023)
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FIGURE 3

Input variables for patient reported outcome measure (PROM) prediction tasks.

FIGURE 4

Machine learning models employed for patient reported outcome measure (PROM) prediction tasks.
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among all best-performing AUROCs reported. Several studies 
concluded that no meaningful relationship exists between pre-event 
variables and PROMs in their feature space, suggesting a need to 
collect more data or different variables (Ghoreifi et al., 2023; Halicka 
et al., 2023; Verma et al., 2023; Pettit et al., 2023; Loos et al., 2022; 
Beenhakker et al., 2023; Coley et al., 2021; Ulivi et al., 2023). A 
histogram of performance is shown in Figure  5. A few studies, 
however, found high discriminative performance, including for 
predicting MCID for improvement in back pain following lumbar 
disectomy (Staartjes et al., 2019) and hip pain following total hip 
arthroplasty (Kunze et  al., 2021) as well as satisfaction with 
outcomes following mastectomy for cancer (Pfob et  al., 2021). 
Other evaluation metrics included MSE and R (Rid, 2014), again 
with moderate performance at best (Ghoreifi et al., 2023; Verma 
et  al., 2022; Agochukwu-Mmonu et  al., 2022; Finkelstein et  al., 
2021; Ulivi et al., 2023; Suresh et al., 2023). There was no association 
between model type and performance. We also assessed calibration, 
which quantifies how much a model over or underestimates the 
probability of an event, an often overlooked, but no less important, 
metric (van den Goorbergh et al., 2022; Van Calster et al., 2019). 
35.3% (n = 24) of studies evaluated the calibration of their models. 
The calibration was overall good, with excellent calibration metrics 
(intercepts ≤ ± 0.1 and slopes between 0.9 to 1.1) in 21% (4/19) of 
models that reported intercept and slope (Karhade et  al., 2021; 
Halicka et al., 2023; Agochukwu-Mmonu et al., 2022; Ziobrowski 
et al., 2021). Other papers used Brier (Harris et al., 2021; Siccoli 
et al., 2019), Hosmer-Lemeshow (Martin et al., 2022; Lee et al., 
2020a), and Speigelhatler (Xu et al., 2023) tests to prove calibration, 
noting acceptable performance.

Fairness and importance testing

While almost all models collected demographic information and 
mentioned need for external validation as a limitation to their 
generalizability, only six studies (8.9%) explicitly mentioned fairness 
or methods to mitigate bias (Simmons et al., 2024; Zrubka et al., 2022; 
Pfob et al., 2021; Pfob et al., 2023; Xu et al., 2023; Ziobrowski et al., 
2021). Ziobrowski et al. examined model performance across age, 
sex, race/ethnicity, and income by estimating variations in the 
association of predicted risk with observed outcome using robust 
Poisson regression (Ziobrowski et al., 2021). In both their studies, 
Pfob et al. tested their models with and without sociodemographic 
and ethnic variables (fairness through unawareness) and obtained 
similar model performance (Pfob et  al., 2021; Pfob et  al., 2023). 
Zruboka, Simmons, and Xu evaluated prediction errors across 
different health statuses and demographics according to the PROM, 
with only the latter finding improve statistical performance for the 
African American group (Simmons et al., 2024; Zrubka et al., 2022; 
Xu et al., 2023). Simmons used the “four-fifths” legal guideline from 
the US Equal Employment Opportunity Commission to state that a 
“fair” model performs within 20% on any evaluation metric between 
demographic groups (Simmons et  al., 2024). They found that 
ethnicity was rarely, but most frequently, outside this tolerance 
threshold, which the authors attributed to under-representation in 
the dataset.

Several studies employed potential fairness mitigation efforts 
without clear mention. One study employed inverse probability 
weighting to minimize the effects of missing data or under-represented 
groups, a potential marker of fairness but one that was not explicitly 

FIGURE 5

Area under the receiver operating curve (AUROC) performance metric distribution.
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stated (Martin et  al., 2022). Synthetic Minority Oversampling 
Technique (SMOTE) creates artificial data points that are plausibly 
close to actual data points and can be used as a fairness technique 
(Zhou et al., 2023). Several studies employed SMOTE create more 
balanced datasets in terms of their outcome of interest, and while this 
theoretically may improve representation of other minority classes, no 
study specifically examined this. However, we note that changing the 
overall prevalence of data classes through synthetic means may 
negatively impact model calibration (van den Goorbergh et al., 2022).

Importance testing was performed in 50 studies. Where 
performed, pre-event PROMs were either the largest or second largest 
contributor of post-event PROMs in all model predictions (Polce 
et al., 2021; Zrubka et al., 2022; Verma et al., 2023; Staartjes et al., 2019; 
Pettit et al., 2023; Munn et al., 2022; Pfob et al., 2021; Pfob et al., 2023; 
Xu et al., 2023; Kober et al., 2023; Kober et al., 2021; Park et al., 2023; 
Nam et al., 2023; Ulivi et al., 2023; Zhang et al., 2021). However, the 
correlations were not necessarily directly proportional: strong negative 
correlations of low PROMs sometimes predicted larger improvements 
in orthopedic studies, while other times demonstrated that PROMS 
in mobility, satisfaction rates, and narcotic use are unchanged after an 
event. Other top features trailed the PROMs, but included age, sex, 
BMI, patient anatomy, and comorbidities. Except for one study 
examining financial toxicity, where African American race was found 
to be predictive of toxicity (Sidey-Gibbons et al., 2021), no studies that 
measured ethnic or socioeconomic information reported its 
appearance in the top 5 predictive factors.

Narrative thematic analysis of theoretical 
PPPs

Patient preference predictors have been discussed in the literature 
since a series of publications in the Journal of Medicine and Philosophy 
in 2014 (Rid, 2014; Rid and Wendler, 2014a; Kim, 2014; Rid and 
Wendler, 2014b). With the growing prevalence of machine learning in 
medicine, the issue was re-visited in second series in 2022  in the 
Journal of Medical Ethics (Jardas et al., 2021; Earp, 2022; Ferrario et al., 
2022; Schwan, 2022; Mainz, 2023). As technologies advance, the 
debates are becoming increasingly pertinent. In our analysis, 
we address key themes such as ethical considerations, the selection of 
model inputs, fairness in predictions, and the evaluation of 
model efficacy.

Ethical considerations
Patient autonomy is of utmost concern in the PPP, however, 

autonomy can be defined in both a primary sense (“I would not want 
CPR done”) as well as a higher-order sense (“A decision was made for 
reasons I  do not endorse”) (Earp, 2022). Identifying what an 
incapacitated patient would want might also involve knowledge of 
how they prefer to make decisions. A second concern is the legal 
problem of using “naked statistical evidence.” (Sharadin, 2018; Earp, 
2022; Mainz, 2023; Ditto and Clark, 2014) Legal verdicts cannot 
be  based on statistical correlations alone, as they do not imply 
causation, and the same may be said for a PPP. A third involves the 
lack of explainability with erosion of trust (Ferrario et  al., 2022) 
mandating an alternative to “black box” models. Fourth, there 
potential for conflicting outputs by different PPPs (Sharadin, 2018) 

and even whether or not the patient would consent to the use of a 
PPP (Mainz, 2023). Deployment of these models would require 
extensive generalizability testing and buy-in from the public. 
Nevertheless, these articles acknowledge that a theoretical PPP has a 
low bar for improving decision making for incapacitated patients: 
human surrogate decisions, when analyzed retrospectively, are only 
slightly better than chance (Rid and Wendler, 2010; Shalowitz 
et al., 2006).

Model inputs
The discussions are fairly similar in their desired inputs for such 

a model and include: demographics, religious affiliations (Jardas et al., 
2021; Rid and Wendler, 2014a; Sharadin, 2018; Rid and Wendler, 
2014b; Earp, 2022; Ditto and Clark, 2014; Earp et al., 2024), level of 
risk taking (Jardas et al., 2021; Ditto and Clark, 2014), past treatment 
decisions (Rid and Wendler, 2014b; Mainz, 2023; Ditto and Clark, 
2014; Earp et  al., 2024; Benzinger et  al., 2023), and baseline 
comorbidities (Mainz, 2023; Ditto and Clark, 2014). However, others 
call for more detailed examinations of attitudes toward death (Rid and 
Wendler, 2014a), personal experience with health care (Rid and 
Wendler, 2014a; Earp et al., 2024), and psychological and emotional 
functioning (Rid and Wendler, 2014a). Several argue for nation-level 
surveys to assess preferences and build more accurate models (Rid and 
Wendler, 2014a; Kim, 2014; Ditto and Clark, 2014), design forecasting 
scenarios of possible treatment outcomes (Ferrario et al., 2022), or 
even scraping publicly available information (Earp et al., 2024). As 
these studies focused more broadly on end-of-life decisions and not 
on specific operations or outcomes, none suggested intraoperative 
details or patient anatomy as a predictive measure.

Fairness
Model inputs are driven by the desire to build not only accurate 

models, but fair and just ones. Several papers warn that AI models 
may perpetuate social injustice (Rid, 2014; Biller-Andorno and Biller, 
2019; Ferrario et  al., 2022; Benzinger et  al., 2023). In addition to 
incorporating various demographic and socioeconomic features, the 
perspectives of both the ill and the healthy must be incorporated to 
not unduly bias models toward one class of patients over another (Rid 
and Wendler, 2014b). Additionally, several authors mention that the 
just models would likely have to also understand what variables matter 
to the patient, i.e., whether or not to include religion, race, or 
education level as a factor (Wendler et  al., 2016; Sharadin, 2018; 
Ferrario et al., 2022; Mainz, 2023). PROMs may potentially capture 
this variability, as they reflect direct, subjective patient expressions of 
their well-being. However, PROMs are not directly discussed by any 
of the cited articles.

Evaluation
Curiously, how to evaluate the accuracy of such models is also not 

often discussed (Rid and Wendler, 2014a). Many authors assume that 
surveying patients and their family members regarding decisions in 
hypothetical cases is sufficient to determine the accuracy of such 
models, however, given that patient preferences can often change 
radically in response to illness and end-of-life events, we ultimately 
lack a ground truth once incapacity has occurred. We  know that 
interviewing survivors introduces a hindsight bias in treatment and 
that patients experience regret in only a minority of cases (Becerra 
Pérez et al., 2016; Rid and Wendler, 2014b). While several de-biasing 
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strategies exist, no studies of predicting PROMs adjusted for hindsight 
bias in their analysis (Roese and Vohs, 2012).

Importantly, nearly all studies cautioned that the use of a patient 
preference predictors should only complement, and never replace, the 
provider or surrogate in making decisions for patients.

Discussion

This scoping review takes a novel approach to the theoretical 
development of the fair patient preference predictor but hypothesizing 
that the PPP would function essentially as PROM predictor. We show 
how current machine learning techniques predict PROMs for 
capacitated patient undergoing healthcare-related interventions might 
translate to predicting PROMs as a surrogate metric for incapacitated 
patient. We show that models had poor to moderate performance in 
predicting PROMs, the most important input variables were often 
from a pre-event PROM survey, and that few investigators directly 
assessed the fairness of their models.

There has been one previous review of using machine learning to 
predict PROMs (Verma et al., 2021) and another has called for placing 
them at the forefront of clinical AI research (Cruz Rivera et al., 2023). 
This has several implications to building the patient preference 
predictor. First, we see that demographics, social determinants, and 
even medical comorbidities rarely feature in the top  10 feature 
importance graphs, despite their inclusion in the majority of studies. 
Second, we  see that baseline surveys of pain, functionality, and 
satisfaction are highly correlated with future PROMs. Third, fairness 
assessments on sociodemographic variables were rare, but when 
performed, were often reassuring. Given that sociodemographic 
variables were less predictive than pre-intervention PROM scores, it 
is possible that building a patient preference predictor incorporating 
these variables of functionality and wellbeing would be  fair. This, 
however, does not negate the need the perform fairness testing. 
Fourth, we find a robust system of measuring patient satisfaction in 
place for select medical subspecialties (orthopedics). Documenting 
before and after changes in PROMs to establish MCID may benefit the 
future development of a patient preference predictor. We  see 
promising developments with the incorporation of PROMs into the 
National Surgical Quality Improvement Program (NSQIP) (Temple 
et al., 2024). Finally, we find that large language models are showing 
potential for extracting this kind of information from unstructured 
textual data (Lian et al., 2023; Wang et al., 2023; Matsuda et al., 2023).

We noted several limitations to the included studies. Existing models 
have overall small numbers compared to the thousands to millions of 
examples machine learning models benefit from. This limits their 
generalizability but also highlights the difficulty of collecting quality of 
life metrics on patients, which are unfortunately limited to burdensome 
survey or interview data. Likely because of this, model performance is 
poor to moderate with AUROC’s rarely exceeding 0.90. Second, nearly 
half of the studies were focused on extremity joint surgeries, which may 
limit generalizability, but remains informative based on the individual 
study’s choice of model inputs, architectures, and evaluation metrics. 
Third, we note the wide variety of PROM metrics used. While these are 
helpful to hyper-specific outcomes, we  would like to see more 
generalizable and wildly used PROM metrics to facilitate generalizability. 
Fourth, few studies report evaluation metrics outside AUROC, including 
AUPRC and F1 scores, which may be better at capturing rare events. It 
is up to the individual specialty to determine the appropriate threshold 

for clinical use, but models that aid in predicting life and death decisions 
for incapacitated patients would likely require a higher bar.

Conclusion

This review highlights many of the issues discussed in machine 
learning predictions of patient-centered outcomes. There are 
numerous practical, legal, and ethical barriers to using statistical 
evidence to fairly anticipate a decision in the incapacitated patient. 
Although machine learning models typically have poor to moderate 
performance in predicting PROMs, they often compare favorably with 
human surrogate decisions, which are only slightly better than chance.
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