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Introduction: Advancements in machine learning (ML) algorithms that make

predictions from data without being explicitly programmed and the increased

computational speeds of graphics processing units (GPUs) over the last decade

have led to remarkable progress in the capabilities of ML. In many fields,

including agriculture, this progress has outpaced the availability of su�ciently

diverse and high-quality datasets, which now serve as a limiting factor. While

many agricultural use cases appear feasible with current compute resources

and ML algorithms, the lack of reusable hardware and software components,

referred to as cyberinfrastructure (CI), for collecting, transmitting, cleaning,

labeling, and training datasets is a major hindrance toward developing solutions

to address agricultural use cases. This study focuses on addressing these

challenges by exploring the collection, processing, and training of ML models

using a multimodal dataset and providing a vision for agriculture-focused CI to

accelerate innovation in the field.

Methods: Data were collected during the 2023 growing season from three

agricultural research locations across Ohio. The dataset includes 1 terabyte (TB)

of multimodal data, comprising Unmanned Aerial System (UAS) imagery (RGB

andmultispectral), as well as soil andweather sensor data. The two primary crops

studied were corn and soybean, which are the state’s most widely cultivated

crops. The data collected and processed from this study were used to train ML

models to make predictions of crop growth stage, soil moisture, and final yield.

Results: The exercise of processing this dataset resulted in four CI components

that can be used to provide higher accuracy predictions in the agricultural

domain. These components included (1) a UAS imagery pipeline that reduced

processing time and improved image quality over standard methods, (2)

a tabular data pipeline that aggregated data from multiple sources and

temporal resolutions and aligned it with a common temporal resolution, (3)

an approach to adapting the model architecture for a vision transformer (ViT)

that incorporates agricultural domain expertise, and (4) a data visualization

prototype that was used to identify outliers and improve trust in the data.
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Discussion: Further work will be aimed at maturing the CI components and

implementing them on high performance computing (HPC). There are open

questions as to how CI components like these can best be leveraged to serve

the needs of the agricultural community to accelerate the development of ML

applications in agriculture.

KEYWORDS

precision agriculture, multimodal data, machine learning, Unmanned Aerial Systems,

crop phenotyping, cyberinfrastructure

1 Introduction

In recent years, there has been a surge in interest across

various domains in leveraging machine learning (ML) techniques

to tackle complex, long-standing challenges. While technically a

subfield of artificial intelligence (AI), the two terms, AI andML, are

often used interchangeably. ML is a branch of AI that focuses on

developing algorithms and models that enable computers to learn

from and make predictions or decisions based on data, without

being explicitly programmed for specific tasks. AI refers to the

broader field of creating systems ormachines capable of performing

tasks that typically require human intelligence and can include

both rule-based systems that are explicitly programmed as well as

learning-based systems like ML. In this article, we will specifically

use the term ML for clarity and consistency. Since 2012, ML

techniques have achieved remarkable milestones across multiple

domains, such as AlexNet’s victory in the ImageNet competition

(Krizhevsky et al., 2012) and the introduction of the transformer

architecture in 2017 (Vaswani et al., 2017). These milestones have

propelled ML into unprecedented popularity.

This growing recognition of ML’s potential has led experts in

various domains to explore its applicability to their most daunting

challenges. However, while the latest ML approaches are powerful,

they perform best with extensive, high-quality datasets which are

often expensive and labor-intensive to collect (Whang et al., 2023).

Existing public datasets in agriculture, though useful, are often

insufficient to harness the latest advances in model complexity

and compute resources. Further, the process of collecting and

processing agricultural data for ML faces numerous challenges,

including sensor failures, data pipelines, and data privacy concerns.

The notion that data harnessed from agriculture, coupled with

the latest advancements in ML, can significantly enhance both

the profitability and sustainability of farming practices is not

novel. Indeed, the agricultural industry’s dominant players in seed,

chemicals, fertilizer, and equipment along with tech companies and

startups have invested heavily in farm management information

systems (FMIS) to serve farmers. While many of these systems

are focused on providing accurate records of past events, falling

into the realm of descriptive analytics, there are increasing efforts

to include predictive and prescriptive analytics into these software

platforms using ML.

For example, Microsoft’s Farmbeats project (Kapetanovic et al.,

2017), launched in 2014, focuses on data-driven farming by

integrating various data sources, like field sensors and UAS, to

provide insightful analytics through computer vision and machine

learning algorithms. It establishes an end-to-end Internet of Things

(IoT) infrastructure for efficient data collection and utilizes TV

white spaces for transmitting data to computing centers, thus

enabling advanced data analytics, and, in turn, empowering farmers

to enhance productivity and sustainability (Chandra et al., 2022).

Another example is Mineral, originating from Google/Alphabet’s X

facility, which claims to have surveyed 10% of the world’s farmland

and developed 80 machine-learning models to boost production

and mitigate agriculture’s impact on the environment (Burwood-

Taylor, 2023).

The creation of large-scale, high-quality multimodal datasets,

carefully curated and made ready for ML applications, can

significantly advance predictive and prescriptive analytics in

agriculture. These datasets encompass spatial, spectral, and

temporal dimensions. Spatial intensity refers to ground sampling

distance (GSD) measured in centimeters or meters per pixel.

Spectral resolution refers to the number of wavelength intervals,

while temporal denotes the frequency of data collection. Gadiraju

et al. (2020) demonstrated a 60% reduction in prediction error

by using a multimodal deep-learning approach that leveraged

spatial, spectral, and temporal data characteristics to identify crop

types. This involved integrating a Convolutional Neural Network

(CNN), often used for analyzing images, with spatially intensive

data and a Long Short-Term Memory network (LSTM), often used

to analyze text corpora, with highly temporal data. Presently, there

is a growing research focus on data-driven agriculture systems

that involve deploying a diverse array of IoT sensors for vast

data generation and Big Data Analytics on these datasets (BDA)

(Ur Rehman et al., 2019). This trend holds promise for enabling

farmers to make more profitable and environmentally sustainable

farming decisions. Furthermore, edge-cloud architectures (Taheri

et al., 2023) can enhance real-time decision-making by hastening

data processing.

In addition to the importance of data quantity, it is crucial to

consider data quality prior to processing and incorporating data

intomodel pipelines. The utilization of data quality indicators, such

as data source, collection time, and environmental conditions, can

serve to flag datasets with undesirable traits (Wang et al., 1993).

These considerations underpin the critical role of data quality in

agriculture’s data-intensive domains.

The objective of this manuscript is to outline a vision for

software and hardware infrastructure, or cyberinfrastructure (CI)

that is oriented toward serving agricultural use cases.To illustrate
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the envisioned CI vision, we focus on three concrete and illustrative

use cases: predicting soil moisture, crop growth stages, and yield.

Examples of CI elements discussed in this paper include approaches

to processing of Unmanned Aerial Systems (UAS) imagery that

are optimized to reduce processing time, retain image quality,

and increase spatial accuracy; use of application programming

interfaces (API) to aggregate structured weather and in-situ sensor

data; Vision Transformer (ViT) models adapted for agricultural

use cases; and an interactive data visualization prototype to view

geospatial data at various stages of the ML pipeline.

This proposed CI aims to facilitate the collection and processing

of agricultural data at scale by providing a framework for reusable

CI elements like those shared above that can run on a spectrum of

hardware architectures from high performance computing (HPC)

to edge processing.

While it is important to share these concrete examples, a

more expansive vision is that a vibrant community sharing and

exchanging CI components like these can create leverage that

lowers the efforts to building the requisite datasets needed and

subsequent creation of ML applications in agriculture, accelerating

the training and inference of ML models that are ultimately used

for the benefit of farmers and other stakeholders in agriculture.

2 Vision

Many agricultural use cases now appear to be within the

capabilities of current compute resources and ML models.

However, the lack of CI dedicated to the collection, transmission,

cleaning, exploration, labeling, and training of the datasets

(hereafter referred to as data pipelines), along with the challenges of

deploying these solutions onto edge and intelligent sensing devices

for inference are a major hindrance toward the development

of solutions to address these use cases. Given the ongoing

advancements in theML community at large and the focused efforts

within both agricultural industry and academia, we advocate for

a vision to build publicly available agricultural datasets and the

development of associated open source ML-centric CI. This CI

would support the tools and resources necessary for agriculture-

focused data pipelines. A vibrant open source community focused

on CI and datasets for ML applications in agriculture (AgCI) has

many positive benefits including:

1. Amplifies the efforts of agricultural researchers by reducing

the time needed for building and debugging data pipelines,

ultimately increasing the quality and quantity of their outputs

and their extension efforts to farmers.

2. Connects computer science researchers with meaningful

prevailing problems in the agricultural domain.

3. Lowers the capital requirements for startups to get to product

market fit for ML based products and services in agriculture by

leveraging open source software and datasets.

4. Enables positive economics for ML-based products for more of

the long-tail of agricultural commodities beyond the dominant

crops of corn, soybean, and wheat.

There are several companies that provide CI and other tooling

to support ML initiatives in general. This includes the big three

cloud providers (AWS, Azure, GCP) as well as companies such

as HuggingFace, Kaggle, and Scale AI. However, the needs of

agriculture are unique and can benefit from CI that is focused on

salient agricultural use cases. There are several reasons for this

assertion:

1. There are very few publicly available datasets of sufficient size

and quality focused on agricultural use cases. Two examples

are PlantVillage (J and Gopal, 2019) and a corn nitrogen

research dataset (Ransom et al., 2021). PlantVillage contains

61,486 images comprising 39 different classes healthy and

diseased plants. Its images are often taken in controlled

settings with artificial backgrounds and may not be suitable

for large-scale in-field inferencing. The lack of environmental

context in these images limits their effectiveness in real-

world agricultural settings, where factors such as background

variability, lighting, and natural surroundings play a crucial

role in model performance. The corn nitrogen research dataset

contains 49 site-years from 2014–2016 across eight U.S.Midwest

states. While these datasets are valuable for machine learning

applications, they are limited in size and scope. However,

there are many universities worldwide that collect volumes of

agricultural data which if put in the right form, could be a

tremendously valuable resource for ML model training.

2. The pipelines for collecting, transmitting, cleaning, and

transforming agricultural data into formats ready for ML

are labor-intensive and error-prone. Furthermore, agricultural

researchers in many instances may not possess the data

management and software development skills to effectively and

efficiently perform these necessary tasks.

3. On-farm and small-plot research can be a rich source for

training data. However, the collected ground truth labels may

need to be modified to make them more suitable for ML model

training. Furthermore, the approach for splitting the dataset

into training, testing, and validation needs to consider the

replications in the dataset. Failure to understand this could lead

to data leakage where the test set performance is artificially

improved because there are replicates from the same treatment

in both training and test sets.

4. Commonly used ML models may need modifications to suit

agricultural data. For instance, image-basedMLmodels typically

use a softmax layer as the final layer for classification. In

agriculture, many outputs are measured on continuous scales,

such as crop growth stages, disease severity, soil moisture,

nutrient deficiency, and yield. Therefore, it might be valuable

to evaluate both classification and regression-based approaches

to determine which approach provides the best results for the

specific use case.

For the reasons stated above, ML-amenable CI that leverages

the capabilities in the ML community at large while adapting it for

common use cases in agriculture has the potential to accelerate the

benefits of ML in agriculture. With these benefits in mind, here are

several core principles that guide our efforts to build AgCI that can

enable more impactful ML applications in agriculture:

1. Data collection and CI efforts need to co-inform each other and

should happen concurrently.
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2. The speed for both training and inference are critical measures

of value. Speed represents a holistic view that includes latency

starting from the point at which data is collected in the field to

the point where actionable insights are generated.

3. The CI should be capable of connecting to high-performance

computing (HPC) to accelerate training and inference times.

4. The CI must incorporate the latest approaches and models from

the broader ML community. Vision Transformers (ViT) (Han

et al., 2023), semi- and weak-supervised labeling techniques

(Sohn et al., 2020), and metadata formats (MLCommons,

2024) are examples. ViT techniques provide better adaptability,

efficiency, and scalability, compared to traditional ML

approaches that typically struggle with complex or spatially

diverse agricultural imagery. Similarly, semi-and weak

supervised labeling techniques allow models to learn from a few

labeled images by leveraging unlabeled or weakly labeled data.

In cases where labeled datasets are scarce and can be expensive

to produce, this reduces the cost and time required in data

annotation. Lastly, ML metadata formats such as Croissant seek

to promote the discoverability and reusability of ML datasets.

5. The CI needs to be easy to use, trustworthy, and consider the

range of technical proficiencies of potential users in agriculture.

It also needs to include interfaces that provide transparency

into the “black box” of ML and build confidence in its results.

Figure 1 depicts a vision of themapping of platform components

to platform users.

The elements for AgCI are listed in Figure 2. It includes: (1)

Data Collection/Preprocessing pipelines to turn raw data into ML-

ready data structures. Imagery from unmanned aerial systems

(UAS) and smartphones, along with tabular data from weather

stations and IoT sensors, were utilized in the selected use case; (2)

ML Model Architecture Development which includes repositories

of untrained models, such as ViTs, CNNs, and XGBoost, that

have been optimized for agricultural use cases; (3) Repositories of

Trained Models; and (4) Inferences/recommendations generated

from trained ML models. A User Interface is important for

each step. Two important use cases for a User Interface

are Data Visualization to provide human feedback that Data

Collection/Preprocessing pipelines have correctly transformed the

data and Job Scheduling to schedule and initiate jobs for different

elements of the workflow. Lastly, our vision is that these elements

need to be built on a high-performance computing (HPC)

backbone to reduce the time needed for ML model training and

inference on sizable datasets.

It is important that visions be grounded in reality and informed

by continuous testing and feedback. Collins (2001) highlights

this in Good to Great, emphasizing the importance of embracing

the Stockdale Paradox by confronting the brutal facts while

maintaining faith in the end goal. Similarly, Ries (2011) advocates

in The Lean Startup for the importance of validated learning as

a tool to make constant adjustments to a vision. While these

books advocated approaches for companies, we think they also

have valuable application for the subject matter of this paper. With

that in mind, the following sections highlight our experiences in

building data pipelines for three important use cases in agriculture,

namely yield estimation, growth stage prediction, and soil moisture

prediction, and serve as an important source of feedback in refining

our vision for AgCI. While the paper focuses on learnings from

three specific use cases, we believe our vision for AgCI can be useful

for a much broader range of agricultural use cases that can benefit

fromML approaches.

We note that the proposed vision in this manuscript is

particularly relevant to those land-grant universities in the United

States who were formed via the Morrill Land-Grant Acts of 1862

and 1890 “to teach such branches of learning as are related to

agriculture." This mission was strengthened via the Hatch Act of

1887 that established funding for agricultural experiment stations

and the Smith-Lever Act of 1914 that established the Cooperative

Extension Service as a means of “diffusing among the people of

the United States useful and practical information on subjects

relating to agriculture." While the authors of these legislative acts

could not possibly have imagined the advancements in agriculture

that would have happened over the last 150 years, our vision of

establishing AgCI strongly aligns with the foundation they laid

of establishing land-grant universities with a mission to promote

agricultural advancement for the benefit of society.

3 Materials and methods

3.1 Initial data types

The initial data sources that provide feedback to our

AgCI efforts originate from three agricultural research stations

geographically dispersed across Ohio and operated by The

Ohio State University (OSU). They include Western Agricultural

Research Station in Clark County, Northwest Agricultural Research

Station in Wood County, and Wooster Campus in Wayne County.

Each site included 80 plots for corn and 80 plots for soybean. The

experiment was a split-plot randomized complete block design with

four replications of each treatment. Main plot factor included five

planting dates spaced approximately every 2 weeks frommid-April

to mid-June. Figure 3 shows an excerpt of the plot map for the

corn plots inWestern Agricultural Research Station. Figure 4 shows

plots from Northwest Agricultural Research Station overlaid on an

orthomosaic processed from UAS imagery.

The subplot factor for corn consisted of four hybrids with

four different relative maturities (100-, 107-, 111-, and 115-

day), while the subplot factor for soybean involved four seeding

rates (247,000; 345,800; 444,600; and 518,700 seeds per hectare,

equivalent to 100,000; 140,000; 180,000; and 210,000 seeds per

acre, respectively). Each replicate included a border plot on both

ends of the block to reduce any edge-of-field effects on the

measured plots. Furthermore, yield measurements were based on

the center two rows (out of four) for corn and the center five

rows (out of seven or eight) for soybean. The research plots

were managed according to agronomic best management practices

for soybean (Lindsey et al., 2017) and corn (Thomison et al.,

2017) outside of the main plot and subplot factors. Figure 5 is a

summary diagram that shows initial data types collected and initial

use cases.

In total, ×1 terabyte (TB) of data were collected, with the vast

majority of that being from UAS imagery. While a dataset size of

1 TB may not be considered extensive according to contemporary

standards, it signifies a substantial investment in terms of time
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FIGURE 1

Mapping of cyberinfrastructure (CI) platform components to users.

FIGURE 2

Description of important elements in AgCI.

and labor in the agricultural domain. The individual data types are

enumerated below.

3.1.1 Unmanned Aerial Systems imagery
The aerial image collection was facilitated using a Wingtra One

Unmanned Aerial System (UAS), equipped with both a 42MP RGB

camera, the Sony RX1R II, and a Micasense Altum Multi-spectral

camera featuring six spectral bands: Red, Green, Blue, Red-edge,

Near Infrared, and Thermal Infrared. Flight missions for the Sony

RX1R II were conducted at an altitude of 50 m above ground

level (AGL), resulting in a ground sampling distance (GSD) of

0.008 m/pixel. The Micasense Altum was flown at 70 m AGL,

resulting in a GSD of 0.047 m/pixel. Flight missions were executed

at approximately weekly intervals throughout the entire growing

season, beginning in May 2023 and culminating with the final

flights in mid-October 2023 shortly before harvest. This strategy

resulted in a total of between 13 and 16 flights per site for each

camera. Each flight mission generated hundreds of images covering

the corn and soybean plots at each research location.
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FIGURE 3

Portion of corn plot map for Western Agricultural Research Station.

FIGURE 4

Plots from Northwest Agricultural Research Station overlaid on orthomosaic from UAS imagery.

3.1.2 Structured soil and climate data
3.1.2.1 In-situ soil and weather sensing data

An array of soil sensors was deployed at two depths, specifically

at 30 and 60 cm, within the corn and soybean plots for both

Planting Date 2 (26-27 April 2023) and Planting Date 4 (25–30May

2023) at all three research locations. These soil sensors included

Teros 12 (volumetric water content (VWC), soil temperature (ST),

and electrical conductivity (EC)) and Teros 21 (matric potential

(MP)) sensors at 30 cm depth and Teros 11 (VWC and ST) at

60 cm depth. Additionally, one Apogee SQ-521 photosynthetic

active radiation (PAR) sensor and one Meter ATMOS 14 weather

station were installed at each of these research sites. The ATMOS

14 weather stations collected temperature, relative humidity,

vapor pressure, and barometric pressure in the crop canopy. The

installation of these sensors occurred at all three sites in early June

2023 and collected data until shortly before harvest in mid-October

2023 at a 30-min temporal resolution.

The data collected by these sensors were aggregated by a total

of six data loggers, with two loggers allocated at each research site.

These loggers were connected to the Meter Group’s Zentra Cloud,

a data management and visualization platform. Data visualization

was available through user-configurable dashboards on the website

and data were also accessible via an application programming

interface (API).

3.1.2.2 Weather station data

At each of the research locations, an OSU managed weather

station collects precipitation, wind speed, and air temperature at

multiple heights, which is accessible at weather.cfaes.osu.edu. In

addition, the website also provides calculated daily values such as

heat units, commonly expressed as Growing Degree Days (GDD),

using the following formula (McMaster and Wilhelm, 1997):
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FIGURE 5

Summary of initial data types and use cases.

GDD =

(

Tmax + Tmin

2

)

− Tbase

The base temperature for corn is typically set at 10◦C. The

accumulation of GDD over the growing season is widely used in

predicting corn growth and development (sometimes referred to as

heat units accumulation). The weather data is available year-round

at both 5-min and daily temporal resolution for a number of OSU

research locations including the three that were part of this study.

This study used the daily temporal resolution data.

3.1.2.3 Soil testing data

At the beginning of the growing season in May 2023, standard

soil chemistry and soil texture tests were conducted for each

location. Soil chemistry tests provide values of the concentrations

of various nutrients, percentage of organic matter (OM), and cation

exchange capacity (CEC). Soil texture tests measure the percentage

of sand, silt, and clay. On an approximately weekly basis coinciding

with the UAS flight missions, nine soil samples were taken from

each plot at a depth of 15 cm corresponding to the locations of

the in-situ soil and climate sensors. These samples were aggregated

together for each plot and submitted to a soil testing laboratory to

measure plant-available nitrogen content, consisting of nitrate and

ammonium, as well as CO2 respiration reported in mg/kg as an

indication of the rate of nitrogen mineralization of organic matter.

3.1.2.4 Ground-truth data

Similarly, weekly site visits from May to October 2023 were

conducted at all three research locations by personnel from the

OSU’s Department of Horticulture and Crop Science (HCS).

These individuals possessed expertise in the classification of

corn (Hanway, 1963) and soybean (Fehr et al., 1971) growth

stages as well as proficiency in assessing disease incidence and

quantifying disease severity. Furthermore, ears of corn and whole

soybean plants with pods were collected at harvest for detailed

measurements of the components of yield such as kernel rows,

kernels per row and kernel weight in corn and seeds per pod, pods

per plant, and seed weight in soybean. The data generated from

these site visits will be the labels for several ML use cases derived

from this data set.

3.2 Initial use cases

3.2.1 Growth stage prediction
Growth stages are an objective way to track the progress of corn

and soybean from emergence through to maturity. The availability

of water and nutrients in each growth stage can be an important

predictor of yield. Furthermore, certain treatments for plant disease

can be more effective if applied during certain growth stages. While

temperature-based calculations such as GDD accumulated since

planting date can be used as a way to estimate growth stages, in

some cases, the planting date may not be known. Additionally,

drought stress or time of the year at which the crop is planted

(Nielsen, 2022) can reduce the accuracy of GDD-based growth

stage predictions. With the increasing prevalence of UAS-based

imagery, this use case focuses on the use of Vision Transformers

(ViT) to estimate growth stage from UAS images. We used both

classification and regression-based approaches to predict 16 growth

stages in corn from V1 to R5.

3.2.2 Soil moisture
Soil moisture is an important attribute for both rainfed

and irrigated crops. The flow of water via transpiration from

the roots through to the stomata is a necessary requirement

for photosynthesis and is also the transport mechanism for

important nutrients such as nitrogen, phosphorus, and potassium.

Furthermore, the water balance in the soil has a strong influence

on the soil nitrogen budget and optimum nitrogen fertilizer rates.

Understanding soil moisture is valuable, therefore, for informing

nutrient management and estimating yield. This use case seeks to
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predict soil moisture for different soil textures based on weather

and crop growth stages.

The approach used a Long Short-Term Memory model to

predict the daily change in volumetric water content and thus

predict a running account of total volumetric water content in the

soil.

3.2.3 Yield estimation
Yield estimation is valuable in-season for informing farmers’

grain marketing decisions. If they have a better estimate of their

yield, they can choose to lock-in pricing for a greater amount of

their harvest. Furthermore, estimates of yield potential during the

growing season can inform the profitability of field treatments such

as nitrogen and fungicide applications. In this approach, we used a

Long Short-Term Memory architecture to predict yield across 228

plots at the three research locations using a leave one out (LOO)

cross-validation approach for the five planting dates (Waltz et al.,

2024).

While the yield estimation model used the actual ground truth

labels for growth stage and running averages of precipitation as

inputs, Figure 6 shows how the three use cases could be combined

in the future with interconnected ML models to estimate yield

in a more integrated fashion that would be more amenable to

being deployed at scale. The results of soil moisture and growth

stage ML models can be combined with growing degree days

and photosynthetic active radiation during the growing season to

estimate yield.

4 Results

This section outlines the creation of CI components that

are important for developing the use cases in Section 3.2. This

includes an imagery and tabular data pipeline, a modified ViT

model architecture better suited to agricultural data, and a data

visualization prototype to improve trust and identify outliers in

the dataset. While these CI components are important for three

identified use cases, there are many other agricultural use cases that

could potentially benefit from these CI components.

4.1 UAS imagery pipeline

Over the course of the 2023 growing season, a total of 85 flight

missions were conducted. These missions included flights across

three research locations utilizing two payload sensors, namely

RGB and multi-spectral. Making use of commercially available

products, our UAS-based data acquisition relied on the use of

Secure Digital (SD) cards to store images captured during UAS

missions and subsequently transferred to a hard drive, where

proprietary software was utilized to geotag images from either the

nearest Continuously Operating Reference Station (CORS) or an

on-site Global Navigation Satellite System (GNSS) receiver. CORS

generate correction signals, including Virtual Reference Station

(VRS) signals, which are used to improve GNSS receiver position

accuracy. This can be achieved through Real-Time Kinematic

(RTK) or Post-Processed Kinematic (PPK). The Wingtra One

utilized PPK to improve the spatial accuracy from meter to

centimeter level accuracy.

Our initial approach used Pix4D, a commercial

photogrammetry software provider, to generate orthomosaics

from each flight. Specifically, Pix4Dengine, a set of programming

modules, facilitated the automation of the orthomosaic creation

through a Python script. Our data pipeline also involved the

creation of plot boundaries in the form of polygon shapefiles (.shp)

corresponding to the geographic coordinates of each plot. These

shapefiles were used as a mask to create images for each plot from

each flight.

During this process, we experienced several challenges. First

was that the orthomosaic creation was a lengthy process, generally

taking 4–6 h to complete. This corresponded to ×25 min of

processing time per hectare. Secondly, the stitching process caused

degradation in the resulting orthomosaic’s image quality, partially

due to motion artifacts caused by the movement of corn and

soybean plants in overlapping regions of successive images. Lastly,

in our first attempt to create orthomosaics, we experienced roughly

10% of the orthomosaics were incomplete and did not cover the

entire plot area. While we were able to get these orthomosaics

to cover the entire area by adjusting the settings on Pix4D, this

process increased processing time from 4–6 h to 1–2 days. Figure 7

illustrates the degradation in image quality that can occur while

generating an orthomosaic.

Since the settings required to generate orthomosaics involved

lengthy processing times and yet the resulting image quality was

often significantly degraded from the underlying raw image, an

alternative approach was developed with the primary goal of

retaining the original image quality.

The new approach utilized a technique called direct

georeferencing that utilizes the translational (latitude, longitude,

and altitude) and rotational (roll, pitch, and yaw) orientation of the

UAS that is associated with each geotagged image to georeference

each image individually. While this approach improved image

quality and reduced processing time, it came at the expense of

reduced geospatial accuracy from a mean error of 0.003 m to 0.5

m. While this accuracy would be suitable for training data from

on-farm research where treatment sizes are typically >12 m wide

by 100 m long, it was not suitable for small-plot research with

typical plot sizes of 3 m wide by 10 m long.

To address this reduced geospatial accuracy, we added a step

of image registration where the direct georeferenced image was

registered against the orthomosaic. This resulted in a georeferenced

image that achieved a mean error of 0.06 m that was suitable for

small-plot research.

Figure 8 illustrates the three approaches that were evaluated to

generate georeferenced plot images corresponding to agronomic

treatments in small-plot research trials. Table 1 compares the

three approaches with performance metrics of processing time,

geospatial accuracy, and image quality.

The new pipelines designed for automated creation of tiles

for each plot represent improvements over the orthomosaic

baseline approach. The Direct Georeferencing Pipeline results in an

eight-fold improvement in processing time while simultaneously

eliminating stitching artifacts that degrade image quality. While
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FIGURE 6

Interconnected machine learning models for yield estimation.

FIGURE 7

Illustration of degradation in image quality comparing orthomosaic to original image.

there is a decrease in geospatial accuracy, this approach is well-

suited to on-farm research where a 0.5 m accuracy is acceptable.

For small-plot research where higher geospatial accuracy is

needed, the Image Registration Pipeline is able to eliminate the

stitching artifacts that degrade image quality while achieving

similar geospatial accuracy and processing times from the

Orthomosaic Pipeline. The improved image quality is expected

to boost the accuracy of machine learning models, while

faster processing time makes both training and inference

more efficient.

In addition to the quality and processing time improvements,

automated pipelines eliminate the human bottleneck that is often

the largest contributor to the latency from the point of image

collection to those images being available for ML training.

4.2 Soil and weather structured data
pipeline

The Soil and Weather Structured Data Pipeline aggregates

structured data from three separate sources (soil sensors, weather

stations, and soil lab tests) into a database as shown in Figure 9.

This pipeline harnessed data from in-situ field sensors,

including soil volumetric water content, soil matric potential,

photosynthetic active radiation, temperature, and relative

humidity. These sensors were connected to Meter ZL6 loggers,

which recorded data at 30-min intervals. Subsequently, the

collected data was transmitted to the Meter Zentra Cloud

through cellular connections. A Python script was employed

to interface with the Zentra Cloud application programming
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FIGURE 8

Illustration of portfolio of approaches to process UAS imagery into ML ready images including Orthomosaic (OM-based), Image Registration

(IR-based), and Direct Georeferencing (DGR-based).

TABLE 1 Comparison of UAS image processing performance using di�erent pipelines.

Metric Orthomosaic pipeline
(baseline)

Direct georeferencing
pipeline

Image registration
pipeline

Application On-farm research Small-plot research

Processing time from raw images to plot tiles ∼ 25min/ha ∼ 3min/ha ∼ 30min/ha

Geospatial accuracy (mean error) 0.003 m 0.5 m 0.06 m

Image degradation Stitching artifacts Minimal Minimal

FIGURE 9

Soil and weather structured data pipeline.

interface (API) to retrieve the data and aggregate it into a

local database.

Additionally, the pipeline incorporated data fromOSUweather

stations, which were located at each research site near the

field plots. The data generated by these weather stations was

accessible via a web interface, allowing for convenient querying

and retrieval.

Soil lab testing results were received regularly as spreadsheets

sent over email. The data in these spreadsheets were also

incorporated into the database.

Our data cleaning process was heavily reliant on the use

of Jupyter notebooks to manually handle CSV and Excel files,

involving unique scripts for each type of data transformation

required such as mapping growth stage descriptions to numeric
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values, converting irregular time-series data into a standardized

daily format, and averaging hourly sensor readings to daily values.

While this enabled batch processing of data at the end of the

growing season, the next step of maturity in the data pipeline

is to implement continuous data processing. To accomplish this,

we envision a data pipeline that would replace these manual

Jupyter notebook operations with integrated, automated tasks

enabling continuous data processing capabilities. This architecture

would incorporate an Extract, Transform, and Load (ETL) scheme

scheduled to operate continuously. As new data arrives, it would

be extracted and then transformed by applying various cleaning

techniques such as normalizing time-series data into a uniform

temporal resolution and aligning disparate data formats into a

unified format. Following transformation, the data would be loaded

into a database which would act as the central repository from

which the front-end user application can dynamically query the

database and retrieve data on-demand.

4.3 Model architecture

After acquiring and preprocessing various data types using

data pipelines, the next step is ML model training. ML models

such as Support Vector Machines (SVM), decision trees, regression

networks, Convolutional Neural Networks (CNN), and Long Short

TermMemory networks (LSTM) are popularly selected for various

agricultural use cases (Khanal et al., 2020). In this study, the state-

of-the-art Vision Transformer (ViT) model was used to identify

corn growth stages using UAS RGB images. Studies (Han et al.,

2023) have found ViT models to perform similar to or better than

other types of neural network (NN) based models such as CNN

and recurrent RNN. They better capture spatial relationships, such

as the development of leaves and the presence of flowers in the

images, which can be crucial to identify crop growth stages. To

compare the classification and regression approaches for estimating

crop development, the ViT architecture was modified to perform

these tasks (Figure 10). During the training of the classification

model, each crop growth stage is treated as an independent,

discrete observation, whereas in a regression model, crop growth

is considered a continuous observation.

After the model selection, the input data can either be

segmented or resampled to match the model specifications and

requirements. For the ViT model, UAS images from each of the

plots were divided into blocks of 224 × 224 × 3 to meet the

ViT input requirement and then passed to the position embedding

layer of ViT architecture. The embedded data is then passed to the

transformer encoder and then to either the Multi-Layer Perceptron

(MLP) head (classification) or Linear layer (regression). The MLP

head and Linear layer use categorical cross entropy and mean

squared error (MSE) as the loss function, respectively.

Each of the 224 × 224 × 3 blocks were annotated with

ground-observed crop growth labels from their respective plot.

These alphanumeric labels represent specific stages in corn growth

cycle, with vegetative and reproductive stages denoted with the

prefix “V” and “R” respectively. These labels can be considered

as independent, discrete labels (classification) or as a sequence

of continuous labels (regression). The alphanumeric growth stage

labels from V1 to R6 were converted to numeric values from 0 to

22. The regression predictions were rounded to the nearest integer.

As we evaluated the dataset, we discovered that there was

significant class imbalance with growth stages V10 to VT having

many fewer samples than the other classes. On further reflection,

this related to the fact that the ground truth sampling frequency

was approximately weekly. However, while the growth stages prior

to V10 and subsequent to R1 transitioned approximately once every

five to seven days, the growth stages from V10 to VT happen

much more quickly at a rate of 1 to 3 days on average. The

result of this was that our dataset contained many fewer ground

truth observations per class from V10 to VT. Furthermore, when

looked at from an agricultural perspective, the importance of

distinguishing between individual growth stages from V10 to VT

carries less practical value for our yield estimation use case. For

these reasons, we evaluated model performance with the existing

classes and with a consolidated approach that grouped the classes

from V10 to VT into 2 groupings: V10–V12 and V13–VT. This

provided benefits from a technical perspective by resulting in

more balanced classes and from a pragmatic standpoint in that

the finer grained detail does not provide additional downstream

benefits. This highlights the importance of synthesizing domain

expertise in agronomy with technical expertise in ML to arrive at

better solutions.

The images were randomly partitioned into 80% for training

and 20% for testing. Figure 11 shows examples of UAS image blocks

(224× 224× 3) of selected growth stages along with the associated

attention maps, and attention maps overlaid on top of UAS image

blocks. Attention maps highlight the areas of an image that the ML

model learns from.

With two different approaches to growth stage labels (grouped

and non-grouped) and two different approaches to the final layer

in the ViT model architecture (classification and regression), we

evaluated four combinations and measured the performance of

each approach with respect to classification accuracy and mean

squared error (MSE).

The results in Table 2 show that the classification model

always performs better in terms of classification accuracy while the

regression model always performs better with respect to MSE. They

also show that using consolidated growth stage labels from V10–

V12 and V13–VT improve both classification accuracy and MSE.

Figure 12 shows the confusion matrix for both the classification

and regression models with the consolidated growth stage labels

enumerated. These results are a reminder that MLmodels optimize

to minimize their loss function and that they often perform better

with fewer classes that can enable more data samples per class.

With that in mind, it is important to consider from a

downstream point of view how the results will be used. For the

yield estimation use case presented in this paper, using consolidated

growth stage labels is expected to provide an appropriate level of

fidelity. Likewise, regression is anticipated to be a more appropriate

model architecture since it has a lower MSE and also allows for

continuous values to be provided to the LSTM model in Figure 6

instead of the discrete integers that would be required by the

classification model.

While the agricultural observations in this section would be

well understood to agronomists and the ML observations would be
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FIGURE 10

Illustrating steps in training the Vision Transformer (ViT) model using UAS images to identify crop growth stages as classification and regression tasks.

FIGURE 11

Examples of UAS image blocks (224 × 224), attention maps, and attention maps overlaid on UAS image blocks.

well understood by ML engineers, they highlight that a synthesis

of both agricultural domain expertise and ML technical expertise

is important to develop ML models that are useful in agriculture.

While we think there is a human component to encouraging greater

interdisciplinary collaboration, we also envision that CI can have

some of these agricultural and ML principles built-in to provide a

valuable role in guiding the development of useful ML models in

agriculture.

4.4 Data visualization

In the past decade, we have seen ML make an impact on a

myriad of data-rich application areas. As this trend continues,

there is a growing need for tools that help practitioners gain a

better understanding and trust of the data and insights presented

by these technologies (Beauxis-Aussalet et al., 2021). Cultivating

trust is critical for success in data-driven and sustainable agriculture
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TABLE 2 Comparison of ViT model performance metrics.

Metric ViT classification
model

ViT regression
model

ViT classification model
consolidated growth stage
labels

ViT regression model
consolidated growth stage
labels

Classification

accuracy

52% 45% 60% 58%

Mean squared error 1.815 1.801 0.918 0.705

(Raturi et al., 2022). Farmers, especially, need validation that data-

driven ML tools will be able to achieve their envisioned goals of

environmental and economic sustainability (Gardezi et al., 2024).

One such tool to improve trust and provide validation is the

creation of interactive data visualizations (Beauxis-Aussalet et al.,

2021).

As an illustration, we created an interactive data visualization

dashboard using the cleaned, wrangled data from this study.

Visualization methods at this stage in the ML pipeline are generally

used to explore interesting subgroups and pinpoint particular

outliers. The purpose of this dashboard is to visualize the collected

data at the plot level, providing specific insights for each plot and

comparing them to other plots in the field. This provides the user

with a reference to see if a particular plot has characteristics that

are significantly different from the norm (i.e., out of distribution),

enabling a better understanding of the data. Figure 13 shows a

screenshot of the dashboard.

The dashboard was created with Plotly Dash, an open source

Python framework that enables the creation of interactive, data-

driven dashboards. The top left of the dashboard contains a pane

with a map focused on a specific field [A]. A 3D geospatial layer

is rendered on top of the field using the plot boundaries from the

created orthomosaic files (.geojson files). This rendering is created

with DeckGL, a WebGL-powered visualization framework. Each

plot was outlined and has its own 3D layer. The height and color

represent the current crop growth stage of each plot. To view the

exact growth stage value of a specific plot, the user may hover over

the specific plot.

Below the map, there is a time slider and a series of dropdown

menus to select field, crop type, and plot number, respectively [B].

This collection of inputs can be used to update the dashboard

figures [C] on the right side of the screen that provides information

based on the different modalities of tabular data collected in the

study. The upper chart shown in [C] is a chart of yield components

(stand count, kernel rows, kernels per row, kernel weight). Each of

these combine to account for the overall yield of corn. The lower

chart in [C] is a chart of Normalized Difference Vegetation Index

(NDVI) values over time for the specific plot. NDVI is a commonly

used vegetative index that is calculated from the near infrared (NIR)

and red spectral reflectance bands. It is a measure of the health of

the vegetation and is calculated by the following formula:

NDVI =
NIR− RED

NIR+ RED

The position of the time slider can be altered to update the

geospatial visualization and figures across different time periods

across the growing season. A UAS image of the selected plot at the

specific time selected by the time slider is populated at the bottom

left of the screen [D].

Perhaps the most significant feature of the dashboard is the

interactivity provided in the geospatial visualization. The user may

click on a specific plot on the 3D geospatial layer to populate the

figures with information about the selected plot, enabling the user

to derive plot-specific insights in an interactive, intuitive manner.

While the prototype dashboard currently uses plot-scale data for

visualization, it can easily be adjusted to incorporate on-farm data.

Its interactivity, combined with the time-slider, in the dashboard

enables users to explore multimodal data across both spatial and

temporal dimensions.

Overall, these figures, driven by plot-clicks and the time-slider,

provide a valuable view for users that enables further understanding

of the collected data. It can also be utilized to display ML-generated

findings alongside ground-truth data, helping to build trust in the

ML based models.

5 Discussion

In the manuscript, we have introduced some useful methods

and approaches relating to AgCI. However, they are still at

an early level of maturity and require additional research and

development. Furthermore, there is a need to integrate these

components into a cohesive CI system for enabling data driven

decision making in agriculture. For instance, direct georeferencing

techniques show promise to retain original UAS image quality

while reducing compute requirements. Further work will be

aimed at implementation on high performance computing (HPC)

to reduce processing time. Additional work is also needed for

error detection to ensure plot tile images are correctly generated.

The user interface shows promise, but more user research is

needed to tailor the interface to the unique needs of stakeholders.

The prototype was built using the prior year’s data. A valuable

next step will be to implement continuous data processing

to show data from the current growing season as data is

collected.

Furthermore, there are open questions as to how this work

can best be leveraged to serve the needs of agricultural researchers,

startups and established companies that serve farmers, and farmers

themselves. A primary consideration is lowering the barriers to

building datasets of sufficient quality and size. For this reason,

collaboration with universities worldwide conducting agricultural

research to combine efforts on common needs of AgCI is

important.

We hypothesize that various stakeholders will want to engage

at varying levels of the technology stack. While some institutions

may have the motivation, aptitude, and resources to deploy

their own instance of AgCI connected to an HPC backbone,

others may prefer to access already existing AgCI for their

research needs.
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FIGURE 12

Confusion matrices representing ViT model results with precision, recall, and overall accuracy values. Growth stages V10–V12 and V13–VT have

been grouped into a single class.

6 Conclusion

In accordance with our land-grant university heritage, we

advocate that a vibrant community focused on contributing to

and using AgCI embodies the mission of land-grant universities

to promote agricultural research for the benefit of society. Other

institutions across the world may have similar heritage and

traditions that provide similar motivations for advancing the field

of agriculture.

In summary, this paper articulates the importance of ML

applications in agriculture and highlights a data-centric approach

to building AgCI. Along the way, it presents some specific

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2024.1496066
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Waltz et al. 10.3389/frai.2024.1496066

FIGURE 13

Dashboard Screenshot showing (A) Map of a small-plot research field; (B) Time slider; (C) Dashboard figures; and (D) UAS image of selected plot.

approaches that improve data quality, reduce processing time,

increase ML model performance, and promote understanding and

trust through data visualization. This is all done in the context of

three interrelated valuable use cases in agriculture of soil moisture

estimation, growth stage estimation, and yield estimation.

We acknowledge that we have only shared learnings from

a narrow slice of agricultural use cases. While we have used

very tangible examples to illustrate our vision, our vision is

not limited to these examples. We believe there is much more

agricultural research happening that could be accelerated and be

more impactful with access to AgCI connected to anHPC backbone

that provides reusable components across data collection, model

architecture development, model training, and inference.

The World Wide Web, created as an open standard more than

30 years ago, became the de facto standard over other open and

proprietary networks, fundamentally transforming communication

and commerce. We draw this analogy because we believe that

advancements in ML are ushering in a similarly transformative era.

The advancements in ML show promise to be as impactful in the

future as the World Wide Web has been over the last 30 years.

We believe this pivotal moment calls for leadership and

approaches that develop practical and innovative solutions

by synthesizing agricultural domain expertise with the latest

advancements in CI and ML technical expertise. We hope that

the work presented here inspires discussion and collaboration

among various stakeholders (e.g., researchers, crop consultants,

farmers) so that the promise of ML in agriculture can be more fully

realized by capitalizing on advancements in the ML community

at large.
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