
TYPE Methods

PUBLISHED 20 December 2024

DOI 10.3389/frai.2024.1509179

OPEN ACCESS

EDITED BY

Ludmilla Huntsman,

Cognitive Security Alliance, United States

REVIEWED BY

Nikos Kanakaris,

University of Patras, Greece

George Tsihrintzis,

University of Piraeus, Greece

*CORRESPONDENCE

Loukas Ilias

lilias@epu.ntua.gr

RECEIVED 10 October 2024

ACCEPTED 27 November 2024

PUBLISHED 20 December 2024

CITATION

Tzoumanekas G, Chatzianastasis M, Ilias L,

Kiokes G, Psarras J and Askounis D (2024) A

graph neural architecture search approach for

identifying bots in social media.

Front. Artif. Intell. 7:1509179.

doi: 10.3389/frai.2024.1509179

COPYRIGHT

© 2024 Tzoumanekas, Chatzianastasis, Ilias,

Kiokes, Psarras and Askounis. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

A graph neural architecture
search approach for identifying
bots in social media

Georgios Tzoumanekas1, Michail Chatzianastasis2, Loukas Ilias1*,

George Kiokes3, John Psarras1 and Dimitris Askounis1

1Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National

Technical University of Athens, Athens, Greece, 2DaSciM, LIX, Ecole Polytechnique, Institut

Polytechnique de Paris, Palaiseau, France, 3Laboratory of Electrical Machines and Installations, Division

of Electrical, Electronics and Informatics, School of Engineering, Merchant Marine Academy of

Aspropyrgos, Aspropyrgos, Greece

Social media platforms, including X, Facebook, and Instagram, host millions of

daily users, giving rise to bots automated programs disseminatingmisinformation

and ideologies with tangible real-world consequences. While bot detection

in platform X has been the area of many deep learning models with

adequate results, most approaches neglect the graph structure of social

media relationships and often rely on hand-engineered architectures. Our work

introduces the implementation of a Neural Architecture Search (NAS) technique,

namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored

to Relational Graph Convolutional Neural Networks (RGCNs) in the task of

bot detection in platform X. Our model constructs a graph that incorporates

both the user relationships and their metadata. Then, DFG-NAS is adapted

to automatically search for the optimal configuration of Propagation and

Transformation functions in the RGCNs. Our experiments are conducted on

the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979

edges. We study the five architectures with the highest performance during the

search and achieve an accuracy of 85.7%, surpassing state-of-the-art models.

Our approach not only addresses the bot detection challenge but also advocates

for the broader implementation of NAS models in neural network design

automation.

KEYWORDS

bot detection, graph neural networks, neural architecture search, propagation,

transformation, social media platform X

1 Introduction

Social media are online community platforms and apps that let users create, share, and

interact with each other’s content. Social media content can be text, photos, videos, GIFs,

audio, etc. Social media can be used for various reasons, from users who share interests

communicating to getting informed about current worldwide events. Social media can also

be used for detecting early signs of stress and depression (Ilias and Askounis, 2023b; Ilias

et al., 2024b; Kerasiotis et al., 2024). The existence of social media in our day-to-day lives

is more prevalent than ever. As of 2023, there are roughly 4.9 billion social media users,

a percentage that is more than 60% of the entire population and more than 100 social

media platforms. X, previously known as Twitter, stands out as one of the most widely

recognized social media platforms. Twitter was launched in 2006. It revolves around the

concept of “following” other users. A user can follow accounts they are interested in and

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1509179
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1509179&domain=pdf&date_stamp=2024-12-20
mailto:lilias@epu.ntua.gr
https://doi.org/10.3389/frai.2024.1509179
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1509179/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

see their tweets in their timeline (“following”) and conversely

can have “followers” that see their tweets. Nowadays, it has been

established as a powerful tool for real-time news updates, public

discourse, and social movements, and continues to evolve and

enhance its user experience. In 2023, Twitter was renamed to X

by then-CEO Elon Musk. The extensive presence of social media

in the modern landscape has led to the emergence of accounts that

automate interactions on social media platforms, often mimicking

human behavior, the so-called bots. These bots can be coded

to perform a variety of tasks, such as automatically publishing

content, liking, sharing, following, or commenting on posts. Some

can even be programmed to engage in conversations to promote

specific agendas. Their behavior differs depending on their intent

and purpose, but they might share features, such as very high

or very low activity levels and more structured and characteristic

language patterns (Alsmadi and O’Brien, 2020). Uyheng et al.

(2022) examined the origin and traits of trolling messages, finding

that they often originate from automated bots and are distinguished

by their use of abusive language, reduced cognitive complexity,

and specific targeting of individuals or entities. Their study also

noted a tendency for bots to target right-leaning sources of

information, while trolls tended to engage with less polarized

content, spreading misinformation across diverse audiences. Bots

are very efficient in spreading misinformation, particularly when

programmed with optimized values for factors like walking speed,

network distribution, and strategy (Zhang et al., 2024). Fake

news and bots have had significant tangible consequences in

several cases. Users tend to believe conspiracy theories and

misinformation, and correction attempts can sometimes backfire

(Xu et al., 2023). Users might also share fake news for altruistic

or self-promotional purposes, yet those with greater social media

literacy are better equipped to identify and refrain from spreading

fake news (Mi and Apuke, 2024). Therefore, there’s a need for

measures to promote truthful reporting in media and detect any

cases of misinformation dissemination.

The need to detect bot accounts to shut them down is

quite immediate, assessing the hazards of their uncontrollable

presence on social media. Several studies to identify bots from

real users have been conducted that provide satisfactory results.

There have been several approaches, including supervised learning

(Lee et al., 2021), unsupervised learning (Cresci et al., 2017),

reinforcement learning (Alauthman et al., 2020), and GNN-

based architectures (Feng et al., 2021c). However, all these

traditional neural architectures often rely on fixed parameters

that are manually designed. Constructing efficient neural network

architectures requires extensive feature engineering and can be

a quite challenging and time-consuming procedure. Also, fixed

architectures often mitigate the models’ adaptability on other

datasets and tasks. Motivated by these limitations, we examine

the implementation of Neural Architecture Search (NAS) to

automate the process of discovering optimal architectures. NAS

explores a search space of possible architectures and identifies the

configurations that enhance the model’s performance.

A Neural Architecture Search method that has been proposed

to solve the performance issues of fixed architectures is Deep and

Flexible Graph Neural Architecture Search (DFG-NAS) (Zhang

et al., 2022). It employs an evolutionary algorithm to explore a

vast space of permutations of Propagation and Transformation

operations, to find the one with the best accuracy in the validation

set. Addressing the limitations of previous bot detection models

due to their fixed architectures we employ DFG-NAS on a GNN-

based approach for bot detection. This approach leverages the

user’s semantical and property information and constructs a

heterogeneous graph out of the follower-following relationships

between users. Then, we adapt the DFG-NAS approach to handle

Relational Graph Convolutional Neural Networks (RGCNs). The

model automatically searches for the permutation of Propagation

(P) and Transformation (T) functions, the two main processes of

the message-passing protocol, with the highest validation accuracy.

The model is also amplified with the use of the Gate operation on

the P connections and the use of the skip-connection operation on

the T connections.

To the authors’ knowledge, DFG-NAS has not been employed

before in the task of bot detection. All our experiments were

performed on the Twibot-20 dataset (Feng et al., 2021b). The

following sums up the contributions of our work:

• We implement DFG-NAS, tailored to RGCNs, to

automatically determine the most effective permutation

of the message-passing operations.

• We perform experiments to demonstrate the benefits of

architecture search in bot detection and compare our method

to state-of-the-art models.

• We perform a thorough ablation study on the necessity of

the user metadata in our graph, the Gate operation, and the

skip-connection operation in NAS.

2 Research objective

It is evident to any social media user that bots continue

to dominate the digital landscape despite extensive efforts in

bot detection and platform initiatives to stop their activities.

As technology advances, bots are programmed to mimic human

mannerisms more effectively, making them more resilient against

detection mechanisms. Beyond the irritation they pose to everyday

users, some bots can have tangible and detrimental effects on

human society. In 2016 fake news stories spread widely during

the U.S. presidential election campaign aiming to influence the

public vote (Bessi and Ferrara, 2016). Throughout the COVID-

19 pandemic (Ferrara, 2020), bots spread misinformation about

the virus and the vaccines on social media, leading to mob panic,

confusion, and even resistance to public health measures. Fake

news is often framed in a manner that fosters negativity in social

discussions and hinders individuals’ ability to consider diverse

perspectives, contributing to the formation of “echo chambers”

on social media platforms (Scheibenzuber et al., 2023). Bots also

exacerbate cyberbullying bymass-targeting users, leading to serious

psychological consequences. Social media platforms face challenges

in effectively moderating such content. Cyberbullying detection

methods often rely on unclear definitions and are prone to biases

in data annotation (Mahmud et al., 2023). Their evolving nature

raises concerns about the efficiency of current preventive measures,

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

highlighting the need for innovation to prevent the dangers posed

by this digital phenomenon.

The motivation for this research was constructing a model

characterized by adaptability across future datasets, ensuring

resilience in the face of evolving technology through time. Many

contemporary models rely on fixed architectures, often struggling

to demonstrate their efficiency on novel datasets. Although Neural

Architecture Search (NAS) has shown significant advantages in

various test cases, its application to bot detection remains relatively

underexplored, with limited but promising results noted in studies

such as Yang et al. (2023). Considering the dynamic nature

of the social media landscape and the continuous evolution of

bots, more flexible architectures specifically designed for bot

identification could offer a practical solution to mitigate their

real-world consequences.

This research aims to showcase the efficiency advantages

of architecture search and perhaps pave the way for more

implementations of NAS models in bot detection in the ongoing

battle against automated malicious activities.

3 Related work

3.1 Bot and fake news detection models

The task of bot identification has attracted numerous

studies and many state-of-the-art models propose fascinating

methodologies. We could mainly divide these models into

supervised learning approaches, unsupervised learning approaches,

and GNN-based approaches. In this section, we present some

baseline models proposed for bot detection and discuss how they

fall into the above categories.

Lee et al. (2021) applied various machine learning algorithms,

including SVMs, Naive Bayes, and decision trees, to build and

evaluate a supervised bot detection model. The features used in

their analysis included account-based features (e.g., the number

of followers, friends, tweets), temporal features (e.g., time of

account creation, tweet frequency), and content-based features

(e.g., usage of URLs, hashtags). Kudugunta and Ferrara (2018)

suggested a deep learning model that uses the user’s tweets and

some metadata features. This architecture includes a tokenizer,

GloVE embedding layer, LSTM, and Dense layers. Wei and

Nguyen (2019) used only users’ tweets with no context of prior

knowledge on user profiles, friendship networks, or behavior. They

proposed a recurrent neural network (RNN) model that used word

embeddings to encode tweets, a three-layer Bidirectional LSTM

(BiLSTM), and a softmax layer at the binary output. Cai et al.

(2021) proposed their model (BeDM) that involved deep neural

networks in bot detection. They employed convolutional neural

networks (CNNs) and LSTM, using only the tweet semantics,

such as the frequency and the type of publications. Botometer

is a web-based program developed by Davis et al. (2016) at

Indiana University. It leverages more than 1,000 features to

classify Twitter accounts as bots and humans, such as friends,

the structure of the social network, user meta-data, temporal

activity, and sentiment analysis. Botometer distinguishes the

accounts by an overall bot score (ranging from 0 to 5), along

with several other scores. The greater the score, the greater

the probability that this account is linked to a bot. Yang et al.

(2022) presented a thorough introduction of the latest version

of Botometer for new users and demonstrated a case study.

Alarfaj et al. (2023) utilized features based on content attained

from the Twitter API and employed state-of-the-art classifiers,

like MLPs, random forest, and naive Bayes. Features included

messages, special characters, sentiment analysis, etc. Alothali et al.

(2022) introduced their framework, called Bot-MGAT, which

stands for bot multi-view graph attention network. The scientists

pointed out that other approaches couldn’t adjust to different

datasets since there wasn’t enough recently updated labeled

data, which made sense given the constantly shifting behavior

of the bots. They presented a methodology that makes use of

transfer learning (TL) to leverage the multi-view graph attention

mechanism. The framework also benefited from semi-supervised

learning, using labeled and unlabeled data. The authors used

the TwiBot-20 (Feng et al., 2021b) due to its graph structure,

extracting 18 features for the training. Feng et al. (2021a) suggested

SATAR. In particular, SATAR leverages the user’s semantics,

property, and neighborhood information. It adjusts by fine-

tuning parameters and pre-training on a huge number of self-

supervised users. The authors proposed two alternative models:

SATARFC and SATARFT . Ilias and Roussaki (2021) proposed

two methods for bot detection using deep learning techniques.

Their first approach extracts a substantial 71 features per user

to utilize for account classification to bots and genuine users.

They also employed various feature selection techniques to discard

redundant and irrelevant features. Their second methodology

proposes a deep learning architecture for tweet-level classification.

This architecture incorporates an attention mechanism atop the

Bidirectional Long Short-Term Memory (BiLSTM) layer. During

the learning phase, the attention mechanism helps the model

better focus on relevant information. Ilias et al. (2024a) focused

solely on user descriptions and sequences of actions performed

by Twitter accounts. Their approach includes both unimodal

(text or image) and multimodal (both text and image) methods.

They designed digital DNA sequences per user based on tweet

type and content, converted these sequences into 3D images,

and fine-tuned pre-trained vision models like AlexNet, ResNet,

and VGG16. For bot detection through user descriptions, they

fine-tuned TwHIN-BERT, a transformer model. In multimodal

approaches, they use VGG16 for visual representation and

TwHIN-BERT for textual representation, proposing three fusion

methods: concatenation, gated multimodal unit (GMU), and

cross-attention. They conducted their experiments on both

the Cresci’17 and TwiBot-20 dataset. Wei and Nguyen (2023)

proposed their model BOTLE. Their model utilizes a recurrent

neural network (RNN) with Bidirectional Gated Recurrent Units

(BiLGRU) connecting two hidden layers of opposite directions

leading to the same output. Notably, BOTLE does not rely on

handcrafted features or pre-existing information regarding account

profiles. Linguistic embeddings, including word, character, part-

of-speech, and named-entity embeddings, are employed to encode

tweet content, eliminating the need for labor-intensive feature

engineering. Bazmi et al. (2023) introduced the Multi-View Co-

Attention Network (MVCAN), which aims to capture the latent

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

topic-specific credibility of both users and news sources. This

model represents news articles, users, and news sources in a

manner that encodes topical viewpoints, socio-cognitive biases,

and partisan biases as vectors. These features are encoded using

a variant of the Multi-Head Co-Attention (MHCA) mechanism.

Shevtsov et al. (2023) introduced theirmodel BotArtist, constructed

on a semi-automatic machine learning pipeline, that requires

minimal features for training, taking into consideration the loads

of data needed by previous approaches and the recent monetization

of Twitter API requests. Sujith et al. (2022) proposed a supervised

learning approach that used multiple models to detect bots. Their

classification of accounts relied on features like user metadata,

tweet content, and posting history, among others. In addition

to identifying bot accounts, the authors assigned a level of

significance or influence to them, prioritizing the removal of the

most influential or harmful bot accounts. Liu et al. (2023) proposed

BotMoE, which leverages three perspectives of user information

(metadata, text, and graph representations) and incorporates a

community-aware Mixture-of-Experts (MoE) layer to assign users

to different communities. The user representations are fused with

an extractor fusion layer and supervised learning is employed

to train the BotMoE framework to perform community-aware

bot detection. Saxena et al. (2023) proposed two frameworks

for recognizing accounts that disseminate false information on

Twitter. Initially, they employed profile-based data, including the

verified status, profile photo, and account lifetime and activity.

Then, they combined tweet-propagation patterns and assigned

a credibility score to each user, signifying their authenticity.

Dimitriadis et al. (2024) proposed CALEB that is based on the

Conditional Generative Adversarial Network (CGAN) and its

extension, Auxiliary Classifier GAN (AC-GAN). By developing

realistic artificial bot varieties, they were able to replicate the

evolution of bots. As a result, they enhanced already-existing

datasets and were able to identify bots before they emerged.

Yang et al. (2020) used a combination of unsupervised and

supervised learning methods for bot detection. Specifically, the

authors utilized minimal features derived from user metadata,

temporal patterns, network structure, sentiment analysis, and

linguistic cues that they fed into a machine learning pipeline,

that reduced dimensionality and included classification algorithms.

Cresci et al. (2017) introduced the Social Fingerprinting technique

for bot detection, a Digital DNA technique that models social

network users’ behaviors. Each user is represented as a sequence

of characters depending on the type and content of the tweets

they publish, simulating a DNA sequence. The authors try to find

similarities in the sequences defining the length of the Longest

Common Substring (LCS) between two sequences. For a set

of real users, the length of LCS was found to be particularly

small, leading to the conclusion that longer sequences than

the average LCS were bots. Based on this idea, the authors

developed two techniques, one based on supervised learning

and another on unsupervised learning to find similarities in

the behavior of accounts. Quezada et al. (2023) developed a

real-time bot infection detection model that analyzes Domain

Name System (DNS) traffic events. They extracted 13 attributes

from DNS logs to create unique fingerprints for servers. Using

Isolation Forest, an algorithm for unsupervised learning, they

identified anomalies in the fingerprints to classify hosts as

infected or not. The model also utilized Domain Generation

Algorithms (DGA) to search for queries to anomalous domains.

Finally, a Random Forest, a supervised learning algorithm, was

employed to create a model for detecting future bot infections

on hosts. Miller et al. (2014) approached bot identification as

an anomaly detection problem. They extracted 107 features from

user’s tweets and property information and adapted two stream

clustering algorithms, StreamKM++ and DenStream, to facilitate

spam detection and identified bot users as abnormal outliers.

Chavoshi et al. (2016) developed DeBot, a bot detection system

for social media, using warped correlation to identify likely

bot accounts based on their high synchronicity, a characteristic

unlikely in human users. DeBot doesn’t require labeled data

and operates on activity correlation. Moreover, through the

utilization of a lag-sensitive hashing technique, it can promptly

cluster accounts for real-time classification. Minnich et al. (2017)

proposed their real-time unsupervised model BotWalk. Using

metadata, content, temporal, and network features they employ

anomaly detection, comparing each user to a seed bank of labeled

accounts iteratively. Mannocci et al. (2022) proposed MulBot,

an unsupervised bot detection system that utilizes multivariate

time series (MTS) analysis. They employed an LSTM autoencoder

to map the MTS data into a latent space and then conducted

clustering on this encoded data to find dense clusters of users

exhibiting similar behavior, assuming this was a common trait of

bot accounts. MulBot also showcases effectiveness in identifying

and distinguishing various botnets. Wu et al. (2022) employed

unsupervised machine learning techniques, specifically K-Means

and Agglomerative clustering, for Twitter bot detection. They used

account activity, popularity, and verification status, among other

features for the clustering. Koggalahewa et al. (2022) introduced

an unsupervised method for bot identification based on a user’s

peer approval in the social network. They based peer acceptance

between two users on their shared interests over a multitude of

issues. Lopes et al. (2022) introduced their botnet identification

model, designed to detect networks of compromised devices under

master control. Their approach relies on analyzing network flow

behavior through a contemporary method known as the Energy-

based Flow Classifier (EFC). EFC employs inverse statistics to

enhance anomaly detection.

Ali Alhosseini et al. (2019) introduced the use of graph

convolutional neural networks (GCNN) in bot identification.

They noted that besides the users’ features, the construction of

a social network would enhance a model’s ability to distinguish

the bots from the genuine users. Feng et al. (2022) introduced

the aspect of diversity in relationships and influence dynamics

among users in the Twittersphere for bot detection. They proposed

a bot detection framework that leverages a network with users as

nodes and the different relations as edges. Then they aggregated

messages across users and operated heterogeneity-aware Twitter

bot detection. They conducted their experiments using the Twi-

Bot20 dataset. Feng et al. (2021c) proposed their model for

bot detection BotRGCN, which is short for Bot detection with

Relational Graph Convolutional Networks. BotRGCN builds a

heterogeneous graph out of the following relationships and uses

information, such as the user’s description, tweets, numerical

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

and categorical property set, and neighborhood information.

The experiments were conducted on the Twi-Bot20 dataset

(Feng et al., 2021b), but BotRGCN could exploit other types

of relations if supported by the dataset. Kušen and Strembeck

(2020) examined the structural dynamics of conversations between

humans and bots on Twitter following emotionally charged riot

events. They introduced “emotion-exchange motifs” to identify

recurring patterns in emotional message exchanges. Their findings

revealed that human conversations exhibited various motifs with

reciprocal edges and self-loops, indicating interactive dialogue. In

contrast, bots typically disseminated identical messages to multiple

users or did not anticipate replies. Moreover, bots frequently

initiated conversations and often conveyed fear-inducingmessages.

Bui and Potika (2022) introduced a graph-based method for bot

detection. They detailed their data collection process and identified

specific behaviors indicative of an account being associated with

a bot. These behaviors can include engagement with other

users, nonsensical usernames and profile information, repetitive

content posting, and retweeting activity. These observations

are utilized to label the accounts accordingly. Dehghan et al.

(2023) suggested that the local social network formed around

each account can aid in identifying the bots. To prove their

hypothesis, they compared two classes of embedding algorithms,

the former of which focused on proximity data and the latter

that focused on nodes’ neighborhoods. They discovered that the

structural embeddings presented higher information underlining

the valuable information that is embedded within each node’s

local network. Pham et al. (2022) introduced their approach

Bot2Vec, which eliminated the need for user profile features.

To improve the model’s generalization on many social media

platforms, they used only local neighborhood relations and the

community structure of the graph that represented the users

and employed an random walk strategy in the communities.

Noekhah et al. (2020) proposed their model “Multi-iterative

Graph-based opinion Spam Detection” (MGSD) that aims to

identify various types of spam entities. It analyzes all kinds

of relationships between them and utilizes domain-independent

features, allowing for generalization across types of opinionated

documents. Trained on both existing and novel features, MGSD

assigns a spam score to each entity. Ye et al. (2023) proposed

HOFA, a graph-based framework for bot detection, featuring

two key modules: Homophily-Oriented Graph Augmentation

(Homo-Aug) and Frequency Adaptive Attention (FaAt). The

Homo-Aug employs an MLP to extract user representations

and generate a k-NN graph. Meanwhile, the FaAt module

acts as a low-pass filter for homophilic edges and a high-pass

filter for heterophilic edges. This function prevents excessive

smoothing of user features by the neighborhood. El-Mawass

et al. (2020) explored using the output of existing supervised

classification systems to detect spammers. They incorporated the

classifiers’ outputs as prior beliefs within a probabilistic graphical

model framework. Proposing a bipartite users-content interaction

graph, they facilitated the spread of beliefs to similar accounts.

Constructing a Markov Random Field on a graph of similar users,

they employed Loopy Belief Propagation to derive the predictions.

Their findings demonstrated a notable enhancement in recall while

maintaining precision.

3.2 Neural architecture search approaches

Neural architecture search can increase performance in many

tasks (Chatzianastasis et al., 2023). Graph neural architecture search

is proposed as the solution to performance limitations due to a

fixed architecture. Parameter tuning in neural networks can be a

challenging task. Many NAS methods have been suggested that

include variations in the search space, the optimization method,

and the architecture evaluation.Wewill divide thesemethods based

on their optimization method, which will include reinforcement

learning, evolutionary algorithms and gradient-based methods.

Zhou et al. (2022) proposed the automated graph neural

networks (Auto-GNN) framework. Auto-GNN searches for the

best GNN architecture possible in a predetermined search

space, divided into six classes of actions: hidden dimension,

attention function, attention head, aggregate function, combine

function, and activation function. For efficiency reasons, the

authors designed a conservative explorer to preserve the optimal

neural architecture discovered during the search. The authors

also implemented constrained parameter sharing, adapted to the

heterogeneous GNN architecture. Two experimental methods

were presented: inductive, in which the graph structure and

node features on the testing and validation sets are unknown

during training, and transductive, which involves the availability

of unlabeled data for testing and validation during training. Gao

et al. (2021) proposed GraphNAS to implement an automatic

search of the best graph neural architecture based on reinforcement

learning. The search space covers sampling functions, aggregation

functions, and gated functions. GraphNas also uses more efficient

parameter-sharing techniques than other contiguous models for

CNNs and RNNs. After training 1,000 different architectures,

the five best ones were used for the testing, which surpassed

human-invented ones or those produced by random searches. Zhao

et al. (2020) proposed the SNAG framework (Simplified Neural

Architecture Search for Graph neural networks). The suggested

framework had two key components: Node aggregators, which

focused on neighborhood features, and Layer aggregators, which

focused on the range of the neighborhood used. The search space

algorithm was a variant of Reinforcement Learning that adopted

the weight-sharing mechanism (SNAGWS). Nunes and Pappa

(2020) presented one NAS methods for optimizing GNNs based on

reinforcement learning and one based on evolutionary algorithms.

The authors defined two cases of search spaces: Macro, where

the architectures generated have the same structure, and Micro,

where the architectures are not rigidly structured but combine

several convolutional schemas. They concluded that EA and RL

found very similar architectures to those found by a random

search, a significantly simpler technique. However, they pointed

out that whilst the other approaches generated large structures

in as much as 80% of the situations, EA created the majority of

GPU-fitting designs. Li et al. (2023) proposed Meta-GNAS that

uses meta-reinforcement learning from past tasks to apply that

knowledge to new tasks. Additionally, they speed up the search

by using a predictive model to evaluate the potential graph neural

architectures instead of training them from scratch.

Peng et al. (2020) implemented a NAS approach to human

action recognition from skeleton movements. The search space

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

was enlarged with diverse spatial-temporal graph modules while

constructing higher-order connections between nodes using

Chebyshev polynomial approximation. The search algorithm used

is an evolutionary adaptation with a high sampling efficiency,

denoted Cross-Entropy method with ImportanceMixing (CEIM).

Jiang and Balaprakash (2020) adapted the method of neural

architecture search to the conception of GNNs for predicting

molecular properties. The authors designed neural networks

for message-passing (MPNNs) between nodes. To find an

optimal MPNN from the user-defined search space, they used

regularized evolution (RE) from the DeepHyper package. Zhang

et al. (2022) proposed DFG-NAS, an innovative method that

allows for automatic search of very deep and adaptable GNN

architectures. DFG-NAS focuses on exploring macro-architectures,

specifically the implementation details of atomic propagation (P)

and transformation (T) operations within the GNN. P is linked

to the graph structure, whereas T concentrates on the non-

linear transformations within the neural network. In addition,

they adopted gating and skip-connection mechanisms for deeper

GNN pipelines. They used an evolutionary algorithm to find the

optimal architecture, which supported four cases of mutation.

Peng et al. (2023) introduced Fast-ENAS as a computationally

efficient alternative to Evolutionary Neural Architecture Search.

This method utilizes a training-free performance metric that is

computed with a single forward pass. The authors enhance the

search process by incorporating a GCN-based contrastive predictor,

aiming to improve the accuracy of the estimated performance of a

candidate architecture, bringing it closer to its actual performance.

Shang et al. (2023) introduced AG-ENAS, which brings two

key innovations to the Evolutionary Neural Architecture Search

process. Firstly, it employs an adaptive parameter adjustment

mechanism based on population diversity and fitness, enhancing

the adaptation of genetic operators’ associated parameters.

Secondly, the model introduces a mutation operator guided by

the gene potential contribution. It improves offspring quality by

assigning weight to more valuable genes through a distribution

indexmatrix. The concept of aging is integrated into environmental

selection to mitigate premature convergence. Lopes et al. (2024)

presented Guided Evolutionary Architecture (GEA), which tackles

the problem of other NAS models getting trapped in suboptimal

solutions during the search process. GEA overcomes this challenge

by generating and evaluating multiple architectures using a zero-

proxy estimator and selecting only one with the best-performing

one for the next generation. This approach expands the search space

without increasing complexity, as new architectures are derived

from previous ones through mutations.

Zhao H. et al. (2021) proposed their framework SANE. The

search space has similarities with the search space from the

SNAG framework, with Node and Layer aggregators. However, the

authors presented a novel differentiable search algorithm. Cai et al.

(2021) introduced a GNAS approach featuring a uniquely designed

search space and a gradient-based search approach. The authors

developed a three-level Graph Neural Architecture Paradigm

(GAP) that includes two types of fine-grained atomic operations

(neighbor aggregation and feature filtering) that are derived

from message-passing, to build the search space. Li et al. (2021)

introduced an innovative dynamic one-shot search space designed

for multi-branch neural architectures within GNNs. The dynamic

nature of the search space offers a larger capacity than a larger

predefined search space. The architectures with lower importance

weights are removed periodically from the population, while the

candidate operations are unique to every edge of the computational

graph. The authors performed both supervised and unsupervised

techniques for the training part. Zhao J. et al. (2021) proposed a

gradient-based architecture searchmethod for predicting a system’s

remaining useful life. Their approach models the search space

as a directed acyclic graph (DAG), where nodes represent latent

representations and edges represent transformation operations.

By employing candidate operations like ReLU and tanh, along

with the softmax function, they make the search space continuous

and the objective function differentiable, facilitating gradient-based

optimization methods to find the optimal architecture.

3.3 Related work review findings

From the aforementioned research works, it is clear that

there have been many approaches to the task of bot detection.

Previous studies include supervised, unsupervised, and graph

neural network (GNN) based methods. While they have shown

promising results, the relentless evolution of bot accounts toward

simulating human-like patterns poses a significant challenge

to their effectiveness. These models are constrained by fixed

architectures, limiting their adaptability to newer datasets.

Little work has been done in employing Neural Architecture

Search methods in GNN-based methodologies for bot detection.

Our work shifts the focus on overcoming the performance

limitations due to fixed architectures, by utilizing DFG-

NAS to search for the best configuration of Propagation and

Transformation functions in the message passing protocol of

our RGCNs. Instead of extensive feature engineering our model

searches for the permutation with the highest accuracy and aims

for better adaptability in newer datasets that will depict future

bots’ behavior. Moreover, DFG-NAS presents high advantages,

as it is suitable for GNN-based methods and overcomes over-

smoothing and model degradation issues with the gate and

skip-connection operations.

4 Dataset

The TwiBot-20 Dataset (Feng et al., 2021b) is a publicly

available dataset, constructed with a breadth-first search (BFS)

methodology. The dataset includes information about each user’s

profile information obtained from the Twitter API, recent tweets,

and domains of the user’s interest. It also contains information

about the user’s neighborhood, which helps us construct a

heterogeneous graph from the following relationships. Table 1

presents all the attributes of the TwiBot-20 Dataset and a short

description of them. The information from the user profiles is

further mentioned in the preprocessing part of the model. The

graph that is constructed consists of 229,580 nodes and 227,979

edges. The objective of the bot detection system is to distinguish

between bots and genuine users by analyzing information from user

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

TABLE 1 TwiBot-20 dataset attributes.

Attribute Description

ID ID from Twitter to identify the user

Profile Profile information from Twitter API

Tweet 200 recent tweets of the user

Neighbor 20 random followers and followings of the user

Domain Domain of the user (politics, business, entertainment, sports)

Label Label of the user (“1”: bot, “0”:human)

descriptions, tweets, numerical and categorical properties, as well as

neighborhood information.

5 Methodology

In this part, we present a complete analysis of our methodology.

First, we describe the preprocessing of the user metadata used

in our model. Next, we introduce the use of Relational Graph

Convolutional Neural Networks and the two functions in Message

Passing. Last, we explain the use of DFG-NAS (Zhang et al.,

2022) in searching for the best permutation of Propagation and

Transformation functions. In Figure 1, we depict the architecture of

themodel on a higher level, while Figure 2 presents the connections

between the different layers of an example configuration of P

and T functions.

5.1 Data preprocessing

We follow the preprocessing suggested by Feng et al. (2021c)

for BotRGCN. Each user’s representation includes metadata that

are preprocessed as follows:

• Overall: user’s description, tweets, numerical and categorical

properties are encoded and concatenated to finally represent

the user’s metadata:

r = [rb; rt; r
num
p ; rcatp ] ∈ R

D×1 (1)

where D is the user embedding dimension. Each feature’s

procession and representation are explained below. Later we

will prove that the model’s performance is attributed to all

these features and not only to the heterogeneous graph.

• User description: the user descriptions are encoded with pre-

trained RoBERTa:

b̄ = RoBERTa({bi}
L
i=1), b̄ ∈ R

Ds×1 (2)

where b̄ denotes the user description representation and

Ds is the dimension of the RoBERTa embedding. The vectors

for the user’s description are derived:

rb = φ(WB · b̄+ bB), rb ∈ R
D/4×1 (3)

where WB and bB represent trainable parameters, φ

denotes the activation function, and D is the dimension of the

embedding.

• User tweets: the user tweets are also encoded using RoBERTa.

The ultimate representation of the user’s tweets, denoted as

rt , is computed as the average of the representations of all

individual tweets.

• User numerical properties: the user’s numerical properties

are adopted straight from the Twitter API with no feature

engineering and presented in Table 2. For this information

z-score normalization is conducted to get the representation

rnump from a fully connected layer.

• User categorical properties: the user’s categorical properties

are also encoded with MLPs and GNNs, without feature

engineering, just as the numerical properties. They are

adopted straight from the Twitter API and presented in

Table 3. After one-hot encoding, they are concatenated and

transformed through a fully connected layer and leaky-relu to

get their representation rcatp .

5.2 Relational graph convolutional neural
networks

Our method builds a heterogeneous graph out of the following

relationships. Users are considered nodes and the “following” and

“followers” relations are represented as edges connecting the nodes.

The user’s “followers” are therefore represented differently than the

user’s “following.” The heterogeneous graph that is constructed can

represent better the relations between users and more relations

between the users could be integrated into the graph if supported

by the dataset. The users also contain the concatenated metadata

that we described below.

To combine the users’ representations with the relationships

between users we make use of RGCNs. The message-passing

process in RGCNs comprises two fundamental operations:

propagation (P) of the representations of the user’s neighbors and

transformation (T) on these representations. Below we describe the

process behind the two functions:

• Propagation (P): propagation includes message aggregation

from neighbor nodes without explicit node feature

transformation. The mathematical expression for the

propagation step is as follows:

h
(l+1)
i =

∑

r∈R

∑

j∈Nr
i

1

ci,r
W(l)

r h
(l)
j (4)

where h
(l+1)
i is the new node feature after propagation, R

is the set of relations, Nr
i are the neighbors of the node with

relation r, ci,r is a normalization constant that can be learned

or chosen in advance (for example ci,r = Nr
i ) and W

(l)
r is the

learnable weight matrix for relation r.

• Transformation (T): transformation occurs on each node

based on the relations. The mathematical expression for the

transformation step is as follows:

h
(l+1)
i = Wrooth

(l)
i +

∑

r∈R

(Wrh
(l)
i ) (5)

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

FIGURE 1A

Model used for Bot detection. User metadata is fed to the architecture proposed by NAS. The P step includes message aggregation from neighbor

nodes. The T step includes the transformation process on each node based on neighbor relations. In the final part, an MLP decides whether the

account belongs to a real user or a bot.

where h
(l+1)
i is the new node feature after transformation,

Wroot is the learnable weight matrix for the root node, Wr is

the learnable weight matrix for relation r and R is the set of

relations.

We segregate these two types of functions since combinations

of them will construct the search space for the architecture search.

5.3 Graph neural architecture search

The use of Graph Neural Networks offers undeniable

advantages in the task of bot detection. However, maximizing their

performancemay require extensive feature engineering. This is why

we employ Graph Neural Architecture Search, using the model

DFG-NAS (Zhang et al., 2022). Thus, we search for the permutation

of Propagation and Transformation steps that achieves the highest

accuracy. Most G-NAS methods have a fixed pipeline length since

the performance decreases with too many P operations as the layers

become deeper, which is referred to as the over-smoothing issue.

Propagation and transformation operations regulate the effect of

smoothing. Moreover, with unlimited pipeline length DFG-NAS

searches for more flexible pipelines of P and T operations, using

an evolutionary algorithm. It also makes use of gating and skip-

connection mechanisms in the P and T operations, respectively.

The search space includes P-T combinations and the number of

P-T operations. The output of node v in the l-th layer is represented

by o
(l)
v in a single P or T operation within a single GNN layer of the

model. The layer indices of all P and T operations are included in

two sets, LP and LT . The connections of P and T are depicted in

Figure 1B and also described below.

5.3.1 Propagation connections
An imminent problem in GNNs is over-smoothing or under-

smoothing, a problem that arises with too many or too few

propagation operations. To achieve suitable smoothness for

FIGURE 1B

Example of connections between the layers of NAS architecture.

New T steps congregate information from all previous T steps. P

steps propagate their embeddings and sum them up for the next T

step.

TABLE 2 User numerical properties.

Feature name Description

#followers Number of followers

#followings Number of followings

#favorites Number of likes

#statuses Number of statuses

active_days Number of active days

screen_name_length Screen name character count

different nodes, the P operations are amplified with a gating

mechanism. If the next operation is also P, the result of the l-th

P operation is the propagated node embedding of o(l−1). On the

other hand, if T is the next operation, a node-adaptive combination

weight is allocated for the node embeddings propagated by all of

the previous P operations. Formulatively:

z(l)v = P(o(l−1)
v ) (6)

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

TABLE 3 User categorical properties.

Feature name Description

protected Protected or not

geo_enabled Geo-location enabled or not

verified Verified or not

contributors_enabled Enable contributors or not

is_translator Is translator or not

is_translation_enabled Translation or not

profile_background_tile The background tile

profile_user_background_image Background image or not

has_extended_profile Extended profile or not

default_profile The default profile

default_profile_image The default profile image

o(l)v =











z
(l)
v , followed by P
∑

i∈LP ,i≤l

softmax(ai)z
(i)
v , followed by T (7)

where ai = σ (s · oiv) represents the weight for the i-th layer

output of node v. Here, s is the learnable vector shared among the

entirety of nodes, and σ denotes the Sigmoid function. To ensure

proper scaling, the Softmax function is employed to normalize the

sum of gating scores, making it equal to 1.

5.3.2 Transformation connections
An imminent issue with GNNs is the model degradation issue,

caused by a hyperbolic amount of transformation operations and

may result in a reduction of the model’s accuracy. To mitigate

this issue, skip-connection mechanisms are used in T operations.

Each T operation’s input is the total of all the T operations’

outputs up to the last layer and the output from the layer

before it. The input and output of the l-th T operation can be

formulated as:

z(l)v = o(l−1)
v +

∑

i∈LT ,i<m(l)

o(i)v (8)

o(l)v = σ (z(l)v w(l)) (9)

where m(l) represents the index of the last T operation before

the l-th layer, and W(l) denotes the trainable parameter in the l-th

T operation.

Evolutionary algorithms are a class of optimization algorithms

inspired by biological evolution that aim to achieve the best

accuracy in offspring through mutations. In our case, each

GNN architecture is represented as a sequence of P and T

operations. Each pipeline can be considered a chromosome

and the mutations that occur simulate nature’s mutations.

These mutations can happen at any random position in the

sequence. In our instance, four different cases of mutation can

be enforced:

• +P: append a propagation operation.

• +T: append a transformation operation.

• P→T: replace a propagation operation with a transformation

one.

• T→P: replace a transformation operation with a propagation

one.

Initially, k distinct GNN designs are generated at random and

evaluated on the validation set. These architectures represent the

initial population set Q. Subsequently, m (m < k) members of

the population are randomly sampled, and parent A is determined

by selecting the member with the highest validation accuracy. By

enforcing a random mutation of the four presented on A, a child

architecture B is produced. B is then evaluated and added to the

population, and the oldest person is eliminated. After T generations

of this procedure, the architecture with the best performance is

eventually returned.

DFG-NAS returns a sequence of P and T steps. As illustrated

in Figure 1A, each step consists of an RGCN that conducts one of

the twomain functions as we described incorporating both the user

metadata and the user relations. After the RGCNs layers an MLP is

employed to finally distinguish bots from genuine users.

6 Experiments

6.1 Baselines

We compare our proposed apporach to the state-of-the-art

models that are referenced in the paper of BotRGCN (Feng et al.,

2021c). These experiments are all ran on the same dataset as the one

we used for a fair comparison. We are using the published results

for the comparison. More specifically, we compare our model to

these state-of-the-art models:

• Lee et al. (2021) employed different supervised algorithms

with several user features.

• Yang et al. (2020) used a combination of supervised and

unsupervised learning with minimal user features.

• Kudugunta and Ferrara (2018) used both the tweets and the

account metadata.

• Wei and Nguyen (2019) employed an RNN model utilizing

only the user’s tweets.

• Miller et al. (2014) extracted 107 features and employed stream

clustering algorithms.

• Cresci et al. (2017) identified bots by computing the longest

common substring between encoded sequences of users.

• Botometer (Davis et al., 2016) is a web-based program that

leverages more than 1,000 user features.

• Ali Alhosseini et al. (2019) introduced graph convolutional

neural networks in bot detection.

• SATAR (Feng et al., 2021a) leverages the user’s semantics,

property, and neighborhood information

• Feng et al. (2021c) used the user’s description, tweets,

numerical and categorical properties, and neighborhood

information.

• Ilias et al. (2024a) designed two cross-attention layers based on

the digital DNA sequence.

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

FIGURE 2

Permutations of Propagation (P) and Transformation (T) functions of

the top-5 performing architectures from DFG-NAS. Their validation

accuracies in the architecture search (from up to down) are: 87.01%,

86.99%, 86.95%, 86.89%, 86.82%.

6.2 Experiment settings

The experiment was run on Google Colab using Nvidia’s T4

GPUs. The population set k for the architectural search is 15, and

the maximum generation time T is 80. The training budget of each

GNN architecture is 70 epochs. These numbers although limited

due to our resources, provide a great example of the efficiency

of our model. More complex architectures that we tested do not

necessarily provide better results. Also, the number of epochs is

sufficient to get a good idea of each architecture’s accuracy. Adam

optimizer is used for training, and its learning rate is set to 0.04.

The criterion is Cross Entropy Loss and the regularization factor is

2e-4. Dropout is applied to all feature vectors at a rate of 0.5, and

dropout among GNN layers is set to 0.8.

After running the NAS method we process the results and

examine the five architectures with the best accuracy in the

validation set. Each architecture is now trained with 100 epochs on

the TwiBot-20 dataset (Feng et al., 2021b). The train set is 70% of

the dataset, the validation set is 20% and the test set is 10%. Adam

optimizer with a learning rate of 1e-3 is also used for training.

Then each architecture is tested on the test set. We will present the

findings of these experiments below.

6.3 Evaluation metrics

We assess our model’s performance using its Accuracy, F1-

score, Precision, Recall, Specificity, and MCC. These metrics are

computed by labeling the bots as the positive class and the genuine

users as the negative class. To compare the performance of our

model to the other baseline models we will only use the metrics

Accuracy, F1-score, and MCC.

7 Results

Each architecture during the search is saved with its P-T

configuration, accuracy in the validation set, and accuracy in the

test set. In Figure 2, the five architectures with the highest validation

accuracy that are chosen from the NAS method are depicted.

These architectures are trained and tested from scratch in

TwiBot-20 dataset. We present all the metrics attained by all the

architectures in Table 4.

All selections achieve good metrics and present advantages

in bot detection over state-of-the-art methods. These results

underscore the significant advantages that emerge from

employing architecture search techniques regarding the field

of bot recognition. Moreover, they establish the efficiency

of utilizing user features and relationships between users in

bot detection.

Upon closer examination of the results, the third architecture

achieves the best evaluation metrics. The fifth architecture has

the highest precision. However, all the architectures present

high metrics of accuracy, F1-score, and MCC and whichever

architecture we choose could compete with state-of-the-art models.

From now on we will refer to the third architecture as our model,

since it provides the highest accuracy.

In Table 5 we present the performance of the baseline methods

on the TwiBot-20 dataset compared to ours. We see that our

model benefits from the search for the fittest architecture that we

performed beforehand, as it achieves a higher accuracy, F1-score,

and MCC than other state-of-the-art methods.

8 Ablation study

To demonstrate our model’s effectiveness and integrity we will

perform an ablation study on the basic ideas: the user’s features

used for the training, the Gate operation, and the skip-connection

operation.

To prove that using multi-modal information is vital to our

model performance we will train the architecture that produces the

best results with reduced features. We will reduce one feature at

a time and use combinations of the features for the training. We

present the results in Table 6.

We see that training with reduced features may achieve higher

metrics in some cases. Notably, training without descriptions has a

higher F1-score than the original model but has a lower precision.

Also, training without tweets has a higher recall value. Training

without numerical properties has a higher precision and specificity

but a lower MCC than training without description. Training with

only the categorical and numerical properties has the highest recall.

Therefore, training with combinations of features does not achieve

as high metrics as training with all the features in each case,

meaning that all features contribute to the model’s performance.

These remarks are important to consider for future research in

ensuring the dataset’s quality, but training the model with all the

features provided makes it more adaptable to other datasets. For

further understanding we will train the model using only one

feature at a time, to investigate their importance separately. We

present the results in Table 7.

Obviously, the model trained with all the features has the best

performance. From the results, we deduce that the categorical

property is the feature that contributes the most to the model’s

sufficient accuracy. This ablation study proves that all features are

advantageous for training our model to perform well in the task of

bot detection. However, they do not contribute equally, and more

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

TABLE 4 Performance of the architectures from architecture search.

Model Accuracy F1-score Precision Recall Specificity MCC

1st Architecture 0.852± 0.005 0.865± 0.008 0.851± 0.015 0.880± 0.031 0.818± 0.027 0.702± 0.010

2nd Architecture 0.855± 0.004 0.869± 0.005 0.853± 0.007 0.886± 0.012 0.819± 0.012 0.709± 0.009

3rd Architecture 0.857 ± 0.004 0.871 ± 0.003 0.849± 0.008 0.895 ± 0.007 0.812± 0.013 0.712 ± 0.007

4th Architecture 0.852± 0.006 0.864± 0.008 0.856± 0.009 0.873± 0.026 0.828± 0.018 0.702± 0.013

5th Architecture 0.852± 0.007 0.864± 0.008 0.858 ± 0.003 0.872± 0.019 0.829 ± 0.007 0.703± 0.014

Values are reported as mean± standard deviation. Five runs of results are averaged. The best outcomes for each evaluation metric are in bold.

TABLE 5 Performance of models on the TwiBot-20 dataset.

Model Accuracy F1-score MCC

Lee et al. (2021) 0.7456 0.7823 0.4879

Yang et al. (2020) 0.8191 0.8546 0.6643

Kudugunta and

Ferrara (2018)

0.8174 0.7517 0.6710

Wei and Nguyen

(2019)

0.7126 0.7533 0.4193

Miller et al. (2014) 0.4801 0.6266 -0.1372

Cresci et al. (2017) 0.4793 0.1072 0.0839

Davis et al. (2016) 0.5584 0.4892 0.1558

Ali Alhosseini et al.

(2019)

0.6813 0.7318 0.3543

Feng et al. (2021a) 0.8412 0.8642 0.6863

Feng et al. (2021c) 0.8462 0.8707 0.7021

Ilias et al. (2024a) 0.7466 0.7630 –

Ours 0.8568 ± 0.004 0.8712 ± 0.003 0.7116 ± 0.007

Values are reported as mean± standard deviation. Five runs of results are averaged. The best

outcomes for each evaluation metric are in bold.

studies to enhance the quality of the datasets could benefit future

studies of bot detection.

Next, we compare the architecture that results from the

architecture search with a Gate operation and without a Gate

operation. The findings of this ablation study are depicted in

Table 8. We see that the architecture without the gate has a reduced

accuracy by 0.5% compared to the model’s and a reduced F1-

score by 0.46%. The gating mechanism dynamically consolidates

information from all propagation steps, effectively regulating the

smoothness of various nodes. Without it, the T operations take as

input only the last output of the P steps. This is the reason themodel

underperforms without the Gate operation in the P functions,

as it may suffer from over-smoothing. The architectures that are

examined during this search have more T steps and shallower

propagation processes, failing to obtain information from nodes

during message passing as successfully as the original model. This

ablation study proves the importance of the Gate operation in the

P functions during our architecture search.

Finally, we compare the architecture that results from the

architecture search with a skip-connection operation and without

a skip-connection operation. The findings of this ablation study are

depicted in Table 9. We see that the architecture without the gate

has a reduced accuracy by 0.93% compared to the model’s and a

reduced F1-score by 1.2%. Without the skip-connection operation,

the input of the T steps is only the output of the last step. This

may lead to the degradation of the model as the transformation

functions can increase. The processing of the messages from nodes

is not as effective and the accuracy declines. This ablation study

proves the importance of the skip-connection operation in the T

functions during our architecture search.

9 Discussion

9.1 Implications

The proliferation of social media bots has prompted concerns

regarding user safety and their broader societal impact. Bot

detection, a focal point of contemporary studies, is not only

explored through the lens of machine learning but also delves

into the realms of social science. Various methodologies have been

employed, encompassing supervised or unsupervised learning or

a hybrid of both. A relatively recent and innovative approach

involves Graph Neural Network (GNN)-based architectures,

integrating diverse user features and interactions to construct a

comprehensive graph representation. In our work, we formulate

a heterogeneous graph that captures the following relationships

between users, incorporating nodes with information on user

profiles, tweets, and interests. This novel contribution enhances

existing bot detection research by demonstrating the efficacy of

integrating and analyzing user relationships.

As technology advances, the adaptive nature of bots poses an

ongoing challenge for detection models, rendering many state-

of-the-art architectures ineffective against newer datasets. The

pressing need for adaptable models underscores the importance

of overcoming the limitations associated with fixed architectures.

Neural Architecture Search (NAS) models prove to be a

promising solution, demonstrating their potential to enhance

model efficiency in real-world tasks by automatically searching

through various architectures. Historically, the adoption of NAS

techniques for bot detection is limited, so we propose the

implementation of an adaptedDFG-NAS. By integratingDFG-NAS

and tailoring it to Relational Graph Convolutional Networks, we

explore optimal permutations of Propagation and Transformation

steps in the message-passing protocol of the RGCN layers.

Our investigation showcases superior performances of the top

architectures compared to state-of-the-art models. Our work is

one of the starting points in implementing architecture search

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

TABLE 6 Training model with less features.

Model Accuracy F1-score Precision Recall Specificity MCC

Ours 0.857± 0.004 0.871± 0.003 0.849± 0.008 0.895± 0.007 0.812± 0.013 0.712± 0.007

w/o description 0.859 ± 0.004 0.875 ± 0.004 0.845± 0.002 0.906± 0.008 0.804± 0.004 0.718 ± 0.008

w/o tweets 0.833± 0.007 0.858± 0.007 0.796± 0.004 0.93± 0.013 0.719± 0.005 0.671± 0.016

w/o numerical 0.859 ± 0.003 0.872± 0.005 0.856 ± 0.012 0.889± 0.023 0.823 ± 0.021 0.716± 0.007

w/o categorical 0.792± 0.003 0.814± 0.001 0.791± 0.010 0.840± 0.014 0.738± 0.021 0.582± 0.005

Des + tweets 0.759± 0.007 0.773± 0.009 0.789± 0.022 0.758± 0.034 0.761± 0.045 0.519± 0.014

Cat + num 0.817± 0.001 0.855± 0.001 0.749± 0.001 0.996 ± 0.001 0.607± 0.002 0.668± 0.002

Values are reported as mean± standard deviation. Five runs of results are averaged. The best outcomes for each evaluation metric are in bold.

TABLE 7 Training model with only one feature.

Model Accuracy F1-score Precision Recall Specificity MCC

Ours 0.857 ± 0.004 0.871 ± 0.003 0.849 ± 0.008 0.895± 0.007 0.812 ± 0.013 0.712 ± 0.007

only description 0.699± 0.007 0.74± 0.008 0.695± 0.015 0.793± 0.033 0.589± 0.046 0.392± 0.014

only tweets 0.585± 0.011 0.643± 0.017 0.602± 0.008 0.691± 0.037 0.461± 0.033 0.157± 0.022

only numerical 0.679± 0.02 0.758± 0.013 0.641± 0.018 0.929± 0.034 0.385± 0.063 0.383± 0.039

only categorical 0.817± 0.001 0.853± 0.001 0.747± 0.001 1.000 ± 0.001 0.6± 0.001 0.667± 0.001

Values are reported as mean± standard deviation. Five runs of results are averaged. The best outcomes for each evaluation metric are in bold.

TABLE 8 Ablation study on gate operation.

Model Accuracy F1-score Precision Recall Specificity MCC

With gate 0.857 ± 0.004 0.871 ± 0.003 0.849 ± 0.008 0.895 ± 0.007 0.812 ± 0.013 0.712 ± 0.007

Without gate 0.853± 0.003 0.867± 0.004 0.845± 0.010 0.891± 0.016 0.808± 0.018 0.704± 0.007

Values are reported as mean± standard deviation. Five runs of results are averaged. The best outcomes for each evaluation metric are in bold.

TABLE 9 Ablation study on skip-connection operation.

Model Accuracy F1-score Precision Recall Specificity MCC

With skip 0.857 ± 0.004 0.871 ± 0.003 0.849± 0.008 0.895 ± 0.007 0.812± 0.013 0.712 ± 0.007

Without skip 0.849± 0.009 0.860± 0.01 0.857 ± 0.010 0.863± 0.026 0.831 ± 0.017 0.695± 0.018

Values are reported as mean± standard deviation. Five runs of results are averaged. The best outcomes for each evaluation metric are in bold.

models on bot detection. Our research findings encourage further

exploration into how NAS models can automatically construct

more effective architectures, resulting in a future restraint of the

existence of bots.

9.2 Applicability of our approach to
di�erent types of social interaction

In this section, we examine the applicability of our introduced

approach to other types of social interaction besides social media.

• Online gaming: bots impersonate human players to

manipulate game outcomes. Bots are capable of playing

without breaks. Therefore, they are able to gather resources,

items, and so on very quickly which help them go to the

next stage of gaming (Kang et al., 2013). Thus, people end

playing with bots; so, it is impossible to win them. This fact

entails serious issues, i.e., unfair gaming. Therefore, the early

detection of bots in gaming is crucial, in order to ensure fair

play in competitive and multiplayer games. Our method could

be adapted by using response times, movement patterns, and

time-series data as input features.

• Customer reviews and rating platforms: bots are often used

for creating fake reviews and inflating rating in review

platforms, including Amazon and Yelp. The main aim of bots

is to promote specific products, restaurants, and so on. Our

approach could be easily adapted to this case, since textual,

timing, and user behavior features will be used.

• Digital voting and polling systems: bots are used to alter

the results of Internet Polling (Mohammadi and Abbasimehr,

2010). Therefore, early recognition of bots in voting is crucial,

so as to ensure reliable outcomes. Our method can be adapted

by integrating features, such as IP addresses, voting patterns,

and timing.

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

• Email and messaging systems: bots are responsible for spam

and phishing. Early detection of bots is crucial for enhancing

security. Features, including email headers, IP addresses, etc.,

must be incorporated in our study.

9.3 Limitations

Our study comes with some limitations. Firstly, we conducted

our experiments only on one dataset, which does not ensure

generalizabilty of our proposed approach. Therefore, in the future,

we aim to test our method on TwiBot-22 dataset (Feng et al.,

2024). Secondly, our method is based on the collection of labeled

data. Obtaining labeled data is a difficult task. For this reason,

unsupervised and self-supervised learning algorithms have been

developed for addressing the issue of labels’ scarcity. Applying

unsupervised and self-supervised learning in conjunction with

our approach is one of our future plans. Thirdly, we did not

tune the hyperparameters due to limited access to GPU resources.

Hyperparameter tuning ensures that optimal performance is

obtained. Finally, we represented each user as a concatenation of

features. Concatenation does not capture the inherent correlation

of the different modalities. In the future, we aim to use multimodal

fusion methods for constructing each user’s representation (Ilias

et al., 2022; Ilias and Askounis, 2023a; Chatzianastasis et al., 2023).

10 Conclusions and future work

As social media continues to play a pivotal role in shaping

public opinion and discourse, the development of effective

and adaptive bot detection methods becomes increasingly

crucial for maintaining the integrity and trustworthiness of

online information. In this study, we introduced a novel model

for identifying bots, integrating GNNs and NAS algorithms,

demonstrating significant performance gains. The integration

of Graph Neural Architecture Search empowered us to

dynamically determine optimal combinations of propagation

and transformation operations in the graph neural network

architecture. This adaptive architecture effectively addresses the

constraints imposed by fixed structures, introducing a level of

flexibility essential for improving the performance on the bot

detection task. From the experiment results we conclude that the

five architectures with the highest validation accuracy, during the

architecture search, are quite efficient in our task and compete

with other models. Meanwhile, the one with the highest accuracy

achieves a test accuracy of 85.68%, surpassing other state-of-the-art

models for bot detection. The outcomes of the experiment present

promising prospects for integrating more Neural Architecture

Search (NAS) methods into the domain of bot detection in various

social media platforms.

The exploration of dynamic graph adaptations stands as a

crucial avenue for future research in the task of bot identification

in social media platform X. The dynamic nature of social networks,

characterized by the continuous incorporation of new users,

necessitates the development ofmechanisms to seamlessly integrate

these additions into the evolving graph structure. Investigating

methods for real-time graph updates and exploring how the model

adapts to the inclusion of new users will enhance the system’s agility

in capturing emerging bot behaviors within the dynamic social

landscape. Furthermore, the prospect of transferring our model

to other social media platforms emerges as a key future avenue.

Extending the applicability of our approach beyond X involves

understanding the unique dynamics and characteristics of different

platforms. Future work should focus on developing a transferable

framework capable of recognizing bot-like behaviors across diverse

social networks. By addressing the nuances and variations in

user interactions and content features, we can contribute to the

development of a versatile bot detection system with broader

applications in the ever-expanding realm of social media platforms.

Data availability statement

Publicly available datasets were analysed in this study. This data

can be found here: https://github.com/BunsenFeng/TwiBot-20.

Please contact shangbin@cs.washington.edu to obtain permission

to download the dataset for research efforts only.

Author contributions

GT: Data curation, Formal analysis, Methodology, Software,

Validation, Visualization, Writing – original draft. MC:

Conceptualization, Data curation, Formal analysis, Investigation,

Methodology, Software, Supervision, Validation, Writing – review

& editing. LI: Conceptualization, Data curation, Investigation,

Methodology, Supervision, Writing – review & editing. GK:

Project administration, Supervision, Writing – review & editing.

JP: Project administration, Resources, Supervision, Writing

– review & editing. DA: Project administration, Resources,

Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://github.com/BunsenFeng/TwiBot-20
mailto:shangbin@cs.washington.edu
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

References

Alarfaj, F. K., Ahmad, H., Khan, H. U., Alomair, A. M., Almusallam, N., Ahmed, M.,
et al. (2023). Twitter bot detection using diverse content features and applying machine
learning algorithms. Sustainability 15:6662. doi: 10.3390/su15086662

Alauthman,M., Aslam, N., Al-kasassbeh, M., Khan, S., Al-Qerem, A., and Raymond
Choo, K.-K. (2020). An efficient reinforcement learning-based botnet detection
approach. J. Netw. Comput. Appl. 150:102479. doi: 10.1016/j.jnca.2019.102479

Ali Alhosseini, S., Bin Tareaf, R., Najafi, P., and Meinel, C. (2019). “Detect me if
you can: spam bot detection using inductive representation learning,” in Companion
Proceedings of The 2019 World Wide Web Conference, WWW ’19 (New York, NY:
Association for Computing Machinery), 148–153. doi: 10.1145/3308560.3316504

Alothali, E., Salih, M., Hayawi, K., and Alashwal, H. (2022). Bot-mgat: a transfer
learning model based on a multi-view graph attention network to detect social bots.
Appl. Sci. 12:8117. doi: 10.3390/app12168117

Alsmadi, I., and O’Brien, M. J. (2020). How many bots in Russian troll tweets? Inf.
Process. Manag. 57:102303. doi: 10.1016/j.ipm.2020.102303

Bazmi, P., Asadpour, M., and Shakery, A. (2023). Multi-view co-attention network
for fake news detection bymodeling topic-specific user and news source credibility. Inf.
Process. Manag. 60:103146. doi: 10.1016/j.ipm.2022.103146

Bessi, A., and Ferrara, E. (2016). Social bots distort the 2016 U.S. presidential
election online discussion. First Monday, 21. doi: 10.5210/fm.v21i11.7090

Bui, T., and Potika, K. (2022). “Twitter bot detection using social network analysis,”
in 2022 Fourth International Conference on Transdisciplinary AI (TransAI), 87–88.
doi: 10.1109/TransAI54797.2022.00022

Cai, S., Li, L., Deng, J., Zhang, B., Zha, Z.-J., Su, L., et al. (2021). “Rethinking graph
neural architecture search from message-passing,” in 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (Nashville, TN: IEEE), 6653–6662.
doi: 10.1109/CVPR46437.2021.00659

Chatzianastasis, M., Ilias, L., Askounis, D., and Vazirgiannis, M. (2023).
“Neural architecture search with multimodal fusion methods for diagnosing
dementia,” in ICASSP 2023 - 2023 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (Rhodes Island: IEEE), 1–5.
doi: 10.1109/ICASSP49357.2023.10096579

Chavoshi, N., Hamooni, H., and Mueen, A. (2016). “Debot: Twitter bot detection
via warped correlation,” in 2016 IEEE 16th International Conference on Data Mining
(ICDM) (Barcelona: IEEE), 817–822. doi: 10.1109/ICDM.2016.0096

Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., and Tesconi, M.
(2017). Social fingerprinting: detection of spambot groups through dna-inspired
behavioral modeling. IEEE Trans. Dependable Secure Comput. 15, 561–576.
doi: 10.1109/TDSC.2017.2681672

Davis, C. A., Varol, O., Ferrara, E., Flammini, A., andMenczer, F. (2016). “Botornot:
a system to evaluate social bots,” in Proceedings of the 25th International Conference
Companion onWorldWideWeb, WWW ’16 Companion (Geneva: International World
Wide Web Conferences Steering Committee), 273–274. doi: 10.1145/2872518.2889302

Dehghan, A., Siuta, K., Skorupka, A., Dubey, A., Betlen, A., Miller, D., et al. (2023).
Detecting bots in social-networks using node and structural embeddings. J. Big Data
10:119. doi: 10.1186/s40537-023-00796-3

Dimitriadis, I., Dialektakis, G., and Vakali, A. (2024). Caleb: a conditional
adversarial learning framework to enhance bot detection. Data Knowl. Eng.
149:102245. doi: 10.1016/j.datak.2023.102245

El-Mawass, N., Honeine, P., and Vercouter, L. (2020). Similcatch: enhanced social
spammers detection on Twitter using markov random fields. Inf. Process. Manag.
57:102317. doi: 10.1016/j.ipm.2020.102317

Feng, S., Tan, Z., Li, R., and Luo, M. (2022). “Heterogeneity-aware Twitter
bot detection with relational graph transformers,” in AAAI Conference on Artificial
Intelligence, Vol. 36 (Vancouver, BC), 3977–3985. doi: 10.1609/aaai.v36i4.20314

Feng, S., Tan, Z., Wan, H., Wang, N., Chen, Z., Zhang, B., et al. (2024). “Twibot-
22: towards graph-based Twitter bot detection,” in Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22 (Red Hook, NY: Curran
Associates Inc).

Feng, S., Wan, H., Wang, N., Li, J., and Luo, M. (2021a). “Satar: a self-
supervised approach to Twitter account representation learning and its application
in bot detection,” in Proceedings of the 30th ACM International Conference on
Information; Knowledge Management, CIKM ’21 (New York, NY: ACM), 3808–3817.
doi: 10.1145/3459637.3481949

Feng, S., Wan, H., Wang, N., Li, J., and Luo, M. (2021b). “Twibot-
20: a comprehensive Twitter bot detection benchmark,” in Proceedings of the
30th ACM International Conference on Information Knowledge Management,
CIKM ’21 (New York, NY: Association for Computing Machinery), 4485–4494.
doi: 10.1145/3459637.3482019

Feng, S., Wan, H., Wang, N., and Luo, M. (2021c). “Botrgcn: Twitter bot
detection with relational graph convolutional networks,” in Proceedings of the 2021
IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining, ASONAM ’21 (New York, NY: ACM), 236–239. doi: 10.1145/3487351.348
8336

Ferrara, E. (2020). What types of COVID-19 conspiracies are populated by Twitter
bots? First Monday. doi: 10.5210/fm.v25i6.10633

Gao, Y., Yang, H., Zhang, P., Zhou, C., and Hu, Y. (2021). “Graph neural
architecture search,” in Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI’20, ed. C. Bessiere (International Joint Conferences on
Artificial Intelligence Organization), 1403–1409. doi: 10.24963/ijcai.2020/195

Ilias, L., and Askounis, D. (2023a). Context-aware attention layers coupled
with optimal transport domain adaptation and multimodal fusion methods for
recognizing dementia from spontaneous speech. Knowl.-Based Syst. 277:110834.
doi: 10.1016/j.knosys.2023.110834

Ilias, L., and Askounis, D. (2023b). Multitask learning for recognizing stress
and depression in social media. Online Soci. Netw. Media 37–38: 100270.
doi: 10.1016/j.osnem.2023.100270

Ilias, L., Askounis, D., and Psarras, J. (2022). “A multimodal approach for dementia
detection from spontaneous speech with tensor fusion layer,” in 2022 IEEE-EMBS
International Conference on Biomedical andHealth Informatics (BHI) (Ioannina: IEEE),
1–5. doi: 10.1109/BHI56158.2022.9926818

Ilias, L., Michail Kazelidis, I., and Askounis, D. (2024a). Multimodal detection of
bots on x (Twitter) using transformers. IEEE Trans. Inf. Forensics Secur. 19, 7320–7334.
doi: 10.1109/TIFS.2024.3435138

Ilias, L., Mouzakitis, S., and Askounis, D. (2024b). Calibration of transformer-based
models for identifying stress and depression in social media. IEEE Trans. Comput. Soc.
Syst. 11, 1979–1990. doi: 10.1109/TCSS.2023.3283009

Ilias, L., and Roussaki, I. (2021). Detecting malicious activity in Twitter using deep
learning techniques. Appl. Soft Comput. 107:107360. doi: 10.1016/j.asoc.2021.107360

Jiang, S., and Balaprakash, P. (2020). “Graph neural network architecture search
for molecular property prediction,” in 2020 IEEE International Conference on
Big Data (Big Data) (Los Alamitos, CA: IEEE Computer Society), 1346–1353.
doi: 10.1109/BigData50022.2020.9378060

Kang, A. R., Woo, J., Park, J., and Kim, H. K. (2013). Online game bot
detection based on party-play log analysis. Comp. Math. Appl. 65, 1384–1395.
doi: 10.1016/j.camwa.2012.01.034

Kerasiotis, M., Ilias, L., and Askounis, D. (2024). Depression detection in social
media posts using transformer-based models and auxiliary features. Soc. Netw. Anal.
Mining 14:196. doi: 10.1007/s13278-024-01360-4

Koggalahewa, D., Xu, Y., and Foo, E. (2022). An unsupervised method for social
network spammer detection based on user information interests. J. Big Data 9:7.
doi: 10.1186/s40537-021-00552-5

Kudugunta, S., and Ferrara, E. (2018). Deep neural networks for bot detection. Inf.
Sci. 467, 312–322. doi: 10.1016/j.ins.2018.08.019

Kušen, E., and Strembeck, M. (2020). You talkin’ to me? Exploring human/bot
communication patterns during riot events. Inf. Process. Manag 57:102126.
doi: 10.1016/j.ipm.2019.102126

Lee, K., Eoff, B., and Caverlee, J. (2021). Seven months with the devils: a long-term
study of content polluters on Twitter. Proc. Int. AAAI Conf.Web Soc. Media 5, 185–192.
doi: 10.1609/icwsm.v5i1.14106

Li, Y., Wen, Z., Wang, Y., and Xu, C. (2021). One-shot graph neural architecture
search with dynamic search space. Proc. AAAI Conf. Artif. Intell. 35, 8510–8517.
doi: 10.1609/aaai.v35i10.17033

Li, Y., Wu, J., and Deng, T. (2023). Meta-gnas: meta-reinforcement learning
for graph neural architecture search. Eng. Appl. Artif. Intell. 123:106300.
doi: 10.1016/j.engappai.2023.106300

Liu, Y., Tan, Z., Wang, H., Feng, S., Zheng, Q., Luo, M., et al. (2023). “Botmoe:
Twitter bot detection with community-aware mixtures of modal-specific experts,”
in Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’23 (New York, NY: Association for
Computing Machinery), 485–495. doi: 10.1145/3539618.3591646

Lopes, D. A. G., Marotta, M. A., Ladeira, M., and Gondim, J. J. C. (2022). “Botnet
detection based on network flow analysis using inverse statistics,” in 2022 17th Iberian
Conference on Information Systems and Technologies (CISTI) (Madrid: IEEE), 1–6.
doi: 10.23919/CISTI54924.2022.9820318

Lopes, V., Santos, M., Degardin, B., and Alexandre, L. A. (2024). Guided
evolutionary neural architecture search with efficient performance estimation.
Neurocomputing 584:127509. doi: 10.1016/j.neucom.2024.127509

Mahmud, T., Ptaszynski, M., Eronen, J., and Masui, F. (2023). Cyberbullying
detection for low-resource languages and dialects: review of the state of the art. Inf.
Process. Manag. 60:103454. doi: 10.1016/j.ipm.2023.103454

Mannocci, L., Cresci, S., Monreale, A., Vakali, A., and Tesconi, M. (2022).
“Mulbot: unsupervised bot detection based on multivariate time series,” in 2022 IEEE

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://doi.org/10.3390/su15086662
https://doi.org/10.1016/j.jnca.2019.102479
https://doi.org/10.1145/3308560.3316504
https://doi.org/10.3390/app12168117
https://doi.org/10.1016/j.ipm.2020.102303
https://doi.org/10.1016/j.ipm.2022.103146
https://doi.org/10.5210/fm.v21i11.7090
https://doi.org/10.1109/TransAI54797.2022.00022
https://doi.org/10.1109/CVPR46437.2021.00659
https://doi.org/10.1109/ICASSP49357.2023.10096579
https://doi.org/10.1109/ICDM.2016.0096
https://doi.org/10.1109/TDSC.2017.2681672
https://doi.org/10.1145/2872518.2889302
https://doi.org/10.1186/s40537-023-00796-3
https://doi.org/10.1016/j.datak.2023.102245
https://doi.org/10.1016/j.ipm.2020.102317
https://doi.org/10.1609/aaai.v36i4.20314
https://doi.org/10.1145/3459637.3481949
https://doi.org/10.1145/3459637.3482019
https://doi.org/10.1145/3487351.3488336
https://doi.org/10.5210/fm.v25i6.10633
https://doi.org/10.24963/ijcai.2020/195
https://doi.org/10.1016/j.knosys.2023.110834
https://doi.org/10.1016/j.osnem.2023.100270
https://doi.org/10.1109/BHI56158.2022.9926818
https://doi.org/10.1109/TIFS.2024.3435138
https://doi.org/10.1109/TCSS.2023.3283009
https://doi.org/10.1016/j.asoc.2021.107360
https://doi.org/10.1109/BigData50022.2020.9378060
https://doi.org/10.1016/j.camwa.2012.01.034
https://doi.org/10.1007/s13278-024-01360-4
https://doi.org/10.1186/s40537-021-00552-5
https://doi.org/10.1016/j.ins.2018.08.019
https://doi.org/10.1016/j.ipm.2019.102126
https://doi.org/10.1609/icwsm.v5i1.14106
https://doi.org/10.1609/aaai.v35i10.17033
https://doi.org/10.1016/j.engappai.2023.106300
https://doi.org/10.1145/3539618.3591646
https://doi.org/10.23919/CISTI54924.2022.9820318
https://doi.org/10.1016/j.neucom.2024.127509
https://doi.org/10.1016/j.ipm.2023.103454
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tzoumanekas et al. 10.3389/frai.2024.1509179

International Conference on Big Data (Big Data) (Los Alamitos, CA: IEEE Computer
Society), 1485–1494. doi: 10.1109/BigData55660.2022.10020363

Mi, Y., and Apuke, O. D. (2024). How does social media knowledge help in
combating fake news? Testing a structural equation model. Think. Skills Creat.
52:101492. doi: 10.1016/j.tsc.2024.101492

Miller, Z., Dickinson, B., Deitrick, W., Hu, W., and Wang, A. H. (2014).
Twitter spammer detection using data stream clustering. Inf. Sci. 260, 64–73.
doi: 10.1016/j.ins.2013.11.016

Minnich, A., Chavoshi, N., Koutra, D., and Mueen, A. (2017). “Botwalk: efficient
adaptive exploration of Twitter bot networks,” in 2017 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM) (New
York, NY: ACM), 467–474. doi: 10.1145/3110025.3110163

Mohammadi, S., and Abbasimehr, H. (2010). “A high level security mechanism
for internet polls,” in 2010 2nd International Conference on Signal Processing Systems,
Volume 3 (Dalian: IEEE), V3-101–V3-105. doi: 10.1109/ICSPS.2010.5555837

Noekhah, S. binti Salim, N., Zakaria, N. H. (2020). Opinion spam detection:
using multi-iterative graph-based model. Inf. Process. Manag. 57:102140.
doi: 10.1016/j.ipm.2019.102140

Nunes, M., and Pappa, G. L. (2020). Intelligent Systems: 9th Brazilian Conference,
BRACIS 2020, Rio Grande, Brazil, October 20–23, 2020, Proceedings, Part I. Cham:
Springer International Publishing.

Peng, W., Hong, X., Chen, H., and Zhao, G. (2020). Learning graph convolutional
network for skeleton-based human action recognition by neural searching. Proc. AAAI
Conf. Artif. Intell. 34, 2669–2676. doi: 10.1609/aaai.v34i03.5652

Peng, Y., Song, A., Ciesielski, V., Fayek, H., and Chang, X. (2023). “Fast evolutionary
neural architecture search by contrastive predictor with linear regions,” in Proceedings
of the Genetic and Evolutionary Computation Conference, GECCO ’23 (New York, NY:
Association for Computing Machinery), 1257–1266. doi: 10.1145/3583131.3590452

Pham, P., Nguyen, L. T., Vo, B., and Yun, U. (2022). Bot2vec: a general approach of
intra-community oriented representation learning for bot detection in different types
of social networks. Inf. Syst. 103:101771. doi: 10.1016/j.is.2021.101771

Quezada, V., Astudillo-Salinas, F., Tello-Oquendo, L., and Bernal, P. (2023). Real-
time bot infection detection system using dns fingerprinting and machine-learning.
Comput. Netw. 228:109725. doi: 10.1016/j.comnet.2023.109725

Saxena, N., Sinha, A., Bansal, T., and Wadhwa, A. (2023). A statistical approach
for reducing misinformation propagation on Twitter social media. Inf. Process. Manag.
60:103360. doi: 10.1016/j.ipm.2023.103360

Scheibenzuber, C., Neagu, L.-M., Ruseti, S., Artmann, B., Bartsch, C., Kubik,
M., et al. (2023). Dialog in the echo chamber: fake news framing predicts
emotion, argumentation and dialogic social knowledge building in subsequent
online discussions. Comput. Human Behav. 140:107587. doi: 10.1016/j.chb.2022.
107587

Shang, R., Zhu, S., Liu, H., Ma, T., Zhang, W., Feng, J., et al. (2023). Evolutionary
architecture search via adaptive parameter control and gene potential contribution.
Swarm Evol. Comput. 82:101354. doi: 10.1016/j.swevo.2023.101354

Shevtsov, A., Antonakaki, D., Lamprou, I., Pratikakis, P., and Ioannidis, S. (2023).
Botartist: Twitter bot detection machine learning model based on Twitter suspension.
arXiv [Preprint]. arXiv:2306.00037. doi: 10.48550/arXiv.2306.00037

Sujith, K., Chowdhury, S., Goyal, A., Hegde, A. V., and Srinath, R. (2022).
“Twitter bot detection and ranking using supervised machine learningmodels,” in 2022

International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI),
Volume 01 (Chennai: IEE), 1–6. doi: 10.1109/ICDSAAI55433.2022.10028860

Uyheng, J., Moffitt, J., and Carley, K. M. (2022). The language and targets of
online trolling: a psycholinguistic approach for social cybersecurity. Inf. Proc. Manag.
59:103012. doi: 10.1016/j.ipm.2022.103012

Wei, F., and Nguyen, U. T. (2019). “Twitter bot detection using bidirectional
long short-term memory neural networks and word embeddings,” in 2019 First
IEEE International Conference on Trust, Privacy and Security in Intelligent
Systems and Applications (TPS-ISA) (Los Angeles, CA: IEEE), 101–109.
doi: 10.1109/TPS-ISA48467.2019.00021

Wei, F., and Nguyen, U. T. (2023). Twitter bot detection using neural
networks and linguistic embeddings. IEEE Open J. Comput. Soc. 4, 218–230.
doi: 10.1109/OJCS.2023.3302286

Wu, J., Teng, E., and Cao, Z. (2022). “Twitter bot detection through unsupervised
machine learning,” in 2022 IEEE International Conference on Big Data (Big Data)
(Osaka: IEEE), 5833–5839. doi: 10.1109/BigData55660.2022.10020983

Xu, Y., Zhou, D., and Wang, W. (2023). Being my own gatekeeper, how i tell the
fake and the real – fake news perception between typologies and sources. Inf. Process.
Manag. 60:103228. doi: 10.1016/j.ipm.2022.103228

Yang, K.-C., Ferrara, E., and Menczer, F. (2022). Botometer 101: social bot
practicum for computational social scientists. J. Comput. Soc. Sci. 5, 1511–1528.
doi: 10.1007/s42001-022-00177-5

Yang, K.-C., Varol, O., Hui, P.-M., and Menczer, F. (2020). Scalable and
generalizable social bot detection through data selection. Proc. AAAI Conf. Artif. Intell.
34, 1096–1103. doi: 10.1609/aaai.v34i01.5460

Yang, Y., Yang, R., Li, Y., Cui, K., Yang, Z., Wang, Y., et al. (2023). Rosgas: adaptive
social bot detection with reinforced self-supervised gnn architecture search. ACM
Trans. Web 17, 1–31. doi: 10.1145/3572403

Ye, S., Tan, Z., Lei, Z., He, R., Wang, H., Zheng, Q., et al. (2023). Hofa: Twitter bot
detection with homophily-oriented augmentation and frequency adaptive attention.
arXiv [Preprint]. arXiv:2306.12870. doi: 10.48550/arXiv.2306.12870

Zhang, W., Lin, Z., Shen, Y., Li, Y., Yang, Z., Cui, B., et al. (2022). “Deep and flexible
graph neural architecture search,” in Proceedings of the 39th International Conference
on Machine Learning, Volume 162 of Proceedings of Machine Learning Research, eds. K.
Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato (Baltimore, MA:
PMLR), 26362–26374. Available at: https://proceedings.mlr.press/v162/zhang22s.html

Zhang, Y., Ma, J., and Fang, F. (2024). How social bots can influence public opinion
more effectively: Right connection strategy. Phys. A Stat. Mech. Appl. 633:129386.
doi: 10.1016/j.physa.2023.129386

Zhao, H., Wei, L., and Yao, Q. (2020). Simplifying architecture search for graph
neural network. arXiv [Preprint]. arXiv:2008.11652. doi: 10.48550/arXiv.2008.11652

Zhao, H., Yao, Q., and Tu, W. (2021). “Search to aggregate neighborhood for graph
neural network” in 2021 IEEE 37th International Conference on Data Engineering
(ICDE) (Chania: IEEE), 552–563. doi: 10.1109/ICDE51399.2021.00054

Zhao, J., Zhang, R., Zhou, Z., Chen, S., Jin, J., Liu, Q., et al. (2021). A neural
architecture search method based on gradient descent for remaining useful life
estimation. Neurocomputing 438, 184–194. doi: 10.1016/j.neucom.2021.01.072

Zhou, K., Huang, X., Song, Q., Chen, R., and Hu, X. (2022). Auto-gnn:
neural architecture search of graph neural networks. Front. Big Data 5:1029307.
doi: 10.3389/fdata.2022.1029307

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2024.1509179
https://doi.org/10.1109/BigData55660.2022.10020363
https://doi.org/10.1016/j.tsc.2024.101492
https://doi.org/10.1016/j.ins.2013.11.016
https://doi.org/10.1145/3110025.3110163
https://doi.org/10.1109/ICSPS.2010.5555837
https://doi.org/10.1016/j.ipm.2019.102140
https://doi.org/10.1609/aaai.v34i03.5652
https://doi.org/10.1145/3583131.3590452
https://doi.org/10.1016/j.is.2021.101771
https://doi.org/10.1016/j.comnet.2023.109725
https://doi.org/10.1016/j.ipm.2023.103360
https://doi.org/10.1016/j.chb.2022.107587
https://doi.org/10.1016/j.swevo.2023.101354
https://doi.org/10.48550/arXiv.2306.00037
https://doi.org/10.1109/ICDSAAI55433.2022.10028860
https://doi.org/10.1016/j.ipm.2022.103012
https://doi.org/10.1109/TPS-ISA48467.2019.00021
https://doi.org/10.1109/OJCS.2023.3302286
https://doi.org/10.1109/BigData55660.2022.10020983
https://doi.org/10.1016/j.ipm.2022.103228
https://doi.org/10.1007/s42001-022-00177-5
https://doi.org/10.1609/aaai.v34i01.5460
https://doi.org/10.1145/3572403
https://doi.org/10.48550/arXiv.2306.12870
https://proceedings.mlr.press/v162/zhang22s.html
https://doi.org/10.1016/j.physa.2023.129386
https://doi.org/10.48550/arXiv.2008.11652
https://doi.org/10.1109/ICDE51399.2021.00054
https://doi.org/10.1016/j.neucom.2021.01.072
https://doi.org/10.3389/fdata.2022.1029307
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	A graph neural architecture search approach for identifying bots in social media
	1 Introduction
	2 Research objective
	3 Related work
	3.1 Bot and fake news detection models
	3.2 Neural architecture search approaches
	3.3 Related work review findings

	4 Dataset
	5 Methodology
	5.1 Data preprocessing
	5.2 Relational graph convolutional neural networks
	5.3 Graph neural architecture search
	5.3.1 Propagation connections
	5.3.2 Transformation connections


	6 Experiments
	6.1 Baselines
	6.2 Experiment settings
	6.3 Evaluation metrics

	7 Results
	8 Ablation study
	9 Discussion
	9.1 Implications
	9.2 Applicability of our approach to different types of social interaction
	9.3 Limitations

	10 Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


