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The rapid advancement of artificial intelligence (AI) has introduced transformative 
opportunities in oncology, enhancing the precision and efficiency of tumor diagnosis 
and treatment. This review examines recent advancements in AI applications across 
tumor imaging diagnostics, pathological analysis, and treatment optimization, 
with a particular focus on breast cancer, lung cancer, and liver cancer. By 
synthesizing findings from peer-reviewed studies published over the past decade, 
this paper analyzes the role of AI in enhancing diagnostic accuracy, streamlining 
therapeutic decision-making, and personalizing treatment strategies. Additionally, 
this paper addresses challenges related to AI integration into clinical workflows 
and regulatory compliance. As AI continues to evolve, its applications in oncology 
promise further improvements in patient outcomes, though additional research 
is needed to address its limitations and ensure ethical and effective deployment.
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Introduction

The term “artificial intelligence (AI) “was coined at the Dartmouth Summer Symposium 
in 1956 to describe the former ideas about “thinking machine.” AI refers to a machine’s 
capacity for autonomous learning, identifying patterns and associations from extensive sample 
data to make efficient decisions in unfamiliar scenarios (Bhinder et al., 2021). Specifically, 
machine learning (ML) is a subfield of AI, while deep learning (DL) is a subset of MI. In many 
fields, such as speech recognition, image classification and text understanding, DL breaks 
through traditional algorithm and gradually evolves into a novel paradigm that starts from 
training with representative materials to outputting deliverables via end-to-end modeling. In 
DL, each layer independently adjusts toward the overall goal, and all layers work synergistically 
to enhance task accuracy (Yu et al., 2017). With its advancement, AI shows the potential to 
completely change the medical industry in such domains as follows: assisting doctors in 
diagnosis to minimize misdiagnosis and missed diagnosis; improving diagnostic efficiency to 
relax the imbalance between supply and demand of medical resources; providing early warning 
of disease risk and health consultation services; supporting drug research and development 
while promoting pharmaceutical productivity; and bettering surgical robots and operational 
accuracy (Liu and Yu, 2022). Figure 1 illustrates the application pathway of AI in cancer 
diagnosis and treatment.

The aim of this review is to discuss the latest applications and advancements of artificial 
intelligence (AI) in tumor diagnosis and treatment, with an emphasis on its transformative 
impact on traditional diagnostic and therapeutic approaches and future potential. By 
synthesizing existing research findings, this review examines how AI plays a pivotal role in 
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tumor imaging diagnostics, pathological analysis, and treatment 
optimization. To ensure a comprehensive and rigorous review, the 
literature selection was based on the following criteria: (1) only peer-
reviewed academic articles and research reports published within the 
last 10 years were included (2); selected literature must involve 
applications of AI in tumor diagnosis, treatment, imaging analysis, or 
pathology. (3) Due to the broad scope and cancer types involved, this 
review primarily focuses on literature concerning breast, lung, and 
liver cancers, with emphasis on AI systems that have undergone 
regulatory approval and entered clinical practice, as well as emerging 
technologies with significant potential still under investigation. 
Table 1 presents the currently available AI software used in tumor 
diagnosis and treatment, along with their current developmental status.

AI for the diagnosis of tumor

Pathological diagnosis
Pathological diagnosis, commonly used in clinical practice, 

reveals etiology based on natural sciences and serves as the “gold 
standard” for disease identification. Machine-based oncological 
pathology is the discovery and classification of tumor-related features 
in pathological photos to determine its nature, stage and prognosis, 
aiming to improved objectivity and accuracy in diagnosis. In recent 
years, artificial intelligence, particularly deep learning (DL), has 
demonstrated significant potential in foci identification, prognosis 
prediction, microenvironment characterization, metastasis detection, 
and other pathological analyses for tumor diagnosis. Pathological AI 
has been applied in multiple types of tumors, such as breast cancer 
(Zhu et al., 2019), gastric cancer, nasopharyngeal carcinoma (Qi et al., 
2021) and colorectal cancer, mainly for determination of benign or 
malignant nature (George and Sankaran, 2020), disease staging, 
staining analysis and early screening.

Whole slide imaging (WSI)
This digital pathology platform has been used for conferences, 

virtual seminars, presentations and educational purpose etc. AI 
enhances the utility of whole slide imaging (WSI), as AI tools 
assist in training next-generation pathologists by providing 
on-demand, standardized, and interactive digital slides that can 
be shared among multiple users anytime and anywhere (Zarella 
et al., 2019). WSI systems featuring automation, high speed, and 
high resolution have demonstrated a significant impact on medical 
quality assurance (QA), particularly when supported by AI, which 
readily provides digital slides to pathologists via laboratory 

information systems or intranets for various QA tasks, such as 
remote consultation, measuring inter-and intra-observer 
differences, competency testing, and slide archiving (Bera et al., 
2019). Saillard et al. (2020) developed two DL algorithms based on 
WSI to predict the survival rate of patients with hepatocellular 
carcinoma underwent surgical excision, with both models superior 
to the traditional method based on comprehensive scores of all 
survival-related baseline variables, and they further verified 
prognostic value of the models in The Cancer Genome Atlas 
(TCGA) dataset.

Tumor infiltrating lymphocyte (TIL)
As an important indicator for prediction of the efficacy and 

outcome of neoadjuvant chemotherapy, TIL is regarded by a growing 
number of professionals as an important biomarker for many types of 
cancer (Le et al., 2020; Zhang et al., 2023). However, its application in 
prognosis is largely limited, since TIL requires much labor for its 
standardized quantification relying on pathologists and it may 
additionally involve immunohistochemical staining that seriously 
lacks of unified measurement method. The advance of digital 
pathology and artificial intelligence inspires increasing interests to the 
development of automatic tools for counting and analysis of TILs in 
pathological sections. The “DeepTIL” created by Xu Hongming team 
aims to effectively and efficiently evaluate the TILs distribution in 
whole slide images post-H&E staining and to automatically conduct 
analysis for assistance in the prognosis of patients with colorectal 
cancer (Xu et al., 2022). Saltz et al. (2018) employed neural network 
that incorporated pathologist’s feedback to automatically detect the 
spatial organization of TILs in tissue section images of cancer genome 
maps, and they found that this characterization could predict the 
prognosis of 13 different cancer subtypes. Image analysis based on DL 
could detect TILs in testicular germ cell tumors rather objectively and 
makes TIL a prognostic marker of disease recurrence (Linder et al., 
2019). Ao et  al. (2022) reported an automated high-throughput 
microfluidic platform for simultaneously tracking the dynamics of 
T-cell infiltration and the cytotoxicity in 3D tumor cultures with 
adjustable matrix. This platform could evaluate the efficacy of each 
treatment with the help of a TIL analyzer based on clinical data-driven 
DL method. PathExplore IOP accelerates the characterization of 
immune phenotypes by quantifying tumor-infiltrating lymphocytes 
(TILs) and their spatial distribution utilizing routine hematoxylin and 
eosin (H&E) samples. This innovative product enables researchers to 
evaluate the spatial arrangements of TILs within the tumor core and 
periphery, thereby providing insights into the immune-inflamed, 
desert, or excluded characteristics of the sample (Path, 2024).

FIGURE 1

Example of the role of AI in diagnosis and treatment workflows.
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TABLE 1 The available AI software and functions in tumor diagnosis and treatment.

Category Software 
name

Description Developer/
organization

Key features dataset size Availability 
status

Pathology diagnosis PathAI Utilizes deep learning 

for automated analysis 

of pathology images

PathAI (PathAI Inc., 

Boston, USA)

Enhances diagnostic 

accuracy for 

pathologists, reducing 

misdiagnosis rates

10,000–50,000+ 

pathology images 

from diverse 

sources, including 

biopsy slides for 

cancer detection 

and grading

Available in clinical 

use

OncoKB Analyzes tumor 

genomic data for drug 

matching

OncoKB (Memorial 

Sloan Kettering Cancer 

Center, New York, USA)

Provides information 

on clinically relevant 

genetic alterations to 

support treatment 

decisions

Genomic data from 

over 30,000 tumor 

samples covering 

multiple cancer 

types

Available in clinical 

use

Imaging diagnosis Aidoc AI-driven medical 

imaging analysis for 

rapid lesion detection

Aidoc (Aid-oc Medical 

Ltd., Tel Aviv, Israel)

Instant alert feature to 

alleviate the workload 

of radiologists

50,000+ annotated 

CT and MRI images 

from clinical cases

Available in clinical 

use

Zebra Medical 

Vision

Automated analysis of 

medical imaging to 

support early diagnosis

Zebra Medical Vision 

(Zebra Medical Ltd., 

Kibbutz Shefayim, 

Israel)

Employs deep learning 

models to improve 

imaging diagnostic 

accuracy

Over 1 million 

medical images, 

including X-rays, 

CT scans, and MRI, 

across multiple 

health systems

Available in clinical 

use

Google DeepMind Deep learning 

algorithms for 

analyzing medical 

images to assist in 

diagnosis

Google DeepMind 

(Google, LLC, London, 

UK)

Capable of identifying 

various pathological 

conditions with self-

learning capabilities

Dataset of 10,000+ 

annotated medical 

images for disease 

identification and 

feature learning

Research stage; trials 

ongoing

Philips IntelliSpace AI-supported medical 

imaging k-t platform 

integrating various 

analysis tools

Philips (Ro-yal Philips, 

Amsterda, Netherlans)

Provides real-time data 

analysis and 

visualization to support 

diagnosis across 

multiple imaging 

modalities

Imaging data from 

20,000+ cases 

across multiple 

modalities (CT, 

MRI, ultrasound)

Available in clinical 

use

Precision medicine Tempus Combines clinical data 

with genomics to offer 

personalized treatment

Tempus (Tempus Labs, 

Inc., Chicago, USA)

Offers real-time data 

analysis to support 

clinical trials and 

patient treatment plans

Over 100,000 

clinical cases with 

combined genomic 

and clinical data, 

covering various 

cancers

Available in clinical 

use

Prognos Health Analyzes data to 

predict treatment 

responses and disease 

progression

Prognos Health 

(Prognos Health Inc., 

New York, USA)

Utilizes machine 

learning algorithms to 

generate prognostic 

models

30 million+ 

anonymized 

healthcare records, 

including claims, 

lab results, and 

medication data

Research stage; trials 

ongoing

Clinical trials C4AI AI platform for clinical 

trials, analyzing 

clinical data

C4AI (C4AI Ltd., 

Cambridge, UK)

Automates trial design 

and result analysis to 

enhance trial efficiency

5,000+ clinical trial 

records with patient 

demographics, 

treatments, and 

outcomes

Research stage; trials 

ongoing

(Continued)
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Application of AI in image recognition

Medical imaging provides most of the medical data, but image 
recognition in routine diagnoses mainly depends on manual analysis. 
This traditional recognition method is limited by subjective judgments 
of radiologists; hence misdiagnosis may occur. AI support in image 
recognition and disease diagnosis may play an important role in lesion 
discovery and significantly improve diagnostic efficiency: independent 
and smart extraction and mining of image information for better 
image recognition; automatic and intelligent interpretation of the 
images based on DL and simulating human neural network for better 
analysis. Here are some examples: S-Detect™, a new ultrasound 
system supplied by Samsung (a South Korea company), significantly 
improved diagnostic performance of inexperienced radiologists for 
malignant breast tumors using DL algorithm for lesion classification 
(Lee et al., 2019); a team of researchers from Harvard Medical School 
and Beth Israel Deaconess Medical Center tested GPT-4’s performance 
in diagnosis of challenging medical records, and they found that it 
provided correct differentiation in 64% of the cases and even best 
diagnosis in 39% of all (Kanjee et al., 2023).

PET/CT
[18F] fluorodeoxyglucose ([18F]FDG) positron emission 

tomography/computed tomography (PET/CT) has become a primary 
imaging modality in oncology, utilized for disease diagnosis, staging, 
re-staging, and monitoring therapeutic outcomes (Hu et al., 2021). A 

research team has developed an automated system for rapid 
assessment of [18F] FDG PET/CT image quality. The system’s image 
quality assessment results show high concordance with the ratings of 
experienced nuclear medicine physicians, with kappa coefficients 
indicating strong agreement across different anatomical regions. 
Additionally, the system-generated objective quality metrics (e.g., 
SUVmax, SUVmean) meet clinical accuracy standards (Qi et  al., 
2023). AI-enhanced PET radiomics can predict patient response to 
neoadjuvant chemotherapy (NAC) (Hathi et al., 2020). Moreover, AI 
tools applied to PET radiomics enhance the detection and 
characterization of lymph node and distant metastases, improving 
staging accuracy for breast cancer patients (Li et al., 2021).

Radiomics and radiogenomics
MRI radiomics is one of the most widely used techniques, with 

T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI), and 
dynamic contrast-enhanced MRI (DCE-MRI) as the commonly used 
sequences. Radiogenomics establishes models by extracting a large 
number of quantitative data from segmented images and correlating 
image features with pathophysiology and gene expression. With further 
development and progress of AI, radiogenomics is rapidly becoming a 
powerful new tool in precision medicine, and it may turn into a critical 
part in clinical treatment planning and prognosis judgment. Fan et al. 
(2017) pioneered in using 3D volumetric image features to classify 
molecular subtypes of breast cancer, and then discussed the relationship 
between DCE-MRI-based radiomic features and molecular typing of 

TABLE 1 (Continued)

Category Software 
name

Description Developer/
organization

Key features dataset size Availability 
status

Remote healthcare Biofourmis Combines remote 

monitoring with AI 

analysis to assess 

patient health status

Biofourmis (Biofourmis 

Inc., Boston, USA)

Monitors physiological 

data changes to provide 

personalized health 

recommendations

Real-time 

physiological data 

from over 10,000 

patients using 

wearable devices

Available in clinical 

use

Cancer screening GRAIL Liquid biopsy 

technology for early 

cancer detection using 

AI analysis

GRAIL (GRAIL Inc., 

Menlo Park, USA)

Analyzes blood samples 

to assess the likelihood 

of various cancers

Over 50,000 blood 

samples from 

patients, tested 

across multiple 

cancer types

Available in clinical 

use

Genius Cervical AI AI-assisted cervical 

cancer screening tool 

that analyzes cytology 

images

Genius Cervical AI 

(Hologic Inc., 

Marlborough, USA)

Provides high-accuracy 

cervical cell analysis for 

early detection

200,000+ cervical 

cytology images 

from clinical 

screenings

Available in clinical 

use

Health 

management

eHealth AI-based health 

monitoring and 

clinical decision 

support system

eHealth (eHealth 

Systems Ltd., Toronto, 

Canada)

Integrates various 

health data sources to 

provide comprehensive 

health management 

solutions

Aggregated data 

from over 10 

million health 

records, including 

lab tests and 

electronic health 

records

Available in clinical 

use

Clinical decision 

support

IBM Watson 

Health

Utilizes natural 

language processing 

and machine learning 

for clinical data 

analysis

IBM Watson Health 

(IBM Corporation, 

Armonk, USA)

Integrates data from 

multiple databases to 

support personalized 

treatment decisions

Access to 1.5 

million+ patient 

records across 

diverse medical 

conditions

Available in clinical 

use
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breast cancer; By extracting and analyzing the features in morphology, 
texture, statistics, dynamics and bilateral difference in DCE-MRI images, 
they succeeded in differentiation of breast cancers among four different 
molecular subtypes (luminal A, luminal B, HER2 and basal-like) (Fan 
et  al., 2017). Another team reported that a DCE-MRI-based 
comprehensive analysis of peritumoral and intratumoral radiological 
features of patients with invasive HER2+ breast cancer, helps in the 
identification of inherent molecular tumor subtypes and in the insight 
to the immune response within the environment around lesions, as well 
as in the prediction of responses to targeted therapy (Braman et al., 2019).

Image segmentation
The segmentation of medical images is essential in representation 

and visualization of relevant structures in the images. Bhanumurthy and 
Anne (2014) developed an automatic technique that uses AI to 
accurately detect cerebral MRI signals and segment the images for 
neoplastic, atrophic and other abnormal tissues. Since the first image 
recognition system based on convolution neural network (CNN) was 
proposed in 1995, breast-tumor segmentation using DL has been 
employed by many medical imaging applications (Conte et al., 2020). 
Rahimpour et al. (2023) developed a deep CNN using T1-weighted 
post-contrast and subtraction magnetic resonance imaging (MRI) 
techniques for automatic three-dimensional (3D) segmentation of breast 
tumors; their use of visual ensemble selection provided clinically useful 
segmentation in 77% of the cases, demonstrating the possibility in 
reducing radiologists’ manual 3D segmentation labor and in greatly 
promoting the quantitative research of non-invasive biomarkers from 
breast MRI. George and Sankaran (2020) introduced a decision-making 
scheme based on patch class probability (NucDeep + SVM + PD) for 
image-level classification. They evaluated the proposed framework on 
the publicly accessible BreaKHis dataset through five random trials, 
achieving a mean image-level recognition rate of 96.66% ± 0.77%, a 
specificity of 100%, and a sensitivity of 96.21%. Their proposed NucDeep 
+ FF + SVM model was found to be superior to several existing methods 
at the time and demonstrated comparable state-of-the-art performance 
even with low training complexity (George and Sankaran, 2020). Qi 
et  al. (2021) reported their work on nasopharyngeal carcinoma: 
detection by CNN on computed tomography (CT) scans followed by 
segmentation from MRI images using multimodal MRI fusion network.

Application of AI in tumor treatment

Medical treatment

With the background of a large number of data available from 
high-throughput sequencing, rapidly developing AI technology has 
provided oncologists with deeper insights into tumors, ushering in a 
new era of clinical oncology focused on precision treatment and 
personalized medicine.

Precision medical treatment
Precision medicine applies advanced medical techniques and 

proper biomarkers aiming at precise location of disease foci and 
optimal selection of treatment targets to tailor therapy regimen as per 
deep understanding of disease-specific manifestations and variations 
as well as individuals’ special conditions with the ultimate objective 
for the best efficacy. Different from personalized medicine, precision 

medicine features even more comprehensive considerations covering 
disease, medication and patient, rooting in more accurate analyses of 
disease characteristics and manifestation at a deeper level and in 
emphasizing even better application of medical technology during 
diagnosis and treatment, as well as in the best appropriateness of drug 
use. It is a consensus among the medical community that “precision 
cancer medicine” represents the trend (Mendelsohn, 2013). Predictive 
biomarkers help clinicians identify the patients with potentials to 
benefit from certain treatments and enable them make corresponding 
decision. In oncology, when a biomarker is proved to show statistical 
difference in therapeutic effect between the two patient populations 
with the biomarker positive versus negative, it is considered being 
predictive. For example, human epidermal growth factor 2 (HER2) 
can serve as a molecular marker, since its expression level in breast 
cancer, gastric cancer and other tumors predicts the efficacy of HER2 
targeted drugs (Swain et al., 2023); among non-small cell lung cancers 
(NSCLCs), epidermal growth factor receptor (EGFR) deletion of exon 
19 and its mutations in exon 21 are predictive for the use of EGFR 
tyrosine kinase inhibitors, such as osimertinib and erlotinib (Chan 
and Hughes, 2015). AI also presents some advantages for predictive 
or prognostic imaging biomarkers, since AI-aided analyses of imaging 
biomarkers are non-invasive, non-destructive, rapid, easily serializable 
and cheap, and because they only require conventional radiological 
scans (Verma et al., 2017), moreover they are fully compatible with 
existing clinical workflows, just like those of AI-aided pathological 
biomarkers (Bera et al., 2019). Trebeschi et al. (2019) established and 
validated a machine learning biomarker capable of predicting 
immunotherapy responders and non-responders, using AI-supported 
characterization of the primary and metastatic lesions of advanced 
malignant melanoma and NSCLC post-immunotherapy; in addition, 
the biomarker could characterize the tumors on the whole 3D volume, 
avoiding possible such sampling errors in heterogeneous biopsy 
samples as those reported in the literature (Cyll et al., 2017), and it was 
able to detect the changes of tumor microenvironment.

As another contributive approach in precision therapy and a 
new genetic testing method emergent in recent years, gene 
sequencing can be used to predict individual health by analyzing 
the whole sequences of genetic molecules with samples of personal 
blood or saliva, demonstrating positive effect in human health 
management. The value of gene sequencing lies in identifying one’s 
susceptible gene to guide cancer prevention and treatment (Chen 
et al., 2022). ML-assisted methylation sequencing of circulating 
tumor DNA provided advantages in cancer screening and treatment 
efficacy assessment (Fiala and Diamandis, 2019). For the first time, 
a research team applied DL to detect characteristics of multi-omics 
relevant to survival of patients with hepatocellular carcinoma 
(HCC); with their DL-aided model built on RNA sequencing, 
miRNA sequencing and TCGA methylation data together with 
clinical data from 360 HCC patients, they achieved prediction 
performance comparable to that derived from the combination of 
genomics and clinical data (Chaudhary et al., 2018). Cristiano et al. 
(2019) established an ML model incorporating genome-wide 
fragment characteristics to evaluate fragmentation pattern of cell-
free DNA in the whole genomic length, realizing sensitivities 
ranging from 57 to 99% + with the specificity at 98% and an overall 
area under ROC curve (AUC) of 0.94 among seven types of cancer, 
including bile duct, breast, colorectal, gastric, lung, ovarian, and 
pancreatic cancers; in 75% of the cases, fragment characteristics 
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could be used to determine tissues of cancer origin from limited 
number of foci (Cristiano et al., 2019).

Apart from gene sequencing, immunotherapy constitutes another 
important part of precision medicine. As to oncology, the main 
immunotherapy strategies include adoptive cellular immunotherapy, 
immune checkpoint monoclonal antibody therapy, vaccine therapy, 
non-specific immune stimulation (cytokine therapy). Despite the 
impressive progress in immunotherapy, obstacles and challenges are 
still in the way, including limitation in response rate and inability to 
predict efficacy and side effects (such as autoimmune response or 
cytokine release syndrome), thus hindering further application of 
immunotherapy in clinical practice (Zhang and Zhang, 2020). AI 
partly overcomes these problems and provides precise treatment by 
means of, for instance, evaluating efficacy of immunotherapy (Ao et al., 
2022), predicting patients’ prognosis and treatment response (Xu et al., 
2021; Wang et al., 2022), and distinguishing tumor subtypes to guide 
treatment (Zhu et al., 2023). Here are some particular examples: plasma 
cell subtyping with the help of an artificial neural network based on ML 
algorithm could provide an effective prognostic indicator for prostate 
cancer and be an option for potential responders to immunotherapy 
(Xie et al., 2022). With an ML algorithm, a classifier based on five hub 
gene was constructed to predict the stemness subtypes of patients with 
hepatocellular carcinoma in a more convenient and applicable way; it 
could not only act as a guide for further study of the mechanism 
between tumor stem cells and tumor microenvironment, but also as a 
potential method for selecting patients more responsive to 
immunotherapy (Chen et al., 2022). Zhu et al. (2023) used ML methods 
to identify colon cancer subtypes to provide guidance for subtype-
specific medication. Another study integrated ML and single-cell 
trajectory analysis of T cell depletion to establish a T-cell exhaustion 
score (TES) model for predicting disease prognosis and 
immunotherapy responsiveness in patients with colon cancer (Shen 
et  al., 2023). DNA methylation profile has been identified as an 
indicator of tumor immune microenvironment; because of its stability 
and convenient measurement via fluid biopsy, it becomes a potential 
hotspot for predicting therapeutic response to immune checkpoint 
inhibitors (ICIs). A research team used the methylation level of selected 
sites to construct an ML model for responsiveness prediction, and this 
model performed well at both pan-cancer and tumor-specific levels 
(Xu et  al., 2021). A team from Pohang University of Science and 
Technology proposed a ML framework that uses web-based analysis to 
identify biomarkers of ICI therapy, and therewith they accurately 
predicted the ICI response to melanoma, gastric and bladder cancers 
(Kong et al., 2022). For those patients being sensitive to immunotherapy 
drugs, ELISE (Ensemble Learning for Immunotherapeutic Response 
Evaluation) was proposed to generate a highly accurate method for 
predicting individual responses; the trial results showed that ELISE 
offered higher accuracy in predicting the response of esophageal 
adenocarcinoma patients to Atezolizumab; in addition, ELISE could 
be  scaled to accurately evaluate the responsiveness of various 
immunotherapeutic drugs among other cancers, like programmed 
death-1/programmed death-ligand 1 (PD1/PD-L1) inhibitors against 
metastatic urothelial cancer, and melanoma antigen family A3 (MAGE-
A3) immunotherapy for metastatic melanoma (Jin et al., 2022).

Drug research and development
The history of new drug research and development is also a history 

of technological evolution thereof, from random drug screening during 

1930s to 1960s, across high-throughput selection within 1970s to the 
early years in 21st century, and to current virtual exploration. 
Bioanalysis enhanced by ML provides inspires in mining 
characterization and association in biological networks, supplement to 
effective deal with high-throughput data of heterogeneous and complex 
molecules (You et al., 2022). Rapidly developing multi-omic technology 
in the oncological area has become one of the critical factors for 
AI-aided biological analysis in discovering new anticancer targets (do 
Valle et al., 2018). These techniques primarily manifest in the analysis 
of epigenetics, genomics, proteomics, and metabonomics as well as 
multi-omic integration. For example, do Valle et  al. (2021) have 
developed a web-based biological analysis framework to calculate the 
proximity between polyphenol targets and disease proteins; their study 
showing the network relationship between disease proteins and 
polyphenol targets provides a calculation method for revealing the 
effects of polyphenols on disease and offers a basis for finding new 
anticancer targets (do Valle et al., 2021). A supercomputer provided by 
International Business Machines Corporation (IBM) enables Atomwise, 
a US drug research and development company, to screen molecules 
with potential for drug development from a large-scale data storage 
system; relying on the AI platform “Interrogative Biology” built by 
itself, this research company makes an in-depth analysis of the defense 
system of human cells via the in vivo mechanism, and it explores the 
physiological law of human body with the help of big data and AI 
technology to find human molecules with therapeutic potential; while 
controlling costs and saving workload, this mode contributes to cancer 
therapy as well (Barden and Omuro, 2023). AlphaFold was awarded the 
2024 Nobel Prize in Chemistry. AlphaFold AI plays a significant role in 
drug discovery, particularly in protein structure prediction, target 
identification, virtual screening, drug design, and understanding 
mechanisms of drug resistance. First, AlphaFold can efficiently and 
accurately predict three-dimensional protein structures, which is 
critical for understanding the functions and interactions of drug targets 
(Jumper et al., 2021). In addition, by leveraging its structural prediction 
capabilities, potential drug targets can be  identified, especially in 
research focused on tumors and other complex diseases. The protein 
structure information provided by AlphaFold can also be applied to 
virtual screening, aiding in the rapid assessment of compound-target 
binding affinities. During drug design, its structural data can be utilized 
for molecular docking and drug optimization, enhancing the efficiency 
of new drug design (Baek et  al., 2021). Finally, by analyzing how 
mutations affect protein structure, AlphaFold assists in studying 
mechanisms of drug resistance, offering new insights into managing 
drug resistance (Zhao et al., 2024). AlphaFold continues to evolve, with 
AlphaFold 3 (AF3) extending its applications beyond protein structure 
prediction to encompass high-precision predictions for 59 types of 
complexes, including the structures and interactions of diverse 
biomolecules like nucleic acids and ligands. However, AlphaFold 3 still 
faces limitations in stereochemistry, model hallucination, dynamics, 
and target-specific accuracy (Abramson et al., 2024).

Surgical treatment

The application of AI in surgery is represented mainly in surgical 
decision-making, postoperative prediction and robotic surgery. As to 
the first aspect, here are some examples: The trial with AI plus 
multicenter registration data to predict disease-free survival rate 
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among participants with pancreatic cancer demonstrated that AI could 
provide a valuable decision support system for these patients going to 
receive surgery (Lee et  al., 2021). Neoadjuvant systemic therapy 
(NAST), though, achieved complete pathological remission in 40–70% 
of breast cancer patients, the uncertainty of the residual disease still 
makes it hard to identify patients who are eligible to omit surgery (Heil 
et al., 2021). This difficulty contributed to the birth of a multimodal ML 
algorithm (Intelligent Vacuum Assisted Biopsy (VAB)) that integrates 
four variables: patient, tumor, imaging and biopsy, and this algorithm 
proved its performance by reliable elimination of cancer if any left from 
NAST (Pfob and Heil, 2023; Pfob et al., 2022). For early gastric cancer, 
the biggest challenge in the selection between endoscopic resection and 
surgical excision is the differentiation of invasion depth as intramucosal 
or submucosal, but no existing accurate method is available (Sano et al., 
1990). To address this problem, an AI classifier was designed and 
validated, accordingly a diagnostic approach was fabricated involving 
both AI and endoscopists, and it truly improved the diagnostic 
efficiency (Goto et al., 2023). In terms of robotic surgery, it brings many 
advantages for surgeons, like accurate movement, instability resistance, 
large spatial freedom and potent three-dimensional imaging (Park and 
Hyung, 2020). For instance, Da Vinci, a robotic surgical system 
developed by Intuitive Surgical, timely provides doctors with objective 
and accurate surgical information (Nota et al., 2019). At present, robot-
assisted surgery has been used for endometrial cancer (Zanagnolo 
et al., 2017), thymoma (Shen et al., 2022), gastric cancer (Park and 
Hyung, 2020), colon cancer (Cuk et al., 2022), prostate cancer, bladder 
cancer (Falagario et  al., 2020) and so on, and it exhibits multiple 
advantages in both intraoperative and postoperative stages, i.e., less 
blood loss (Park and Hyung, 2020) and drainage during operation, and 
less days of pleural drainage, shorter hospital stay and less complications 
after operation (Shen et al., 2022). Finally, AI is promising in prediction 
of postoperative recurrence and survival rate. Chung Heewon’s team 
developed an AI model that used a large training cohort and a number 
of variables (including preoperative and postoperative nutrition and 
fat/muscle index) to predict 5-year survival probability of stomach 
cancer patients at 1 year post-gastrectomy, and they achieved generally 
accurate prediction (Chung et al., 2023); Lai et al. (2023) collected data 
from 2,936 patients to build a training set, developed an AI model 
TRAIN-AI to predict the recurrence of hepatocellular carcinoma after 
transplantation, and built a network calculator to improve the 
availability of the model; they planned further update of this AI model 
by increasing the number of patients (Lai et al., 2023). Provided proper 
application after strict assessment and external verification, AI may 
change surgical care by supporting surgical decision-making, 
identifying and mitigating changeable risk factors, identifying and 
managing complications, and sharing resource-use decisions (Loftus 
et al., 2020). However, surgical robots may prolong surgery duration 
and increase medical costs (Olavarria et al., 2020), requiring attention 
in further development and improvement.

Intelligent omics radiotherapy

Before making a radiotherapy plan, doctors may averagely take 
more than 200 CT images for each patient and spend 3–5 h to identify 
the target area. AI may lower the workload herein. Specifically 
speaking, an AI system first defines an imaging scheme proper for a 
particular confirmed diagnosis, then delineates the target tumor areas 

on CTs through automatic image recognition, and provides a 
corresponding radiotherapy plan to submit doctor for manual review; 
Moreover, AI can monitor the implementation of the plan during 
actual treatment (Liu and Yu, 2022). The application of AI in radiology 
has greatly improved the accuracy and safety of every step in cancer 
radiotherapy, including initial decision-making, treatment planning, 
and in-process dose adjustment, as well as efficacy evaluation and side 
effect prediction.

Radiotherapy decision-making
Developed by IBM with the help of top oncologists at Memorial 

Sloan Kettering Cancer Center (MSKCC), Watson for Oncology 
(WFO) is an AI-aided medical application that focuses on providing 
decision support in cancer treatment. It uses AI and cognitive 
computing technology in analyzing medical literature, patient records 
and other clinical information to help doctors make personalized 
cancer treatment plans. A meta-analysis evaluated the consistency of 
treatment regimens between WFO and multidisciplinary team (MDT) 
involving seven types (breast, rectal, colon, stomach, lung, ovary and 
cervical) of cancer and concluded that they were highly comparable 
(Jie et al., 2021). WFO features in improved work efficiency, reduced 
workload (Printz, 2017), lowered artificial calculation errors in both 
radiotherapy regimen and drug selection (Keiffer, 2015). It allows 
more patients participate in decision-making of their own treatment 
plan and know more about possible adverse effects, therefore being 
beneficial to alleviating physician-patient disputes (Fang et al., 2018). 
Nevertheless, due to variation in clinical guidelines, drug preference 
and economic factors among different countries, the consistency 
between WFO and MDT for cancer patients is limited in some aspect, 
showing requirements for further improvement of the system.

Delineation of organs at risk (OARs) and target 
areas

As a new type of radiotherapy, intensity-modulated radiotherapy 
(IMRT) provides accurate conformal radiation with beams at different 
intensity based on differentiation tumor target areas from OARs. 
Contouring or delineation is the premise and guarantee for efficacy 
and safety of radiotherapy. Manual delineation, the traditional way, is 
usually time-consuming and tedious, still with significant 
interobserver variation. So oncological researchers in the field of 
breast cancer (Mikalsen et al., 2023), prostate cancer (Urago et al., 
2021), cervical cancer (Yao et  al., 2022) and the like have been 
exploring the feasibility of clinical utilization of AI in contouring 
tumor target and OARs. Mikalsen et al. (2023) prospectively included 
30 patients who received radiotherapy for breast cancer to evaluate the 
geometric consistency between automatic segmentation and manual 
contour. Their verification showed that the profile of OARs generated 
by the DL segmentation model (DLS) could be  used in clinical 
practice, but most of the clinical target volume (CTV) according to 
the DLS required correction. Urago et  al. (2021) compared MIM 
Maestro (based on atlas) and MIM Contour Protégé AI (based on 
artificial intelligence) in automatic segmentation of OARs for 21 
patients with prostate cancer. Their work showed that the AI-based 
model rendered higher accuracy in bladder and rectum than three 
atlas-based ones: Dice similarity coefficient (DSC), Hausdorff distance 
(HD) and mean distance to agreement (MDA) (Urago et al., 2021). 
Yao et al. (2022) studied the application of both AccuLearning-based 
small sample size training and the AccuContour automatic delineation 
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in MRI imaging of patients with cervical cancer; compared to manual 
procedure averagely lasting 30 min, AI technique spent only 1 min, 
and the latter displayed good performance for multiple structures; the 
result suggested that the smart approach is clinically feasible to 
improve the quality and efficiency in segmentation of OARs related to 
radiotherapy against cervical cancer (Yao et al., 2022). Another team 
tried AccuContour for automatic delineation of OARs in 
nasopharyngeal carcinoma subject to radiotherapy, and they found 
that this AI-aided software basically worked well, and that the results 
of small volume OARs, although with an accuracy slightly poor than 
that of larger volume ones, could be used in clinical work after minor 
rectification by doctors (Wu et al., 2021). All these above verified that 
AI-assisted radiotherapy greatly improves the work efficiency of 
doctors and enjoys fairly good accuracy. However, some limitations in 
AI application are also indicated by these studies as follows: (1) small 
sample size for training; (2) dataset annotation and delineation criteria 
with variation dependent on local preferences and institutional 
standards; (3) challenged interpretability and data dependence of the 
models because of inherent complexity of basic algorithms; and (4) 
risks of weakening clinicians’ role and losing some basic knowledge 
due to over-dependence on automation (Batumalai et al., 2020).

Conclusion

Artificial intelligence has remarkably achieved in medical image 
analysis and pathological diagnosis. Its deep learning technology enables 
automatic identification and analysis of patterns from tumor images, and 
it improves early diagnosis of tumors, contributing to reduced burden of 
medical system and alleviated shortage of medical resources. In addition, 
AI stands out for its performance in tumor treatment planning and in 
provision for doctors with more suitable advice on the ground of accurate 
analysis of clinical data to formulate individual regimens, and in turn it 
improves therapy success rate, cancels unnecessary treatment to reduce 
economic burden of patients, and ultimately it realizes precise medical 
care. In spite of its great progress in tumor diagnosis and treatment, AI 
still faces some problems and challenges that may affect its application in 
practice: (1) sample data imbalance: relatively poor availability of data for 
some types of tumor resulting in the imbalance of samples used for 
training AI; (2) data privacy and security issues; (3) poor interpretation: 
being regarded as “black box” models, complex AI techniques such as 
deep learning are usually difficult to be explained for their rationale in 
decision-making. In the field of medicine especially in the diagnosis and 
treatment of tumors, healthcare professionals and patients prefer to 
understand the mechanism leading to certain specific diagnosis or 
treatment recommendations. Therefore, lack of exact interpretation of the 
models may limit their practical application; (4) challenges in clinical 

verification; (5) regulatory and ethical issues. To sum up, the application 
of AI in tumor diagnosis and treatment has brought revolutionary 
changes in the field of medicine, but still companied by some problems 
requiring settlement to ensure its effectiveness and reliability in real-world 
clinical practice.
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