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heatmap analysis: a preliminary 
study
Rujia Chen *, Akbar Ghobakhlou  and Ajit Narayanan 

Computer Science and Software Engineering Department, Auckland University of Technology, 
Auckland, New Zealand

Introduction: Musical instrument recognition is a critical component of music 
information retrieval (MIR), aimed at identifying and classifying instruments from 
audio recordings. This task poses significant challenges due to the complexity 
and variability of musical signals.

Methods: In this study, we employed convolutional neural networks (CNNs) to 
analyze the contributions of various spectrogram representations—STFT, Log-
Mel, MFCC, Chroma, Spectral Contrast, and Tonnetz—to the classification of ten 
different musical instruments. The NSynth database was used for training and 
evaluation. Visual heatmap analysis and statistical metrics, including Difference 
Mean, KL Divergence, JS Divergence, and Earth Mover’s Distance, were utilized 
to assess feature importance and model interpretability.

Results: Our findings highlight the strengths and limitations of each spectrogram 
type in capturing distinctive features of different instruments. MFCC and Log-Mel 
spectrograms demonstrated superior performance across most instruments, 
while others provided insights into specific characteristics.

Discussion: This analysis provides some insights into optimizing spectrogram-
based approaches for musical instrument recognition, offering guidance for 
future model development and improving interpretability through statistical and 
visual analyses.
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1 Introduction

Musical instrument recognition is a fundamental aspect of music information retrieval 
(MIR) research (Downie, 2003; Schedl et  al., 2014), aimed at identifying and classifying 
musical instruments from audio recordings. This task is inherently challenging due to the 
complexity and variability of musical signals. Different instruments produce unique spectral 
patterns, which necessitates sophisticated models to accurately recognize them.

Several studies have addressed this challenge by employing convolutional neural networks 
(CNNs) (LeCun et al., 1989) and different spectrogram representations on various datasets. 
For instance, some research has classified the open-mic dataset (Humphrey et al., 2018), 
achieving notable mean per-class accuracy (Chong et al., 2023; Koutini et al., 2021; Schmid 
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et  al., 2024; Watcharasupat et  al., 2020). Others (Schlüter and 
Gutenbrunner, 2022; Zeghidour et  al., 2021) have evaluated the 
NSynth (Engel et al., 2017) dataset, while also many works (Avramidis 
et al., 2021; Kim et al., 2018; Kratimenos et al., 2021; Racharla et al., 
2020; Yu et al., 2020) have concentrated on the IRMAS dataset (Bosch 
et al., 2018).

However, there is a noticeable gap in research specifically 
examining how different spectrogram representations impact the 
decision-making process of convolutional neural networks (CNNs) in 
musical instrument recognition.

1.1 Original contribution

In this paper, we explore the use of heatmaps (Chattopadhay et al., 
2018; Pan et al., 2021; Qi et al., 2019; Sattarzadeh et al., 2021) to analyse 
feature contributions across various spectrogram types and instruments 
also visualize the feature maps (LeCun et al., 2015; Zeiler and Fergus, 
2014) to find the different features extracted by CNN kernel.

This study does not propose a new architecture or aim to improve 
classification accuracy. Instead, it offers a statistical approach for assessing 
the effectiveness of different spectrogram representations in CNN-based 
musical instrument recognition. Using metrics such as Difference Mean, 
Kullback–Leibler Divergence, Jensen-Shannon Divergence, and Earth 
Mover’s Distance, we  quantitatively evaluate feature importance 
distributions across spectrogram types (e.g., STFT, log-Mel, MFCC). This 
analysis clarifies how each representation affects classification.

Our findings suggest potential for a label-free loss function based on 
feature map statistics, which could transition instrument classification 
from supervised to unsupervised learning by focusing on statistical 
patterns in feature maps rather than labeled data.

1.2 Literature review

CNNs have been extensively employed for various audio recognition 
tasks due to their ability to capture local patterns in data, which is 
particularly useful for spectrogram representations of audio signals 
(Purwins et al., 2019). Early work by Lee et al. (2009) demonstrated the 
effectiveness of unsupervised feature learning using CNNs for audio 
classification tasks. They showed that CNNs could learn hierarchical 
feature representations from raw audio data, leading to improved 
classification performance. Subsequently, Dieleman and Schrauwen 
(2014) explored end-to-end learning for music audio using CNNs, 
highlighting the potential of deep architectures in capturing complex 
audio features without the need for handcrafted features.

The use of spectrograms as input to CNNs has become a standard 
approach in audio classification. Spectrograms transform audio signals 
into a two-dimensional time-frequency representation, making them 
suitable for CNNs originally designed for image data (Choi et al., 2017). 
Different types of spectrograms, such as Short-Time Fourier Transform 
(STFT), Mel-Frequency Cepstral Coefficients (MFCCs), and log-Mel 
spectrograms, have been investigated to determine their effectiveness in 
various tasks.

For instance, Sigtia et al. (2016) utilized log-Mel spectrograms for 
piano transcription, demonstrating improved performance over 
traditional methods. Similarly, Pons and Serra (2017) compared various 
spectrogram representations and found that different time-frequency 

resolutions could capture different musical properties, influencing the 
classification outcomes.

In the domain of musical instrument recognition, Han et al. (2016) 
employed CNNs with MFCCs and demonstrated significant 
improvements in instrument classification accuracy. Their work 
emphasized the importance of feature representation in conjunction with 
CNN architecture. Additionally, Gururani et al. (2019) explored the use 
of transfer learning with pre-trained CNNs on spectrograms for 
instrument recognition, highlighting the benefits of leveraging models 
trained on large datasets.

Heatmap analysis methods, such as Class Activation Mapping 
(CAM) and Integrated Gradients, have been used to interpret CNN 
models in audio classification tasks (Simonyan and Zisserman, 2014; 
Sundararajan et al., 2017) These methods provide insights into which 
parts of the spectrogram contribute most to the classification decisions, 
aiding in model interpretability.

1.3 Convolutional neural networks

Convolutional Neural Networks (CNNs) are neural networks 
tailored for processing data with a grid-like topology, such as images 
(LeCun et al., 1998). They use convolutional layers equipped with 
learnable filters that traverse the input dimensions to generate feature 
maps, capturing local spatial patterns and preserving spatial 
hierarchies (Goodfellow et al., 2016). This mechanism enables the 
detection of features like edges and textures.

Pooling layers follow to reduce the spatial dimensions of feature 
maps, which lowers computational demands and helps prevent 
overfitting (Scherer et al., 2010). Common pooling techniques include 
max pooling and average pooling, which condense information by 
summarizing regions of the feature maps.

Activation functions such as the Rectified Linear Unit (ReLU) 
introduce non-linearity into the network, allowing it to model complex 
patterns (Nair and Hinton, 2010). Fully connected layers at the network’s 
end aggregate the extracted features to perform tasks like classification.

CNNs have achieved significant success across various fields by 
effectively learning hierarchical feature representations, establishing 
themselves as foundational models in deep learning (Krizhevsky 
et al., 2012).

1.4 Spectrogram representations in musical 
instrument classification

Short-Time Fourier Transform (STFT) provides a detailed 
time-frequency representation, which has been utilized in several 
works for musical instrument recognition (Joder et al., 2009; Kim 
et  al., 2018). The logarithmic Mel-frequency (Log-Mel) 
spectrogram emphasizes perceptually relevant frequency bands, 
making it a popular choice in instrument classification studies 
(Castel-Branco et al., 2020, 2021).

Mel-Frequency Cepstral Coefficients (MFCC) efficiently capture the 
spectral envelope, which has led to its extensive use in musical instrument 
classification research (Bhalke et al., 2016; Jadhav, 2015; Nagawade and 
Ratnaparkhe, 2017; Wu et al., 2017). Chroma features, which represent 
pitch class information, along with Spectral Contrast, which highlights 
the differences between peaks and valleys in the spectrum, and Tonnetz, 
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which represents harmonic relationships in a pitch space, have also been 
widely used in music information retrieval (Ezzaidi et al., 2012; Ghosal 
et al., 2019; Hall et al., 2014; Hook, 2020; Humphrey et al., 2012; Jiang 
et al., 2002; Karystinaios et al., 2021; Weiß and Habryka, 2014).

1.5 Convolutional neural network feature 
maps and heatmaps of spectrogram image

Figure 1 demonstrates the progression from feature maps to heatmaps 
for vocal instrument classification using STFT and CNN. Panel (a) shows 
the output of convolutional layers capturing vocal spectrogram patterns. 
The Integrated Gradients heatmap in panel (b) identifies key time-
frequency bins for model prediction. Panel (c) highlights the spectrogram 
regions crucial for the CNN’s decision, providing insight into the model’s 
focus during classification.

Figure 2 provides an analysis of feature maps and heatmaps for 
bass instrument classification using STFT and CNN. Panel (a) 
illustrates feature maps capturing bass spectrogram patterns. The 
Integrated Gradients heatmap in panel (b) identifies important time-
frequency bins. Panel (c) highlights the spectrogram regions 
significant for the CNN’s classification decision.

Heatmap analysis is essential for understanding CNN 
behavior and attention shifts in musical instrument classification. 
Comparing Figures 1, 2, the attention and feature importance 

differ between vocal and bass instruments. The vocal instrument 
(Figure 1) shows a broader spread of significant regions, while 
the bass instrument (Figure 2) highlights more localized regions. 
This difference indicates that CNN uses different spectrogram 
features for each instrument, emphasizing the need for heatmap 
analysis to interpret and improve model performance accurately. 
This visual analysis needs to be supplemented with quantitative 
research to deeply understand the variations in feature 
importance and model behavior across different instruments. As 
suggested by Krakov and Feitelson (2013), heatmap comparison 
can be converted to distribution comparison using algorithms 
such as Kullback–Leibler (KL) divergence and Jensen-Shannon 
divergence to provide a more rigorous statistical analysis, 
enhancing the interpretability and robustness of the model.

2 Heatmap evaluation metrics

Despite the advancements of heatmap visualization, there 
remains a gap in systematically comparing different spectrogram 
representations and analyzing their impact on CNN-based 
musical instrument recognition. Existing studies often focus on 
specific representations or do not delve deeply into the 
interpretability of the models. This study aims to fill this gap by 
comprehensively evaluating multiple spectrogram representations 

FIGURE 1

STFT’s Feature Map and Heatmap Analysis for Vocal Instrument. (a) Displays four feature maps of layer conv2d_5 filters (filter 1 to filter 4) with 
dimensions 31x256. (b) Shows the corresponding heatmap generated for the conv2d_5 layer. (c) Presents the Grad-CAM heatmap, illustrating the 
model’s focus for classification.

FIGURE 2

STFT’s Feature Map and Heatmap Analysis for Bass Instrument. (a) Displays four feature maps of layer conv2d_3 filters (filter 1 to filter 4) with 
dimensions 63x512. (b) Shows the corresponding heatmap generated for the conv2d_3 layer. (c) Presents the Grad-CAM heatmap, highlighting 
regions of interest for classification.
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(STFT, log-Mel, MFCC) using CNNs and employing advanced 
heatmap analysis methods to understand feature importance.

Figure 3 demonstrates the process of subtracting two heatmaps to 
highlight differences in feature importance for different spectrogram 
representations or conditions. In this figure, Heatmap (1) and Heatmap 
(2) are compared, and the subtraction results are shown in the third panel. 
Each cell in the subtraction heatmap is annotated with its corresponding 
calculation (e.g., a1 - b1 = −8), providing a clear understanding of how 
the subtraction was performed.

This detailed visualization helps in identifying specific areas where 
feature importance diverges, offering insights into the influence of 
different spectrogram representations on the model’s decision-making 
process. To further quantify these differences, additional algorithms such 
as Kullback–Leibler (KL) divergence and Jensen-Shannon divergence can 
be employed. These metrics would provide a more rigorous statistical 
analysis, measuring the similarity and divergence between the heatmaps’ 
feature importance distributions, thus enhancing the interpretability and 
robustness of the model.

2.1 Difference mean

Difference Mean measures the average difference between two 
heatmaps. This metric indicates the overall similarity or disparity 
between the contributions of features in different conditions, such as 
between different instruments or spectrogram types. A smaller 
Difference Mean suggests higher consistency in feature importance, 
while a larger value indicates greater variability.

2.2 Kullback–Leibler divergence

KL Divergence (Kullback and Leibler, 1951) quantifies the 
difference between two probability distributions. When heatmap 
values are normalized to sum to one, they can be interpreted as 
probability distributions. KL Divergence measures how one 
distribution (heatmap) diverges from another, highlighting 
significant changes in feature contributions. This metric is 

particularly useful for understanding shifts in model focus under 
different conditions.

2.3 Jensen-Shannon divergence

JS Divergence (Lin, 1991) is a symmetric measure of 
similarity between two distributions. It provides a more 
interpretable and stable measure compared to KL Divergence. JS 
Divergence indicates how similar or different two heatmaps 
(distributions of feature importance) are, offering insights into 
the model’s consistency across samples.

2.4 Earth Mover’s distance

EMD (Rubner et al., 2000) measures the cost of transforming one 
distribution into another, considering both the magnitude and 
distance of differences. This metric offers an intuitive way to quantify 
similarity by comparing the overall “shape” of feature importance 
distributions. EMD is useful for assessing the consistency of feature 
importance across different samples or conditions.

2.5 Visual and statistical insights

Heatmaps allow us to visualize which parts of the input, such as 
specific time-frequency bins in a spectrogram, contribute most to the 
model’s predictions. This visualization helps us understand the model’s 
focus and decision-making process. By computing the four metrics 
between heatmaps for different instruments or spectrogram types, 
we  can quantify how these contributions change. These metrics 
provide insights into:

 • How different spectrogram features contribute to 
classification accuracy.

 • How the model’s attention shifts across different conditions.
 • Identifying patterns or anomalies in model behavior.

FIGURE 3

The illustrations of the subtraction process between two heatmaps to analyze differences in feature importance across different conditions. Heatmap 
(1) and Heatmap (2) show the feature importance distribution for two different spectrogram representations or conditions. The resulting heatmap 
shows the difference between these two distributions, with each cell annotated to display the specific subtraction calculation (e.g., a1 - b1 = −8).
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3 Methodology

3.1 Data preparation

We utilized a diverse dataset of musical instruments from NSynth 
Dataset (Engel et  al., 2017), converting audio samples into six 
spectrogram types: Short-Time Fourier Transform (STFT), Log-Mel 
spectrograms, Mel-Frequency Cepstral Coefficients (MFCCs), Chroma, 
Spectral Contrast, and Tonnetz. These spectrograms serve as input 
features for the CNN model, each chosen for its unique representation 
of audio characteristics, thereby allowing a more comprehensive 
analysis of CNN interpretability across varied spectrogram inputs.

3.2 Convolutional neural network 
configuration

In our preliminary study on heatmap analysis, we implemented a 
convolutional neural network with a total of 10 layers, including 6 
convolutional layers for feature extraction and 4 additional layers for 
pooling, dropout, and dense processing. The network begins with an 
input layer tailored to the heatmap input shape, followed by three 
blocks of convolutional layers: each block contains two convolutional 
layers (using 32, 64, and 128 filters respectively) with a kernel size of 
3×3, ReLU activation, and same padding. Max pooling layers, each with 
a 2×2 pool size, follow each block to reduce spatial dimensions, and 
dropout layers with rates of 0.25 after each block help prevent overfitting.

The flattened output from the convolutional blocks is fed into a fully 
connected layer with 256 neurons and a dropout rate of 0.5 to further 
enhance generalization. Finally, a dense layer with 1 neuron and sigmoid 
activation provides binary classification. The model is compiled with the 
Adam optimizer, binary cross-entropy loss, and an accuracy metric to 
assess interpretability and classification performance on the heatmap data.

3.3 Integrated gradients heatmap

To gain insights into the CNN’s decision-making process, 
we generated heatmaps for each spectrogram type using the Integrated 
Gradients method. This technique attributes the CNN’s predictions to 
its input features by computing gradients along the path from a 
baseline input to the actual input. The resulting heatmaps identify 
which parts of the spectrogram contribute most to model predictions, 
facilitating a deeper understanding of model interpretability. 
We selected Integrated Gradients for its ability to provide consistent 
attributions across different spectrogram types, making it suitable for 
evaluating feature importance distribution across audio representations.

3.4 Experiment design

The experimental framework for training and testing the CNN 
models on each spectrogram type is detailed in Algorithm 1. For each 
spectrogram type (STFT, Log-Mel, MFCC, Chroma, Spectral Contrast, 
and Tonnetz), CNN models were trained and validated across a range 
of instruments, including Bass, Brass, Flute, Guitar, Keyboard, Mallet, 
Organ, Reed, String, and Vocal. Each model underwent training for 
200 epochs with a 20% validation split, ensuring sufficient learning and 

performance assessment across instruments. Post-training, models 
were tested on separate test sets, and accuracy metrics were recorded. 
This process aims to confirm the robustness of the models in 
recognizing musical instruments based on varied spectrogram features.

Algorithm 1 Training and testing CNN models

1: for each type t in (STFT, Log-Mel, MFCC, Chroma, Spectral Contrast, Tonnetz) do

2: for each instrument i in (Bass, Brass, Flute, Guitar, Keyboard, Mallet, Organ, 

Reed, String, Vocal) do

3:  Split dataset for instrument i into training and validation sets (validation_

split = 0.2)

4:  Train and validate the CNN model for instrument i with spectrogram type t 

using the training and validation sets for 200 epochs

5:  Test CNN model for instrument i with spectrogram type t using the test set

6:  Calculate and record accuracy for instrument i with spectrogram type t

7: end for

8: end for

(Algorithm 1 outlines the process for training and validating CNN 
models across various spectrogram types and instruments.)

To systematically evaluate the feature importance highlighted by 
the CNN’s heatmaps, we applied four statistical metrics: Difference 
Mean, Kullback–Leibler (KL) Divergence, Jensen-Shannon (JS) 
Divergence, and Earth Mover’s Distance (EMD). These metrics 
quantify the consistency and variability of feature importance 
distributions across different samples, offering a nuanced 
understanding of how the model interprets each spectrogram type for 
instrument classification.

Algorithm 2 illustrates the statistical analysis process. For each 
instrument, corresponding heatmaps were analyzed by calculating the 
Difference Mean, KL Divergence, JS Divergence, and EMD for each 
sample pair. This analysis provides a quantitative assessment of feature 
stability and distribution shifts, which are essential for improving 
model interpretability. The use of these metrics allows us to evaluate 
the model’s focus areas more rigorously, identify patterns, and uncover 
limitations in spectrogram representation, informing 
potential improvements.

Algorithm 2 Heatmap statistical analysis

1: for each instrument i in instruments do

2: Load heatmaps for instrument i

3: for each sample s₁ in heatmaps do

4:  for each sample s₂ in heatmaps where s₂ ≠ s₁ do

5:   Calculate difference mean between s₁ and s₂

6:   Calculate KL divergence between s₁ and s₂

7:   Calculate Jensen-Shannon divergence between s₁ and s₂

8:   Calculate Earth Mover’s Distance between s₁ and s₂

9:  end for

10: end for

11: end for

(Algorithm 2 outlines the statistical analysis steps used for 
comparing heatmap samples across different instruments, 
calculating various divergence metrics and distances to 
evaluate similarity.)

Through these steps, our methodology balances rigorous CNN 
training with in-depth heatmap analysis to offer initial insights into 
feature importance distributions across multiple spectrogram 
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representations. While we  acknowledge the basic nature of these 
methods in this preliminary study, we  recognize the potential for 
integrating more sophisticated techniques in future work to enhance 
model interpretation further.

3.5 Extraction and analysis of heatmap 
interpretability using integrated gradients

The heatmaps were extracted using the Integrated Gradients 
method, implemented with Python and TensorFlow. Integrated 
Gradients is a technique for interpreting neural network predictions 
by quantifying the contribution of each input feature to the final 
prediction. For each input sample, we  generated a heatmap by 
interpolating between a baseline input (a zero-valued matrix) and the 
actual input, creating a series of scaled inputs that gradually shift from 
the baseline to the original input.

The gradient calculation for each scaled input was performed 
using TensorFlow’s GradientTape context, capturing and computing 
the gradients of the model’s prediction with respect to each 
interpolated input. We then averaged these gradients and multiplied 
them by the difference between the actual input and the baseline to 
produce the final integrated gradient heatmap.

4 Result

4.1 Classification result per spectrogram

Figure 4 displays the classification results of CNN models trained 
on six different spectrogram types across 10 musical instruments. The 
precision values indicate the proportion of true positive predictions 
among all positive predictions made by the models. From the bar 

chart, it is evident that certain spectrogram types perform better for 
specific instruments. For instance, the Tonnetz spectrogram exhibits 
high precision for Brass and Reed instruments, while the STFT 
spectrogram shows lower precision for these instruments. In contrast, 
the MFCC spectrogram demonstrates consistently high precision for 
most instruments, particularly for Mallet and Organ. This visual 
comparison helps in identifying the most effective spectrogram type 
for each instrument, providing valuable insights for optimizing 
musical instrument recognition models.

The MFCC spectrogram achieves the highest overall accuracy 
(0.62), indicating its robustness across various instruments. The 
Log-Mel spectrogram also performs well, with an overall accuracy of 
0.55, particularly excelling in Flute and Mallet instrument 
classification. The STFT spectrogram, while showing decent 
performance for some instruments like Organ and Reed, has a lower 
overall accuracy (0.56). The Chroma spectrogram exhibits moderate 
performance, with significant variability across instruments, achieving 
the highest precision for Brass but lower values for others like Vocal 
and String. The Spectral Contrast and Tonnetz spectrograms show 
variable performance, with Tonnetz achieving high precision for Reed 
but low values for other instruments. These metrics suggest that while 
MFCC and Log-Mel spectrograms are generally effective for musical 
instrument recognition, the choice of spectrogram type can 
significantly impact model performance depending on the specific 
instrument being classified. This analysis underscores the importance 
of selecting appropriate spectrogram representations to enhance the 
accuracy and reliability of musical instrument recognition models.

Leaf (Zeghidour et  al., 2021) achieved 69.2% accuracy, while 
Efficient Leaf (Schlüter and Gutenbrunner, 2022) reached 71.7% 
accuracy in their respective benchmarks. However, this paper does not 
aim to surpass existing benchmark results, but rather focuses on 
interpreting CNN-generated heatmaps through the analysis of four key 
metrics: Difference Mean, KL Divergence, JS Divergence, and Earth 

FIGURE 4

Precision of different spectrogram scenarios across 10 instruments. This bar chart illustrates the precision of CNN models trained on six spectrogram 
types for ten different musical instruments.
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Mover’s Distance. Our primary goal is to provide insights into the 
model’s decision-making process by evaluating the feature importance 
of different spectrogram types. By concentrating on interpretability 
rather than performance benchmarking, this study contributes to a 
deeper understanding of how CNNs utilize spectrogram features for 
musical instrument recognition.

4.2 Heatmap analysis result

4.2.1 Short-time fourier transform heatmap 
analysis based on four metrics

Difference Mean of Bass and brass instruments show the smallest 
value, indicating high consistency in feature importance across samples. 
Vocal and string instruments have the largest difference means, 
suggesting more variability in how the model identifies these 
instruments. Mallet and keyboard instruments show moderate 
variability. Bass shows high KL divergence, indicating that despite low 
mean differences, the distribution of important features varies 
significantly between samples. Organ and reed instruments have lower 
KL divergence, suggesting more consistent feature importance 
distributions. Guitar and flute show moderate KL divergence. JS 
Divergence of most instruments cluster in the 0.4–0.6 range, with bass 
showing slightly higher divergence. Organ has the lowest JS divergence, 
indicating more consistent feature importance across samples.

Bass shows the highest EMD, suggesting that the important 
features for classification are more spread out or shifted between 
samples. Vocal and organ show lower EMD, indicating more localized 
and consistent important features.

Instruments like organ and reed seem to have more consistent 
feature importance across samples, making them potentially easier for 
the model to classify reliably. Bass, despite low mean differences, 
shows high variability in feature distribution, which might explain 
challenges in its classification. The high EMD for bass suggests that 
important features for its classification are more dispersed or variable 
in the spectrogram, potentially making it harder for the model to learn 
robust features. Vocal and string instruments show higher variability 
across metrics, suggesting that their classification relies on a more 
diverse set of features that may vary between samples. These insights 
can guide improvements in the model or feature extraction process 
(Figure 5).

4.2.2 Log-mel heatmap analysis based on four 
metrics

String instruments show the highest difference mean, indicating 
significant variability in feature importance across samples. Bass, 
brass, flute, and guitar have the lowest difference means, suggesting 
more consistent feature importance. Organ and mallet instruments 
show moderate variability. Bass and flute exhibit high KL divergence, 
indicating that despite low mean differences, the distribution of 

FIGURE 5

Heatmap analysis of different spectrogram scenarios across 10 instruments. These boxplots illustrate the statistical metrics (Difference Mean, KL 
Divergence, JS Divergence, and EMD) for the feature importance heatmaps generated from CNN models using STFT Spectrogram.
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important features varies significantly between samples. Organ and 
string instruments show lower KL divergence, suggesting more 
consistent feature importance distributions. Guitar and keyboard have 
moderate KL divergence. Most instruments cluster in the 0.5–0.6 
range. Bass shows the highest JS divergence, indicating less consistency 
in feature importance across samples. String instruments have the 
lowest JS divergence, suggesting more consistent feature importance 
patterns. Bass shows the highest EMD, suggesting that important 
features for classification are more spread out or shifted between 
samples. Flute and reed show lower EMD, indicating more localized 
and consistent important features. Guitar, keyboard, and mallet 
instruments have moderate EMD values.

Instruments like flute and reed demonstrate more consistent 
feature importance across samples in the log-mel domain, potentially 
leading to more reliable classification. Bass exhibits high variability 
across all metrics, suggesting that its spectral characteristics in the 
log-mel domain are less consistent or more complex, which may 
challenge classification. String instruments show high difference mean 
but lower divergence measures, indicating that while the magnitude 
of important features varies, their distribution remains relatively 
consistent. This could reflect the complex harmonic structure of string 
instruments captured by log-mel spectrograms. The log-mel 
spectrogram’s non-linear frequency resolution might be particularly 
beneficial for instruments like organ and keyboard, as evidenced by 
their moderate to low variability across metrics (Figure 6).

4.2.3 Mel-frequency cepstral coefficient heatmap 
analysis based on four metrics

Figure  7 keyboard shows the highest difference mean with a 
widespread, indicating significant variability in feature importance across 
samples. Brass, flute, mallet, reed, and string have very low difference 
means, suggesting highly consistent feature importance. Bass and guitar 
show moderate variability. Bass exhibits high KL divergence, indicating 
that the distribution of important features varies significantly between 
samples. Organ shows the lowest KL divergence, suggesting more 
consistent feature importance distributions. Most instruments have 
relatively high KL divergence values, indicating varied consistency in 
feature distributions. Most instruments cluster in the 0.5–0.7 range, 
indicating moderate consistency in feature importance across samples. 
Reed shows the highest JS divergence, suggesting less consistency in 
feature importance patterns. Brass has the lowest JS divergence, indicating 
more consistent feature importance patterns. Bass shows the highest 
EMD values, suggesting that important features for classification are 
spread out or shifted between samples. Organ shows the lowest EMD, 
indicating more localized and consistent important features. String 
instruments have a wide range of EMD values, suggesting varied feature 
importance locations.

Brass and flute demonstrate consistent feature importance in the 
Chroma domain, potentially due to their well-defined pitch 
characteristics. Keyboard shows high variability across metrics, 
indicating that its harmonic content in the Chroma domain is complex 

FIGURE 6

Heatmap Analysis of different spectrogram scenarios across 10 instruments. These boxplots illustrate the statistical metrics (Difference Mean, KL 
Divergence, JS Divergence, and EMD) for the feature importance heatmaps generated from CNN models using Log-Mel Spectrogram.
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and varied, which may present challenges for classification. Bass 
exhibits moderate difference mean but high variability in other 
metrics, suggesting that while the magnitude of important features is 
somewhat consistent, their distribution varies significantly. This could 
reflect the challenge of representing low-frequency content in Chroma 
features. Guitar and keyboard show more variability, possibly due to 
their polyphonic nature and the way Chroma features capture 
harmonic content.

4.2.4 Chroma heatmap analysis based on four 
metrics

Figure 8 presents the heatmap analysis for various instruments 
using Chroma spectrograms. The boxplots display statistical metrics, 
including Difference Mean, KL Divergence, JS Divergence, and 
EMD. These metrics indicate the consistency of feature importance 
across different samples. Instruments like Brass and Flute exhibit high 
consistency, while others, like Keyboard, show significant variability, 
reflecting the harmonic complexity captured by Chroma features.

4.2.5 Spectral contrast heatmap analysis based 
on four metrics

Figure 9 illustrates the heatmap analysis using Spectral Contrast 
spectrograms. The boxplots highlight the statistical metrics for different 
instruments, revealing how feature importance varies. Instruments like 
Reed and Organ show low variability, indicating consistent feature 

importance across samples, whereas Bass and Guitar display higher 
variability, suggesting that Spectral Contrast captures distinctive timbral 
features essential for these instruments’ classification.

4.2.6 Tonnetz heatmap analysis based on four 
metrics

Figure  10 showcases the heatmap analysis with Tonnetz 
spectrograms. The boxplots represent statistical metrics for 
various instruments. Reed and Brass instruments demonstrate 
high consistency in feature importance, while Bass and Vocal 
instruments show more variability. This analysis underscores 
Tonnetz’s effectiveness in capturing harmonic relationships for 
specific instruments, aiding in their reliable classification.

5 Discussion

The analysis reveals that certain spectrogram types are more 
effective for classifying specific instruments. MFCC spectrograms 
provide consistently high precision for Bass, Flute, Mallet, Organ, 
and Vocal instruments, capturing essential spectral features 
efficiently. However, Bass exhibits significant variability in STFT 
and Tonnetz spectrograms, indicating that these types are less 
stable for Bass classification. Brass instruments achieve high 
precision with Chroma and Tonnetz spectrograms, effectively 

FIGURE 7

Heatmap analysis of different spectrogram scenarios across 10 instruments. These boxplots illustrate the statistical metrics (Difference Mean, KL 
Divergence, JS Divergence, and EMD) for the feature importance heatmaps generated from CNN models using MFCC Spectrogram.
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capturing pitch class and harmonic relationships. Log-Mel 
spectrograms align well with human auditory perception, making 
them particularly effective for Flute and Keyboard classification. 
Despite the complexity of Guitar’s timbral characteristics, MFCC 
shows some consistency, while other spectrograms result in 
variable performance.

Reed instruments are best classified using Tonnetz and Spectral 
Contrast spectrograms, capturing harmonic and timbral features 
effectively. String instruments show high variability in STFT and 
Chroma spectrograms but perform moderately with Log-Mel 
spectrograms, indicating the complexity of their harmonic structure. 
Mallet instruments achieve high precision with both MFCC and 
Log-Mel spectrograms, while Organ demonstrates robust classification 
with MFCC and Log-Mel but variability in STFT. Vocal classification 
remains challenging across all spectrogram types, though MFCC 
provides the best performance by capturing the spectral envelope 
effectively. These findings underscore the importance of selecting 
appropriate spectrogram types tailored to the specific characteristics of 
each instrument to optimize classification performance.

5.1 Practical implications for MIR systems

The spectrogram effectiveness findings could inform feature 
extraction in MIR systems. For example, systems focusing on 

Bass or Flute might prioritize MFCC features, while those dealing 
with Brass could benefit from Chroma and Tonnetz features. This 
approach may improve accuracy in instrument recognition tasks.

MIR systems could potentially adapt by selecting or weighting 
spectrogram representations based on audio input. This might 
enhance performance across diverse musical content, potentially 
improving applications like automated track tagging or music 
recommendation. In addition, the heatmap analysis technique could 
be integrated into MIR system development, offering a method to 
interpret CNN behavior. This may help developers identify model 
biases or weaknesses, potentially leading to more 
transparent systems.

6 Conclusion

Our research provides a comprehensive analysis of feature 
contributions in musical instrument recognition using different 
spectrogram types based on NSynth samples. By employing 
integrated gradients, we generated heatmaps that highlight the 
parts of the spectrograms contributing most to the model’s 
predictions. We  then quantified the differences between these 
heatmaps using metrics such as Difference Mean, KL Divergence, 
JS Divergence, and EMD. These findings can contribute to a 
deeper understanding of model behavior in musical instrument 

FIGURE 8

Heatmap analysis of different spectrogram scenarios across 10 instruments. These boxplots illustrate the statistical metrics (Difference Mean, KL 
Divergence, JS Divergence, and EMD) for the feature importance heatmaps generated from CNN models using Chroma Spectrogram.
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recognition. By examining how different spectrogram features 
influence model predictions, we  can identify strengths and 
weaknesses in the feature extraction process. This knowledge can 
guide improvements in model design and feature engineering, 
ultimately enhancing the accuracy and reliability of musical 
instrument recognition systems using real musical samples.

Integrating STFT, log-mel, MFCC, chroma, spectral contrast, 
and Tonnetz into a single composite image creates a comprehensive 
multi-spectral representation of the audio signal, enhancing the 
CNN’s ability to recognize different instruments. This approach 
allows the network to learn from various aspects of the audio 
simultaneously, leading to improved accuracy, robustness to 
variations in audio quality, and effective feature learning. However, 
this strategy also introduces challenges, such as increased 
computational complexity, higher risk of overfitting, and difficulties 
in interpretability. Heatmap analysis must now reflect the 
importance of features across all combined spectrograms, 
necessitating the development of methods to visualize and interpret 
the importance of different spectrogram types within the 
combined representation.

Thus, future work could explore weighted combinations of 
spectrogram types, implementing attention mechanisms to focus on 
the most relevant parts of the combined spectrogram for each 
instrument, and using a multi-stream architecture where parallel CNN 

streams for each spectrogram type combine their features later in the 
network. Additionally, methods to isolate the contribution of each 
spectrogram type to the final classification decision should 
be developed. A concatenated CNN with attention layers could further 
identify which parts of the spectrograms are most influential in the 
model’s decision-making process, enhancing the interpretability and 
effectiveness of multi-spectral representation in musical 
instrument recognition.

7 Limitations

This study has certain limitations that may impact on the 
generalizability and applicability of its findings. First, the dataset used 
in this research is a subsample of the NSynth dataset, which, though 
suitable for initial analysis, is relatively small and limited in scope. This 
restricted sample size limits the extent to which the findings can 
be generalized across broader contexts.

Additionally, the study relies on synthesized audio samples from the 
NSynth dataset, which, while normalized for volume consistency and free 
from spectrogram distortions, does not fully replicate the characteristics 
of real-world audio recordings. As a result, validation with real audio 
samples is necessary to confirm the robustness of the proposed 
methodology. Finally, the current experiment does not consider more 

FIGURE 9

Heatmap analysis of different spectrogram scenarios across 10 instruments. These boxplots illustrate the statistical metrics (Difference Mean, KL 
Divergence, JS Divergence, and EMD) for the feature importance heatmaps generated from CNN models using Spectral Contrast Spectrogram.
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complex audio scenarios, such as overlapping instruments or sound 
variations (e.g., instruments fading in and out), which could provide 
deeper insights into the model’s adaptability to diverse auditory conditions.

8 Future work

Building on the insights gained from this preliminary study, future 
work will focus on several enhancements to improve the robustness and 
applicability of the findings. Expanding the dataset to include a larger 
variety of real-world audio samples will be a primary objective, allowing 
for better generalizability and validation across different audio conditions. 
Additionally, incorporating more complex audio scenarios, such as 
overlapping instruments and varying sound intensities, could offer a more 
comprehensive assessment of the model’s performance and interpretability 
under realistic conditions.

Another key direction will be to refine and apply the statistical 
metrics developed here to evaluate feature importance in diverse 
datasets, potentially extending to a label-free, heatmap-driven loss 
function. This approach could reduce reliance on labeled data, moving 
toward unsupervised or semi-supervised learning frameworks that 
leverage the statistical patterns identified in heatmaps. These 
extensions will enhance the study’s contributions to CNN-based 
musical instrument recognition and aid in developing more 
interpretable and adaptive models for audio classification.
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