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Dense Paraphrasing for
multimodal dialogue
interpretation

Jingxuan Tu*, Kyeongmin Rim, Bingyang Ye, Kenneth Lai and

James Pustejovsky*

Computer Science Department, Brandeis University, Waltham, MA, United States

Multimodal dialogue involving multiple participants presents complex

computational challenges, primarily due to the rich interplay of diverse

communicative modalities including speech, gesture, action, and gaze. These

modalities interact in complex ways that traditional dialogue systems often

struggle to accurately track and interpret. To address these challenges,

we extend the textual enrichment strategy of Dense Paraphrasing (DP), by

translating each nonverbal modality into linguistic expressions. By normalizing

multimodal information into a language-based form, we hope to both simplify

the representation for and enhance the computational understanding of

situated dialogues. We show the e�ectiveness of the dense paraphrased

language form by evaluating instruction-tuned Large Language Models (LLMs)

against the Common Ground Tracking (CGT) problem using a publicly available

collaborative problem-solving dialogue dataset. Instead of using multimodal

LLMs, the dense paraphrasing technique represents the dialogue information

from multiple modalities in a compact and structured machine-readable

text format that can be directly processed by the language-only models. We

leverage the capability of LLMs to transform machine-readable paraphrases

into human-readable paraphrases, and show that this process can further

improve the result on the CGT task. Overall, the results show that augmenting

the context with dense paraphrasing e�ectively facilitates the LLMs’ alignment

of information from multiple modalities, and in turn largely improves the

performance of common ground reasoning over the baselines. Our proposed

pipeline with original utterances as input context already achieves comparable

results to the baseline that utilized decontextualized utterances which contain

rich coreference information. When also using the decontextualized input, our

pipeline largely improves the performance of common ground reasoning over

the baselines. We discuss the potential of DP to create a robust model that can

e�ectively interpret and integrate the subtleties of multimodal communication,

thereby improving dialogue system performance in real-world settings.

KEYWORDS

Dense Paraphrasing, Common Ground Tracking, dialogue system, Large Language
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1 Introduction

Modeling the interpretation of multimodal dialogue remains a challenging task,

both formally and computationally (Saha et al., 2018; Liao et al., 2018). It involves

not only aligning and composing the meanings conveyed through the different

modalities, such as speech, gesture, and gaze, but also identifying actions and

contextual factors occuring during the interaction. Traditionally, dialogue systems
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have had difficulty tracking and interpreting the diverse

interactions between multiple communicative modalities,

particularly when faced with the problem of underspecified

references (Vinyals and Le, 2015; Baltrušaitis et al., 2018).

When engaged in dialogue, our shared understanding of both

utterance meaning (content) and the speaker’s meaning in a

specific context (intent) involves the ability to link these two in

the act of situationally grounding meaning to the local context—

what is typically referred to as “establishing the common ground”

between speakers (Clark and Brennan, 1991; Traum, 1994; Asher

and Gillies, 2003; Dillenbourg and Traum, 2006). The concept

of common ground refers to the set of shared beliefs among

participants in Human-Human interaction (HHI) (Traum, 1994;

Hadley et al., 2022), as well as Human-Computer Interaction (HCI)

(Krishnaswamy and Pustejovsky, 2019; Ohmer et al., 2022) and

Human-Robot Interaction (HRI) (Kruijff et al., 2010; Fischer, 2011;

Scheutz et al., 2011). Researchers have recently employed the notion

of common ground operationally to identify and select relevant

information for conversational Question Answering (QA) system

design (Nishida, 2018; Del Tredici et al., 2022).

In conversational multimodal dialogue systems, it is not

enough to simply recognize individual modalities, such as

speech, gesture, or gaze, in isolation. The true challenge lies

in the accurate alignment and integration of these modalities

to derive a cohesive understanding of the dialogue context.

For instance, the subtle yet critical co-attention between

participants—where both parties focus on the same object or

region of interest—can dramatically shift the meaning of an

utterance. If a system fails to detect or properly integrate these

multimodal cues, the resulting interpretation may be incomplete

or even incorrect, leading to misunderstandings and breakdowns

in communication.

Underspecified references, such as pronouns and

demonstratives, are frequently used in natural conversation

to refer to entities that are contextually salient but not explicitly

named. This reliance on shared context can lead to ambiguities

that are challenging for dialogue systems to resolve (Byron, 2002;

Eckert and Strube, 2000; Müller, 2008; Khosla et al., 2021).

For example, when a speaker says “one of those” while pointing

at an object, as in Figure 1, the word itself is insufficient to convey

the full meaning without considering the accompanying gesture.

The integration of visual cues from gestures and gaze with linguistic

information allows the system to disambiguate these references by

narrowing down the possible entities being referred to. Moreover,

the synchronization of gestures with speech provides additional

semantic information, such as emphasis or referential clarification

(e.g., the locational demonstrative there in Figure 1), that is crucial

for understanding the speaker’s intent.

Consequently, the need for more robust methods to handle

these ambiguities is of great importance. Advanced Artificial

Intelligence (AI) systems must incorporate sophisticated

multimodal fusion techniques that not only recognize each

modality but also align and integrate them to form a unified

representation of the dialogue context. This process involves

leveraging models that can map gestures to referential

expressions, correlate gaze patterns with attentional focus,

and link these nonverbal cues with the linguistic content of

the conversation.

To address this challenge, our research adopts the data

augmentation technique of Dense Paraphrasing (DP) (Tu et al.,

2023; Rim et al., 2023) to the task of interpreting multimodal

dialogue. In this extension, we propose Multi-Modal Dense

Paraphrasing (MMDP) that involves translating nonverbal

modalities into linguistic expressions, thereby recontextualizing

and clarifying the meaning of underspecified references. By

creating cross-modal coreference links and binding these

references with action or gesture annotations, we aim to enrich

the textual content and enhance the computational understanding

of dialogues.

We explore the utility of MMDP on the Common Ground

Tracking (CGT) problem (Khebour et al., 2024) on the recent

published Weights Task Dataset (WTD) (Khebour et al., 2023).

This dataset contains videos in which groups of three were asked

to determine the weights of five blocks using a balance scale. This

collection contains annotations from multiple modalities recorded

in the videos, as well as identification of the group epistemic state at

each dialogue state. The CGT problem defined over the dataset is to

identify the common ground (knowledge of the weights of different

blocks) among the participants of each group. In our previous joint

work (Khebour et al., 2024), a hybrid method of neural networks

and heuristics was adopted to solve the CGT problem.

In this paper, we instead treat CGT as a QA task that

involves two steps: applying MMDP to convert information from

multiple modalities into meaningful paraphrases, and then using

the paraphrases as the context for prompts that ask about the

common ground. We leverage Large Language Models (LLMs)

for the whole pipeline and evaluate the results under different

settings. We find that the human readable paraphrase generated

by MMDP can better integrate the information from the dialogue

context and multiple modalities, thus improving the performance

over baselines by a large margin. We also compare the results by

varying different models and the length of input context, providing

further insights for future work.Wemake our source code and data

publicly available.1

2 Related work

Recent years have seen remarkable progress on tasks involving

multimodality (Chhabra and Vishwakarma, 2023; Das and Singh,

2023; Zhao et al., 2023; Gong et al., 2023). Encoding multimodal

information into embeddings involves combining data from

different modalities, such as text, images, and audio, into a unified

representation, and is a vital component of manymultimodal tasks.

In recent studies, multimodal encoders are usually built upon

different vector extraction algorithms for different modalities, and

then a combination operation is performed over those vectors.

For example, to combine language and vision modalities, Chuang

et al. (2020) use contextualized word embeddings for language

and acoustic feature extraction for audio, and then uses vector

addition of the two to train an RNN model. Similarly, Surís

et al. (2018) leverage two separate video and audio features to

train shared weights. On the other hand, Khebour et al. (2024)

1 https://github.com/brandeis-llc/mmdp-cgt.git

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1479905
https://github.com/brandeis-llc/mmdp-cgt.git
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tu et al. 10.3389/frai.2024.1479905

FIGURE 1

Example of a triad (three participants, P1, P2, P3) multimodal interaction in the weights task: P1 (left) says: “Put one of those on there.”; purple box

denotes P1 pointing to the blocks and scale; red arrows denote co-gazing by P1–P3; blue arrows symbolize P1–P3 leaning toward the table.

use concatenation of word embeddings and more transparent k-

hot encodings to encode multimodal information. More recently,

multimodal LLMs such as GPT-4V (OpenAI et al., 2024) have

been used to incorporate image inputs into LLMs. Contrary to

previous studies, in this paper, we leverage LLMs tomap non-verbal

modality data into a natural language form and then treat the text

as augmented multimodal data.

QA is a significant area in NLP and various other NLP tasks

such as Summarization (Eyal et al., 2019; Deutsch et al., 2021;

Gunasekara et al., 2021), Data Augmentation (Mekala et al., 2022),

and Question Generation (Tu et al., 2022b) can be enhanced

by integrating QA techniques. We leverage QA to facilitate the

tracking of common ground in situated dialogue in this work. The

general goal of Dialogue State Tracking (DST) is to maintain and

update the state of dialogue by accurately tracking user intents and

belief states during a multi-turn conversation (Budzianowski et al.,

2018; Liao et al., 2021; Jacqmin et al., 2022). Del Tredici et al. (2022)

introduce CGT as a mitigation method for conversational QA.

The task aims to estimate the shared understanding or “common

ground” between the conversational participants. DST focuses on

task completion within a single session and deals with specific slots

and intents related to the task, while CGT focuses on maintaining

mutual understanding throughout the conversation with broader

shared knowledge and assumptions. Khebour et al. (2024) is the

first attempt to apply CGT over real-world multiparty dialogue

instead of just conversational QA.

Textual enrichment has been employed to address the

challenge of understanding the economy of sentence structure in

comprehension tasks. Approaches to textual enrichment include

paraphrasing (Bhagat and Hovy, 2013; Barzilay and Elhadad, 1997)

and decontextualization (Choi et al., 2021; Elazar et al., 2021; Wu

et al., 2021). DP has been recently introduced in Tu et al. (2023) as

a linguistically motivated textual enrichment strategy and has been

leveraged to facilitate a variety of NLP tasks such as Coreference

Resolution (Rim et al., 2023), Completion (Ye B. et al., 2022), and

Meaning Representation (Tu et al., 2024). Khebour et al. (2024) also

used DP to recover propositional content (and subsequent sentence

embeddings) in user utterances in multimodal data. We further

extend the usage of DP to translate nonverbal modalities into

linguistic expressions in the broader context of Natural Language

Generation (NLG), the task of generating natural language text

from a knowledge base or logical form representation. NLG is

a crucial component of QA and dialogue systems. Traditional

NLG methods are mostly rule-based (Bateman and Henschel,

1999; Busemann and Horacek, 1998), while later works approach

the problem with neural networks (Zhou et al., 2016; Tran and

Nguyen, 2018). With the recent advances in LLMs, such models

(Touvron et al., 2023; Achiam et al., 2023) show great capabilities

in generation tasks. In this paper, we leverage LLMs to facilitate DP

and generate answers for CGT questions.

3 Theory and practice of dense
paraphrasing

In this section, we introduce the textual enrichment and data

augmentation strategy of Dense Paraphrasing (DP), and describe

how it enables deeper capabilities in computational Natural

Language Understanding (NLU) models.

3.1 Background and definition

NLU has long been considered a fundamental task within

AI, involving both parsing and understanding the semantics of

language inputs, including grammar, context, and intent. Such

work has focused on enabling machines to perform tasks like

sentiment analysis, question answering, information extraction,

and information retrieval effectively.
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NLU, however, remains an extremely difficult task, particularly

when deployed in the service of dialogue understanding and

conversation analysis (Ye F. et al., 2022; Yi et al., 2024; Ou et al.,

2024).

Furthermore, despite the fast-paced growth of AI, advanced

computational models are still challenged by natural language

partly due to lacking a deeper understanding of the economy

of sentence structures. We, as humans, interpret sentences

as contextualized components of a narrative or discourse, by

both filling in missing information, and reasoning about event

consequences. However, most existing languagemodels understand

inferences from text merely by recovering surface arguments,

adjuncts, or strings associated with the query terms or prompts

(Parikh et al., 2016; Chen et al., 2017; Kumar and Talukdar, 2020;

Schick and Schütze, 2021).

Prior work on improving NLU systems to learn beyond

the surface texts has taken two directions. The first involves

commonsense reasoning and knowledge understanding (Poria

et al., 2014; Angeli and Manning, 2014; Emami et al., 2018; Mao

et al., 2019; Lin et al., 2021), both of which improve NLU models

by providing the ability to make inferences and interpret nuances

from knowledge about the everyday world, and concepts of entities

from knowledge bases.

The second line of work involves data augmentation over the

input. This approach focuses on paraphrasing or enriching the

texts by increasing the variability in the text format, and reducing

the dependency on the contexts from other texts (Culicover,

1968; Goldman, 1977; Muraki, 1982; Boyer and Lapalme, 1985;

McKeown, 1983; Barzilay and Elhadad, 1997; Bhagat and Hovy,

2013; Choi et al., 2021; Elazar et al., 2021; Chai et al., 2022;

Eisenstein et al., 2022; Tu et al., 2022b; Ye B. et al., 2022; Katz

et al., 2022). We argue here that such augmented texts can in turn

help NLU systems to better handle the ambiguities and variants in

human language, particularly when used in multimodal settings.

We extend the technique of Dense Paraphrasing (DP) (Tu et al.,

2023) to multimodal interactions. DP is a technique that rewrites

a textual expression to reduce ambiguity while making explicit

the underlying semantics of the expression. DP reveals a set of

paraphrases that act as the signature for a semantic type, which

is consistent with canonical syntactic forms for a semantic type

(Pustejovsky, 1995). Here we define DP as follows:

Definition 1. Dense Paraphrasing (DP): Given a pair (S, P) of

two expressions in a language, P is a valid Dense Paraphrase

of S if P is an expression (lexeme, phrase, sentence) that, (1)

[consistency] eliminates any contextual ambiguity that may be

present in S; (2) [informativeness] makes explicit any underlying

semantics (hidden arguments, dropped objects or adjuncts) that is

not otherwise expressed in the economy of sentence structure.

3.2 Subtasks of Dense Paraphrasing

In practice, to achieve the said level of context-independence

and generate fully self-sustained textual expressions, we include

(but are not limited to) the following subtasks as the fundamental

building blocks of DP augmentation:

Anaphora and coreference: Understanding the contextual

semantics of referring expressions is a crucial step for NLU. To that

end, being able to dereference and then to canonicalize pronouns

and other noun phrases is an integral step toward DP.

Frame saturation: Argument structure in event semantics can

provide a rich understanding of relations among event participants

and causal relations between entity states (as a result of the

event). However, due to the economy of natural language, the

full argument structure of an event is seldom present in linguistic

surface forms. Hence recovering those omitted arguments and

saturating the event frames (argument structures) is another critical

goal for DP.

Event decomposition: Some events can be decomposed into

multiple steps or subevents. Humans can easily understand

underlying subevent structures (individual subevents and their

temporal order) based on their lexical competence, and hence can

use abstract vocabulary for complex actions and events in natural

language. Surfacing the underlying subevent structure is another

aspect of what DP aims to achieve in terms of data augmentation

for NLU systems.

Entity state tracking: Actions have consequences. Events make

changes to paricipant entities and re-configure the world status.

However, for the same economic reason, we humans heavily rely

on prior (commonsense or empirical) knowledge to carry complex

causal and temporal relations between entities through chains of

events. Thus, within DP, we aim to provide temporally ordered

state changes as a part of the textual enrichment strategy.

Multimodal alignment: Motivated by the concept of DP that is

first outlined in and adopted by the above work to create rich

paraphrases of implicit entities represented in structured graphs, we

extend DP to encode the multimodal input into amachine readable

format, and then decode it into human readable paraphrases.

Text in machine readable format is a form of (semi-)structured

textual representation of the multimodality that is flexible enough

to be ingested by the model and transformed into other formats.

Text in human readable format is natural language that is more

effectively processed and interpreted by language models. More

implementational details are described in Section 6.2.4.

3.3 Applications of DP

In previous work, we proposed the textual enrichment strategy

called Dense Paraphrasing (DP), and explored how it enables

deeper NLU capability for computational models. DP transforms

and enriches the texts that will be input to the computational

models. It reflects and facilitates the models’ capability to

understand the meaning of language in a way that improves

downstream NLU tasks. DP differs from previous work in that it

is more linguistically motivated and focuses on the realization of

compositional operations inherent in the meaning of the language.

This makes DP-enriched texts independent of external knowledge,

relying solely on the contextualized or grounded information from

the sentence or document structure.

The proposed DP technique helps address practical NLU tasks

by providing tools, datasets, and resources that allow models to

learn text more efficiently and easily by augmenting the context
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with traceable states for all mentions and events involved in the text.

Given the context, DP can enrich the text by enriching the events

with their implicit state information and linking the enriched

events until the goal is reached.

DP has been applied to improve the logical metonymy task by

surfacing implicit types through the semantic reconstruction of the

sentence (Ye B. et al., 2022). Metonymy identifies implicit meaning,

such as the understood activity of “drinking” in Jon enjoyed

his coffee. The paraphrased sentences with an explicated event-

argument structure are used to train masked language models for

the logical metonymy task.

Tu et al. (2022a,b) defined a QA task that applies DP to

generate questions over implicit arguments and event states from

procedural texts, which provided a lens into a model’s reasoning

capability in the task. The QA task includes competence-based

questions that focus on queries over lexical semantic knowledge

involving implicit argument and subevent structures of verbs. The

paper found that the corresponding QA task is challenging for

large pre-trained language models until they are provided with

additional contextualized semantic information. Obiso et al. (2024)

also demonstrated that QA tasks using DP-enriched contexts leads

to increased performance on various models.

The DP technique has been further applied to a more

challenging coreference and anaphora resolution task that involves

implicit and transformed objects. Tu et al. (2023) applied DP on

procedural texts to generate hidden arguments and explicate the

transformation of the arguments from a chain of events on the

surface texts. Following this, Rim et al. (2023) utilized the proposed

event semantics for the entity transformation to represent recipe

texts as I/O process graph structures that are able to better model

entity coreference.

DP can also be used for constructing novel linguistic

resources. Tu et al. (2024) proposed to enrich Abstract Meaning

Representation (AMR) with GL-VerbNet. The paper developed

a new syntax, concepts, and roles for subevent structure based

on VerbNet for connecting subevents to atomic predicates.

They demonstrated the application of the new AMR dataset

for generating enriched paraphrases with details of subevent

transformations and arguments that are not present in the surface

form of the texts.

4 Common Ground Tracking

Common Ground Tracking (CGT) is the task of identifying

the shared belief space held by all participants in a task-

oriented dialogue (Khebour et al., 2024). This involves finding the

propositions that are acknowledged and accepted by all participants

engaged in the task. In this context, we model the dialogue

as a set of beliefs and the evidence supporting those beliefs at

each conversational turn. Each turn may introduce, reinforce, or

change beliefs, and the CGT task focuses on tracking these shared

understandings throughout the dialogue. To do this, we use a

Common Ground Structure (CGS), inspired by the notion of a

dialogue gameboard (Ginzburg, 2012), as well as by evidence-based

dynamic epistemic logic (van Benthem et al., 2014; Pacuit, 2017). A

CGS has three components (Example usage in Section 5.1):

1. QBANK: set of propositions that could be true; i.e., that have not

yet been ruled out;

2. EBANK: set of propositions for which there is some evidence

they are true;

3. FBANK: set of propositions believed as true by the group.

To evaluate systems designed for CGT, we formulate it as a QA

task. In this setup, the system is prompted with questions that aim

to identify the shared beliefs (represented in terms of the contents of

the three banks) at each turn in the dialogue along with the current

context. By treating CGT as a QA task, we provide a structured

method for quantitatively evaluating the effectiveness of systems in

tracking and updating shared beliefs among dialogue participants.

This formulation not only helps in understanding the common

ground reached but also in assessing the implicit and explicit

acknowledgment of information as the conversation progresses.

5 Dataset

For our experiments, we use the Weights Task Dataset (WTD)

(Khebour et al., 2023, 2024). The WTD contains ten videos,

totaling ∼170 min, in which groups of three were asked to

determine the weights of five blocks using a balance scale.

During the task, participants communicated with each other using

multiple modalities, including language, gesture, gaze, and action.

Participants were recruited from a university setting, spoke English,

and were between 19 and 35 years of age.

The WTD includes multiple layers of annotations. Speech

was segmented and transcribed three ways: automatically, using

Google Cloud ASR and Whisper; and manually by humans.

Gestures, including deictic (pointing), iconic (depicting properties

of objects or actions), and emblematic or conventional gestures,

were annotated using Gesture AMR (GAMR) (Brutti et al., 2022;

Donatelli et al., 2022). Actions, including participant actions (lifting

blocks, or putting them on other objects) and scale actions

(whether the scale is balanced, or leaning in some direction),

were represented using VoxML (Pustejovsky and Krishnaswamy,

2016). Collaborative problem-solving indicators, measuring ways

in which groups share knowledge and skills to jointly solve

problems, were annotated using the framework of Sun et al.

(2020). The NICE coding scheme (Dey et al., 2023) was used

to annotate additional indicators of engagement, including gaze,

posture, and emotion. Finally, the WTD contains Common

Ground Annotations (CGA); these include dialogue moves, such

as STATEMENT (announcement of some proposition), ACCEPT

(agreement with a previous statement), and DOUBT (disagreement

with a previous statement); and participant observations and

inferences that justify statements.

5.1 Common ground tracking in the
weights task dataset

At the beginning of each Weights Task dialogue, we initialize

QBANK with propositions, where each proposition states that a

certain block (denoted by its color, red, blue, green, purple, or
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yellow) has a certain weight (between 10 and 50 grams, in 10-

gram intervals). With five blocks and five possible weights, QBANK

contains 5 × 5 = 25 propositions. Meanwhile EBANK and FBANK

are initially empty, as nothing has yet been discussed.

As the dialogue progresses, we update the CGS as follows,

according to the CGA. The STATEMENT of a proposition (e.g.,

blue is 10), or of something that would entail it (e.g., red and blue

are equal, when red = 10 is already in FBANK), moves that

proposition (blue = 10) from QBANK to EBANK. An ACCEPT

of that proposition (e.g., I agree) then moves it from EBANK to

FBANK, and removes inconsistent propositions (e.g., blue = 20,

blue = 30, etc.) from the CGS.

As an example, in Figure 2, the participants have a shared belief

that the blue block weighs 10 grams, while it is not yet common

knowledge that the red block weighs 10 grams. In other words,

blue = 10 is in FBANK, while red = 10 is in QBANK. After

putting the blue and red blocks on the scale and observing that the

scale is balanced, participant 1 says “Yeah OK so now we know

that this is also ten”. This moves red = 10 from QBANK to

EBANK. Participant 2 then says “OK”; this promotes red = 10

from EBANK to FBANK.

6 Experiments

In this section, we present experiments on the CGT task by

applying our proposed MMDP pipeline (Section 6.2.4) on the

Weights Task Dataset under a zero-shot learning setting. At a

high level, we formalize CGT as a closed-domain QA task, where

the language model is prompted with the evidential context from

a dialogue segment and a question asking about the established

common ground regarding the block weights. Based on the DP

outputs, the context for each question also includes the natural

language utterance paraphrases of all previous turns from the

beginning of the dialogue. At each turn, the question includes

the model prediction of the CG from the last dialogue segment

(underscored text in Figure 3).2 We also instruct the model to

generate the prediction in JSON format, so that it can be easily

incorporated into the question prompt or processed for the

evaluation. We experiment with GPT-3.5 (Brown et al., 2020)

for both the DP and QA steps for its accessibility and cost-

efficiency. We use the OpenAI API version gpt-3.5-turbo-

0125. Finally, we use the Dice Similarity Coefficient (DSC) as

the evaluation metric (Sørensen, 1948; Dice, 1945). DSC is similar

to F1 score, measuring the similarity between gold and predicted

common ground propositions.

6.1 Design

We propose a new method, MMDP, that can improve the CGT

task by utilizing language only LLMs. Instead of using Multimodal

LLMs that consist of different encoders to encode information

from multiple modalities (Yin et al., 2023), we extend DP to the

action and gesture annotations from the WTD. We leverage the

2 An exception is the question for the first dialogue segment, for which

there is no previous prediction.

capability of LLMs to paraphrase multimodal input into a natural

language form, and infer the common ground from the dialogue

context. Figure 3 illustrates our proposed LLM-prompting pipeline

for modeling the CGT task. In the rest of this section, we first

describe the data preprocessing pipeline (Section 6.2) where the DP

techniques are used, and then the description of the prompt design

and major components that use the paraphrases.

6.2 Data preprocessing pipeline

We describe the data selection and processing pipeline on the

WTD to prepare conversational inputs to the model. The source

of the annotations described in this section is a combination

of Khebour et al. (2023) and Khebour et al. (2024). Using our

preprocessing pipeline, we experiment with primarily two subtasks

(anaphora resolution and multimodal alignment) of DP as the

implementation of the proposed MMDP.

6.2.1 Speech
The speech audio from the WTD is segmented into utterances

delimited by silence. Each utterance is manually transcribed,

and we refer to this set of text as “raw” utterances. In

addition, to enhance the CGT performance of the LLM, we

decontexualize pronouns of task-relevant entities in the dialogue

through coreferential redescription. We believe this DP method of

redescription can link the same entities across different modalities

and serve as an alignment in our uni-modal system. Following our

previous work (Rim et al., 2023; Tu et al., 2023), we paraphrase the

mentions that refer to the same entity into their most informative

form, i.e., proper nouns. In example 1, we paraphrase “that one”

into “the blue block” for systems to better understand the context.

(1) P1 utterance: Maybe we would put that one there too.

P1 utterance with DP: Maybe we would put the blue block there

too.

This enriched set of text is referred to as “decontextualized”

utterances in the rest of the paper. In our experiment, we use both

the raw and decontextualized utterances, to measure the impact

of DP.

6.2.2 Actions
The WTD provides manual annotations of agentive actions

regarding block placement. The annotation is done in semi-logical,

parenthesized form, but we found some annotation errors while

experimenting. Hence we decided to review the entire action

annotation, and manually fixed the found errors. Most of the

errors we found were missing annotations when multiple blocks

were moved together, but also a smaller number of duplicates and

incorrect block color markings were found.

6.2.3 Gesture
We convert the gesture annotation from GAMR syntax to

“enclosed” text with parentheses to mark up patterns that can be

more efficiently interpreted by language models (Zhai et al., 2022;
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FIGURE 2

Example of a common ground update in the Weights Task. (Left) P1 believes “blue=10g”, but does not agree that “red=10g.” (Right) After seeing the

scale, P1, P2, and P3 all agree on both propositions.

FIGURE 3

Common ground tracking pipeline with LLMs. Text format and emphasis on model input are addded for clarity.

Zhang et al., 2023). This also made the syntax more consistent

with the VoxML-based action annotations when aligned together.

We adopt a heuristic method to map the gesture acts from the

datasets to their closest event head (e.g., deixis-GA to point,

emblem-GA to confirm), and parse the gesture graph to extract the

corresponding arguments. Specifically, for example in 2, we map

the deictic act to the pointing action, and remove the argument

name and variable to keep it simple in the input.

(2) GAMR:

(d / deixis-GA
:ARG0 (p1 / participant_1)
:ARG1 (b / blue_block)
:ARG2 (g / group))

Enclosed:

point(blue_block,(other participants))

6.2.4 Multimodal alignment
Following the same setting in Khebour et al. (2024), we align

the actions and gestures with the utterance that overlaps the most

in terms of the starting and ending times. As briefly discussed in

Section 3.2, we use two different forms of linguistic paraphrasing,

the Machine Readable Paraphrase (MRP) and Human Readable

Paraphrase (HRP), to obtain alignment of information across

different modalities.

Specifically for this work, MRP is a form of (semi-)structured

textual representation of the multimodality being expressed in

the dialogue. Concretely, we generate an MRP of a multimodal

dialogue segment as a set of key-value pairs that map each

agent and modality to the content of the communicative

event (e.g., action, utterance, gesture, etc.). While doing so,

we apply some normalization to the raw annotation (Section

4). MRP features a uniform structure and text patterns that
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TABLE 1 Statistics of accepted statements and utterances in CGA.

Count

# of groups 10

Avg. # of utterance per group 43.4

Min / max # of utterances 19/54

Avg. # of ACCEPT moves per group 4.5

Min / max # of ACCEPT moves 2/6

efficiently encode the semantics of the multimodal interactions

in a dialogue. It also provides a pluggable expansibility for

additional modalities, by adding or removing keyed pairs from

the structure.

The second step of MMDP is the conversion from MRP to

HRP with the application of LLMs. Compared to the MRP, the

HRP in its natural language form is more effective to be processed

and interpreted by language models. Similar to the paraphrases

from DP, the HRP also encodes implicit semantics, enabled

by LLMs’ capabilities to reconstruct sentence structures of the

(often incomplete and disfluent) speech and to resolve anaphoric

references across different modalities. This can help generate more

coherent paraphrases. We show how HRP conversion is done and

then show the utility of MMDP by applying it on WTD in the

following sections.

6.2.5 Dialogue segmentation
In the CGT task, we focus on identifying the common ground

that is updated right after the ACCEPT dialogue move. The

ACCEPT move is essential in establishing the common ground in

the whole dialogue, and previous work (Khebour et al., 2024) finds

that it is more challenging to model the ACCEPT move than the

other moves. We split the dialogues into segments on the ending

time of each ACCEPT move. We show the number of ACCEPT

moves (segments) and utterances in Table 1. On average, each

group is annotated with 4.5 ACCEPTs. The group with the most

ACCEPTs has six segments and the least, 2. The average number

of utterances in each group is 43.4 where group 7 has the most

utterances (54) and group 9 has the least (19).

6.3 Experiments with Large Language
Models

6.3.1 In-context task instructions
We apply the LLMs on the CGT task under an in-context

learning scenario. We first manually generate the Weights Task

description of the situated task setting (red unit in Figure 3), and

use it as the system prompt input to the model. Within each

segment of dialogue that establishes common ground, we create a

prompt for each turn with the multimodal MRP that is converted

from the existing annotations, and ask the model to generate an

HRP in a natural language form. At the end of each dialogue

segment, we instruct the model to infer the current common

ground over the block weights by prompting it with the question.

6.3.2 Dense paraphrasing of multimodal input
As shown in Figure 3 (blue unit), given the aligned annotations,

we create an MRP as a key-value pair structure, where the key

encodes the speaker ID and the modality, and the value encodes

the annotation contents, normalized for non-speech modalities

(Section 4). This set of pairs is then serialized into a concatenated

string representation, which we call MRP.

(3) P1 utterance: Maybe we would put that one there too.

P1 gesture: point(blue_block,(other participants))

Example 3 shows a sample utterance with an aligned gesture,

transformed to an MRP. After the MRP is constructed, we apply

the language model to convert it to an HRP (Section 6.2.4). In order

to generate the HRP from each turn, the current MRP along with

all the HRPs from previous turns starting from the beginning of

the dialogue are included in the context prompt. Figure 4 shows

the full prompt for the CGT pipeline. The data input is changed

accrodingly to accommodate different experiment settings.

6.3.3 Baseline settings
We evaluate our approach against CGT baselines across three

input settings: language-only, all-modalities in textual form, and

all-modalities incorporating both text and images. For language-

only and all-modalities in textual form, we employ baseline models

fromKhebour et al. (2024). In the language-only scenario, Khebour

et al. (2024) transform decontextualized utterances (DECONT.) into

embeddings and utilize a similarity-based method to identify the

common ground. For the all-modalities in textual form setting, a

hybrid method is used which involves human annotations to map

predicted utterance IDs to the corresponding common ground.

In addition to textual input, our method capitalizes on LLMs

to reason with both text and images. Specifically, we extract five

image frames evenly from each utterance’s corresponding video

clip and use these frames together with the utterances as input to

incorporate multimodal information.3 For this setting, we apply

GPT-4o and GPT-4o-mini as baseline models.

6.4 Results

Table 2 compares the CGT results between the baseline models

and our methods under different settings. Under the language-only

setting, DP-UTT. and DP-DECONT. use raw and decontextualized

utterances, respectively, in our pipeline without the paraphrasing

step. Compared to the baseline results that use the decontextualized

utterances as input, DP-UTT. is able to achieve comparable

results (0.6 points lower) without access to the decontextualized

information, suggesting LLMs are better at learning from the

conversation context. However, by using the same decontextualized

utterances as the input, DP-DECONT. outperforms the baseline by

a large margin (20.4 points).

3 The average video clip length corresponding to each utterance is 4.3 s,

with the longest being 21, 18, and 13 s, respectively. We believe that using

five frames per utterance e�ectively captures the action and event dynamics

occurring within the duration of each utterance.
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FIGURE 4

Full prompt to the LLMs for the common ground tracking pipeline. Text format and emphasis are added for clarity.

Under the setting of all-modalities in textual form, the

BASELINE adopts a hybrid method that uses annotations to map

predicted utterance IDs to the corresponding common ground.

MMDP-UTT. combines the action, gesture and raw utterance

in the MRP as the input. Similarly, MMDP-DECONT. uses the

decontextualized utterance in the MRP instead. Compared to DP-

UTT., MMDP-UTT. improves the results by 13 points, suggesting

the usefulness of multimodal information for the CGT task.

Both DP-DECONT. (6.9 points) and MMDP-DECONT. (8.2 points)

perform better than the stronger multimodal baseline. Compared

to DP-DECONT., MMDP-DECONT. performs only slightly better

by incorporating additional annotations from other modalities (1.3

points). This may suggest that the decontextualized utterances

have already encoded most of the multimodal information, and

MMDP-DECONT. exhibits an upper-bound performance for the

CGT task.

Compared to representing multimodalties in MRP, using video

frames as additional input does not exhibit better performance

over our proposed method. Under this setting, baseline with GPT-

4o outperforms GPT-4o-mini, yet it is still worse than MMDP-

UTT. which integrates action, gesture and raw utterance in the

MRP (7.4 points lower). Overall, we show the effectiveness of

our LLM pipeline, and the decontextualized utterances enhanced

with multimodal textual paraphrases can yield the best results for

the task.

6.4.1 Error analysis
While the dialogues are all about the Weights Task in the

dataset, the conversations from different groups exhibit various

patterns that are also reflected in the CGT results. We briefly

characterize the cases where the performance from the baselines

and our methods have salient gaps on individual groups.

TheMMDPmethod improves the most on group 1 (90.1 points

for language only, 45.8 points for all modalities). By examining the

dialogue, we find that this group builds up the common ground

in a “bottom-up” style by identifying the block weights from the

lightest to the heaviest. This way the conversation depends heavily

on the context, making MMDP a better choice to capture these

long dependencies. In addition, all modalities in this group play

important roles in identifying the common ground.

(4) P2 utterance: That’s ten so then

P1 action: put(blue_block,(left_scale))
Common ground: blue = 10

(5) P2 utterance: Probably thirty at this point

P1 action: point(purple_block,(other
participants))
Common ground: purple = 30

Consider example 4. The utterance from Participant 2mentions

the possible weight of a block, and the aligned putting action from

Participant 1 indicates that the block is blue. Similarly in example 5,

The pointing gesture also indicates the weight from the utterance is

for the purple block.

Although our method improves the overall performance, the

baseline performs better on group 6 (20 points for language only,

14.3 points for all modalities). Unlike group 1, we observe that

the dialogue from this group contains many implicit assumptions

that are not expressed either verbally or non-verbally. This makes

the annotation quite sparse and difficult for LLMs to build up the

conclusion from the context. This pattern also appears in group 3.

Participants also sometimes refer to the color of the block in a non-

standardized way, which causes further confusion for the model.

(6) P2 utterance: So big blue is probably thirty

Common ground: purple = 30
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TABLE 2 Evaluation results on the CGT task.

Group
1

Group
2

Group
3

Group
4

Group
5

Group
6

Group
7

Group
8

Group
9

Group
10

Avg.

Language-only

BASELINE

(Khebour et al.,

2024)

0.0 52.8 50.1 4.5 16.5 37.2 82.5 52.6 0.0 0.0 29.6

DP-UTT. 74.8 39.9 37.5 0.0 56.1 6.1 0.0 47.4 0.0 28.6 29.0

DP-DECONT. 90.1 58.0 35.8 45.0 66.7 17.2 61.8 60.6 3.6 60.9 50.0

All-modalities in textual form

BASELINE

(Khebour et al.,

2024)

42.5 48.0 41.8 34.8 31.8 31.5 63.7 57.4 0.0 79.4 43.1

MMDP-UTT. 85.0 36.5 37.5 38.2 54.3 0.0 55.2 48.7 0.0 63.7 41.9

MMDP-DECONT. 88.3 58.0 35.8 45.0 65.2 17.2 55.2 63.3 13.8 71.6 51.3

All-modalities in text and video frames

BASELINE-GPT-4O-

MINI

55.3 33.1 0.0 32.1 38.0 26.5 0.0 48.7 0.0 31.0 26.5

BASELINE-GPT-4O 84.1 33.1 34.0 32.1 47.8 26.5 0.0 43.3 0.0 43.8 34.5

DSC is reported for each group and the average under multimodal and language only settings. The bold value indicates the best DSC under different settings.

In example 6, participant 2 refers to the color of the purple block

as “big blue” throughout the whole dialogue.

CGT on the dialogue from group 9 is challenging to

both the baseline and MMDP. After examining the data, we

notice that most action and gesture annotations are not aligned

with the utterances, making the improvement from multimodal

information incremental. This may be due to the nature of the

conversation where non-verbal actions happen asynchronously

with the utterance. In addition, the less frequent usage of pronoun

references in this dialogue makes it difficult to take advantage of the

decontexualization of the utterances.

(7) P3 utterance: Looks equal yeah

P2 utterance: Yeah that’s good

P1 utterance: Look we have the thirty gram block

Example 7 shows the key utterances for establishing the

common ground from group 9. The lack of proper multimodal

alignments and block references poses a lot of challenges to the

CGT automation.

Multuimodal GPT with both text and image input performs

worse than textual MRP and HRP. This could be attributed to

the insufficient salient mappings between videos frames and the

corresponding utterance. Notably in Group 7, where the models

struggle to identify the correct common grounds, many actions

(e.g., slightly lift the block and then put it back on the scale) involve

quick and subtle movements that are challenging for the models

to accurately capture. Moreover, gestures in the video can be

inherently ambiguous, especially when a participant points to a

specific block that is positioned near other blocks. However, the

converted MRP from the multimodal input is useful in providing

accurate information and eliminating the ambiguities from the

video frames.

TABLE 3 Evaluation results on the CGT task.

DP-Utt. DP-
Decont.

MMDP-
Utt.

MMDP-
Decont.

GPT-3.5 29.0 50.0 41.9 51.3

GPT-4o 28.6 53.8 45.8 54.9

We compare GPT-3.5 with GPT-4o under different pipeline settings. Average DSC over all

groups is reported. The bold value indicates the best DSC under different settings.

7 Discussion and analysis of MMDP

In this section, we further explore the utility of the MMDP

method. We experiment with MMDP on the CGT task, and

conduct quantitative analysis of the results with different model

selection and input data variance.

7.1 Larger language models

We evaluate a larger and more powerful language model

in the MMDP pipeline. We apply GPT-4o (OpenAI, 2023)

for both the DP and QA steps. We use the OpenAI API

with version gpt-4o-2024-05-13. Table 3 shows the model

comparison results. Overall, GPT-4o performs better than GPT-

3.5 when decontextualized or multimodal information is provided

in the input. However, GPT-4o does not show superior results

on the DP-Utt. setting. This confirms our findings that the

richness of the multimodal information is essential to resolve the

CGT task.
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TABLE 4 Evaluation results from the GPT models under the multimodal

setting.

Setting Model Use HRP DSC

MMDP-Utt. GPT-3.5 ✘ 34.4

GPT-3.5 ✔ 41.9

GPT-4o ✘ 42.7

GPT-4o ✔ 45.8

Baseline‡ N/A N/A 43.1

MMDP-Decont. GPT-3.5 ✘ 47.3

GPT-3.5 ✔ 51.3

GPT-4o ✘ 52.9

GPT-4o ✔ 54.9

We compare the DSC with or without the DP step for HRP generation. ‡Baseline from all

modalities.

7.2 Multimodal information encoded with
HRP

In the MMDP pipeline, we propose a DP step that converts

the multimodal MRP into HRP. We explore the utility of the DP

step by using MRP vs. HRP as the model input. Table 4 shows the

evaluation results. In general, models withHRP perform better than

those with MRP, suggesting the effectiveness of DP in grounding

non-verbal information into language form. Compared to GPT-

3.5, applying DP with GPT-4o results in less differentiation in the

performance (3.1 vs. 7.5). This indicates that a larger language

model has more capabilities to learn structured information from

MRP directly.

7.3 Dialogue context cuto�

We evaluate whetherMMDP can enable more efficient learning

by cutting off the previous dialogue context in the input. In our

current pipeline, in the prompt for every DP and QA step, we

include previous generated HRPs and common ground predictions

from the beginning of the dialogue. In this experiment, we only

keep the HRPs from the current dialogue segment in the prompt.

Table 5 shows the evaluation results. In general, we notice a

performance drop under most settings after applying the context

cutoff. Although the question prompt still has access to the previous

common ground prediction, the limited context poses additional

challenges to the model. MMDP-DECONT. has the highest drop

(6.2) in performance. This may be because the combination of

decontextualized utterance and multimodal information from the

bigger context contributes the most to model performance. DP-

UTT. shows a similar result with the cutoff. This may result from

the already existing lack of annotation in the context of raw

utterances. Overall, we observe that although there exists a trade-

off between performance and efficiency, the model with context

cutoff is still able to produce competitive results compared to the

baseline (43.1).

TABLE 5 Evaluation results on the CGT task.

DP-Utt. DP-
Decont.

MMDP-
Utt.

MMDP-
Decont.

Cutoff 28.7 50.3 43.9 48.7

No-cutoff 28.6 53.8 45.8 54.9

We apply GPT-4o and compare the average DSC with or without context cutoff.

TABLE 6 Number of ACCEPTs in the original and re-annotation of CGA.

Original Re-annotation

Group 1 6 15

Group 2 5 16

Group 3 4 16

Group 4 2 7

Group 5 5 18

Group 6 3 17

Group 7 4 10

Group 8 6 16

Group 9 4 11

Group 10 6 20

All 45 146

7.4 Re-annotation of CGA

Since the size of the CGA is limited, we provide additional

annotations for future research. Specifically, in our experiments,

we find that STATEMENTs are often not followed by explicit

ACCEPTs. This results in propositions remaining in EBANK and

not moving to FBANK, even when the dialogue continues as if

the participants all believe the stated proposition. For this reason,

we add an implicit ACCEPT to each STATEMENT in the CGA,

except those that are followed by a DOUBT. This can be seen

as allowing most STATEMENTs to directly promote propositions

from QBANK to FBANK. The re-annotation increases the average

number of ACCEPTs from 4 to 14. The smallest increase is from 2

to 7 ACCEPTs. The most significant increase is observed in Group

5 that raises the number of ACCEPTs from 3 to 17. Table 6 shows

the number of ACCEPTs in the original and re-annotation of CGA.

We run the same experiments on the new CGA data

using GPT-3.5. Table 7 shows the results. Although not directly

comparable because of the different number of ACCEPTs, we

notice that the average DSC on the re-annotated data is over

20 points higher than that on the original dataset. The results

improve the most under the DP-DECONT. setting (32.2 points

higher). Overall, we find that using a less strict rule to identify

ACCEPTs, and as a result, more accepted statements can lead

to significant improvements on the CGT task. We suspect

that the improvements stem from more ACCEPTs that agree

with the same STATEMENT being annotated; e.g., there is

only one ACCEPT of STATEMENT red = 10 in the

original data. In the new data, two more ACCEPTs of the
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TABLE 7 Evaluation results from GPT-3.5 on the CGT task with

re-annotated CGA.

DP-Utt. DP-
Decont.

MMDP-
Utt.

MMDP-
Decont.

Original 29.0 50.0 41.9 51.3

Re-

annotation

56.4 82.1 67.3 75.5

Average DSC over all the groups are reported.

STATEMENT are annotated without any additional ACCEPTs to

the other STATEMENTs.

7.5 Limitations

One limitation of our work comes from the dataset selection, as

our study of the CGT is solely based on the Weights Task Dataset

(WTD). WTD contains ten recorded dialogues in a controlled

setting, where three participants collaborate on a weight task to

reach common ground. While the WTD provides a detailed view

for examining human interactions over multiple communication

modes, it may not fully capture the diversity found in real-

world situations. Due to the small size of the dataset and the

controlled task setting, the effectiveness of our MMDP method in

understanding and tracking common groundmay not easily extend

to interactions that differ significantly from those in the WTD. To

our best knowledge, WTD is the only exisiting CGT dataset. Future

work could focus on expanding the dataset size and incorporating

more diverse dialogues within other problem-solving task settings,

such as tangram puzzles. Our experiments on the WTD involve

dialogues in English only. Future studies involve exploring CGT in

multilingual contexts.

8 Conclusion

In this work, we have highlighted the importance of

integrating multimodal representations in the development of

more sophisticated and accurate dialogue systems, particularly in

the service of addressing underspecified references within cross-

modal settings. We proposed MMDP by extending the technique

of DP for converting the annotations from multiple modalities

into textual paraphrases with both machine-readable and human-

readable formats. We built an LLM-based pipeline by applying

MMDP on WTD, and showed that the generated paraphrases can

be used effectively to improve performance on the CGT task under

different model settings. We conducted a quantitative analysis of

the results from experiments with different models, paraphrase

input and context length, and showed that MMDP could still show

competitive performance even with limited information from the

input. We believe that MMDP for enhancing the interpretative

power of multimodal dialogue systems constitutes a step toward

a more capable and competent human-computer interaction in

multimodal environments.
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