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SE(3) group convolutional neural
networks and a study on group
convolutions and equivariance
for DWI segmentation

Renfei Liu1, François Lauze1, Erik J. Bekkers2, Sune Darkner1 and

Kenny Erleben1*

1Department of Computer Science, University of Copenhagen, Copenhagen, Denmark, 2Department

of Computer Science, University of Amsterdam, Amsterdam, Netherlands

We present an SE(3) Group Convolutional Neural Network along with a

series of networks with di�erent group actions for segmentation of Di�usion

Weighted Imaging data. These networks gradually incorporate group actions

that are natural for this type of data, in the form of convolutions that provide

equivariant transformations of the data. This knowledge provides a potentially

important inductive bias and may alleviate the need for data augmentation

strategies. We study the e�ects of these actions on the performances of the

networks by training and validating them using the di�usion data from the

Human Connectome project. Unlike previous works that use Fourier-based

convolutions, we implement direct convolutions, which are more lightweight.

We show how incorporating more actions - using the SE(3) group actions -

generally improves the performances of our segmentation while limiting the

number of parameters that must be learned.

KEYWORDS

geometric deep learning, group action, homogeneous spaces GCNN, image

segmentation, di�usion weighted imaging

1 Introduction

In this work, we study the influence of group actions on data and how they may

impact the architecture and performances of neural networks, especially convolutional

neural networks (CNN). CNNs rely on assumed translational symmetries in data and have

shown very robust performance in imaging tasks, especially medical imaging ones, and

they are highly parameter-efficient due to their weight-sharing property. When data offer

more structure than simply translation, this can be used to build generalized CNNs. This

is especially the case for the task at hand—classification and segmentation of Diffusion

Weighted Imaging (DWI) data. These Group and Geometric CNNs (GCNN) have been

studied intensively and applied in many situations in the few past years (Masci et al., 2015;

Cohen and Welling, 2016a; Boscaini et al., 2016; Bekkers et al., 2018; Cohen et al., 2020 to

cite a few).

DWI is a non-invasive image modality that provides local information about water

diffusion in tissues by means of measuring spin displacement (Tuchs, 2004). It provides

three-dimensional diffusion information at each location x that can be encoded as a

function fx on the two-dimensional sphere ß2. A field of these functions, on a given

domain, can be represented as a function f :R3 × ß2 → R. If a sample is rotated and

translated, the acquired signal should reflect, up to the limitations of acquisition protocol,

this transformation. The group in question is the group of 3D rigid motions, SE(3), and the
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space R3 × S
2 is a homogeneous space under the action of SE(3): A

point in R
3 × S

2 can be transformed in any other point by a rigid

transformation. This notion of homogeneous space is at the heart

of the extension of CNNs to GCNNs (Cohen et al., 2020; Bekkers,

2019).

Our task at hand is the classification/segmentation of diffusion

data. The inductive bias provided by the knowledge of these

transformations may prove important for our task, especially when

the amount of annotated data is limited. The problem boils down

to how to incorporate this knowledge. The most classical approach

is to use data augmentation, reflecting the expected symmetries in

the data, in the hope that the network will be able to learn it during

the training phase, learning symmetry-aware kernels.

Incorporating, on the other hand, some information about the

symmetries of the data in the model has been shown to boost

the performances of these networks (Bekkers et al., 2018). But

how much of this information is needed for a given task? To

provide an answer, for the DWI segmentation task, we propose

several networks, which gradually incorporate these symmetries

in their architecture and study their performances. In addition,

instead of performing convolution on non-Euclidean data in a

spectral fashion using Fourier-type transformations, we implement

convolution in all our experiments in a direct way, as is usually

done in the image analysis community. In other words, we use

regular representations of groups to encode the group actions in the

models, instead of irreducible representations. Our experiments,

in some sense, perform a group action ablation study. We start

with a “naive” CNN and then incorporate spherical symmetries,

resulting in a SO(3)-GCNN, discarding the spatial aspect of

the data. The spatial aspect is then added in the form of a

standard CNN coupled with spherical symmetries, and then,

we build a network where roto-translational transformations are

used in almost all steps. This work demonstrates empirically the

improvement in performance. The results are, however, not always

clear-cut. Previous works associated with group convolutions have

addressed the capabilities of their models in comparison with

data augmentation but, to the best of our knowledge, have not

touched the comparison between models tested under randomly

transformed test sets. This is what our ablation study is providing.

It not only shows the impact of embedding transformations in

the model but also gives a systematic analysis on the comparison

among different group actions and the corresponding elements

of network architecture with respect to the interplay between

rotations and translations - the physically justified roto-translation

group and the simpler direct product of translations and rotations -

imposed in the models, and their relation to data augmentation,

both in the training and test set. In the study we provide, the

GCNN built from 3D-translations on one hand and rotations,

on the other hand, seems to perform better than a SE(3)-GCNN.

However, the SE(3)-network generalizes better to unseen rotated

data than the previous one. The reason may lie in the particular

type of data used - our DWI scans come from the Human

Connectome Project (HCP) (Van Essen et al., 2013) are highly

preprocessed, including a form of alignment – and this may

impact the results. Nevertheless, for every model we propose,

we also experiment training them with data augmentation to

compare with our equivariant networks. We show that the more

equivariance we incorporate into the model, the better the model

resists the inconsistency of distributions between training and

testing data.

The contribution of this work is as follows.

• We extend the prior work (Liu et al., 2022) with a detailed

theoretic formulation of the proposed method. We discretize

SO(3) using the icosahedral rotation group and use rotation-

translation separable filters in our model to make it very

lightweight while achieving highly robust performance.

• We provide an ablation study of different group actions in

different spaces and the combinations of these actions with

additional experiments using data augmentation.

• We provide a comparison to Müller et al. (2021) in the

experiments, which, to our knowledge, is the only other

existing work that does tissue classification from DWI data

using SE(3) group convolutions. In addition, we further

provide experiments using the non-NN method of Schnell

et al. (2009), which relies on rotationally invariant spherical

harmonic (SH) features extracted from individual DWI

voxels (squared-norms at given SH-orders), with classification

performed by support vector machines (SVM). The spatial

information is, however, discarded.

In the rest of this paper, we review related work, both around

CNN and DWI classification problem. Then, we introduce the

theoretical setup of GCNN and build several networks. Thereafter,

we study and discuss their performances. Our implementation

and experiments are publicly available at https://github.com/rliu-

p/se3gcnn.

2 Related work

Deep Learning (DL) for non-flat data, or using more complex

group actions than just translations, is currently getting more

attention from the research field. When it comes to non-flat

data, such as the point-wise spherical signals in DWI, particularly

relevant related works are the following. Masci et al. (2015)

proposed a NN on surfaces that extracts local rotationally invariant

features. A non-rotationally invariant modification was proposed

by Boscaini et al. (2016). Schnell et al. (2009) developed an Support

Vector Machine (SVM) using rotation-invariant features extracted

from Spherical Harmonic decomposition of the HARDI signals,

while Skibbe and Reisert (2017) introduced a toolkit for 3D image

processing based on Spherical Tensor Algebra (STA), which is

particularly well-suited for tasks requiring rotational invariance,

such as image enhancement, reconstruction, and feature detection.

The above provide methods for DL-based processing of

data on arbitrary manifolds. When the manifold, however, is a

homogeneous space, i.e., there is a group action by which any

two points on the manifolds can be reached, theory simplifies

via a natural generalization of classical convolutions in group

convolution neural networks (GCNNs), as was presented in Cohen

et al. (2018); Bekkers et al. (2018); and Kondor and Trivedi

(2018). GCNNs guarantee global equivariance. However, global

equivariance can be complicated and elusive when the underlying

geometry is non-trivial, which was discussed in Cohen et al. (2019).

An elementary construction on a general manifold is proposed
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by Schonsheck et al. (2018) via a fixed choice of geodesic paths

used to transport filters between points on the manifold, ignoring

the effects of path dependency, i.e., holonomy when paths are

geodesics. The removal of this path dependency can be obtained by

summarizing local responses over local orientations, which is what

was done by Masci et al. (2015). To explicitly deal with holonomy,

Sommer and Bronstein (2020) proposed a theoretical breakthrough

using convolution construction on manifolds based on stochastic

processes via the frame bundle.

On the other hand, Cohen et al. (2018) lifted spherical functions

to the 3D-rotation group SO(3) and used a generalization of

Fourier transform on it to perform convolution. Elaldi et al.

(2021) proposed an equivariant spherical deconvolution method

to learn the orientation distribution function (ODF). Bouza et al.

(2021) generalized convolution to manifold-valued convolutions

using Volterra Series, preserving its equivariance. With the

generalization of convolution to more complex group actions than

translation, several authors (Gens and Domingos, 2014; Cohen

and Welling, 2016a; Weiler et al., 2018b,a; Worrall et al., 2017;

Kondor and Trivedi, 2018; Bekkers et al., 2018; Andrearczyk

et al., 2020; Chakraborty et al., 2018a,b, 2020; Graham et al.,

2020) explored the group convolution path for Lie groups and

the homogeneous spaces of these groups. Knigge et al. (2022)

proposed a separable convolution setup on Lie groups. The relation

between group actions, principal bundles and related vector

bundles, and convolutional architectures is currently explored

(Cohen et al., 2019, 2020; Aronsson, 2022). The latter elucidates

important relations between differential geometry of bundles

and Reproducible Kernel Hilbert Spaces. Links between partial

differential equations, symmetries, and GCNN are studied in

Smets et al. (2021). A unifying framework for equivariant DL on

manifolds, connecting both the bundle and homogeneous space

viewpoint, is given in Weiler et al. (2021) through a notion of

coordinate indepencent convolutions.

Most CNNs approach for the processing of DWI signals

discards its specific structure. For instance, Golkov et al. (2016)

built multi-layer perceptrons in q-space for kurtosis and NODDI

mappings. However, the importance of spherical equivariant

or invariant structure has been acknowledged for some years

now. The importance of the extraction of rotationally invariant

features beyond Fractional Anisotropy (Basser et al., 1994)

has been recognized in series of DWI works. For instance,

Caruyer and Verma (2015) developed invariant polynomials of

spherical harmonic (SH) expansion coefficients and discussed their

application in population studies. Schwab et al. (2013) proposed

a related construction using eigenvalue decomposition of SH

operators. Novikov et al. (2018) and Zucchelli et al. (2020) argued

their usefulness for understanding microstructures in relation to

DWI.

Chakraborty et al. (2018a) proposed a rotation equivariant

construction inspired by Cohen et al. (2018) for disease

classification. The same authors (Banerjee et al., 2019) used a ß2 ×

R
+ CNN using SHORE function representation for classification

in Parkinson’s Disease. Sedlar et al. (2020) used a spherical U-Net

for f-ODF estimation. The same authors (Sedlar et al., 2021) used

a spherical CNN for microstructure parameter estimation, using

spherical harmonics representations. Müller et al. (2021) proposed

a sixth-D, 3D space and q-space NNs with roto-translation/rotation

equivalence properties, targeted at DWI data. Poulenard et al.

(2022) reviewed several implementations of SE(3) neural networks

and showcased a comparison among these networks. In their work,

steerable CNNs generalize better than group CNNs while dealing

with inconsistent distributions between training and testing data

for 3D images.

While most equivariant methods use spectral representation

of groups, we propose an SE(3) network for DWI data that

uses regular representation of groups such that the whole model

is light-weight, and the implementation for convolution is not

only direct but also separable, improving efficiency. A similar

idea was used in Chen et al. (2021), for 3D point cloud feature

extraction, with, however, important architectural differences due

to the nature of input data. Both our method and Chen et al. (2021)

implemented regular representations of groups in a separable

fashion; however, their separable kernels are only over the spatial

and rotation interactions while we additionally split the rotation

interactions over 2 axes, making use of the factorization of the

icosahedron group into 12×5 rotations.We do this to further boost

efficiency. Furthermore, Chen et al. (2021) include an attention

mechanism in the interaction layers, while instead, we use non-

linearities between the separate interaction steps. As our operations

are strictly local, including attention mechanism would introduce

unnecessary computational overhead, whereas in Chen et al. (2021)

the attention mechanism could be critical as a selection mechanism

among the global interactions between many points within the

point cloud. In addition, we compared our method to Müller et al.

(2021) which uses steerable filter bases (spectral representation of

groups) for the SE(3) group. In our experiments, in comparison

with Müller et al. (2021), we found out, however, that our direct

convolution implementation of SE(3) GCNN does not perform

inferior to its steerable alternative, and our method is a lot more

light-weight.

3 Method

The networks we present will be built from the principle of

expanding CNNs to groups and their homogeneous spaces, on

which they act by extending convolution operations to functions

on groups and their homogeneous spaces. For the rotation

group SO(3) and the sphere ß2 as SO(3)-homogeneous space,

the common path for implementing convolutions/correlations is

to use irreducible representations (Cohen and Welling, 2016b).

This approach can be computationally very intensive, unless one

restricts to very low-order irreducible representations, with a

resolution trade-off worse than the approximation of SO(3) by the

icosahedral rotation group. So we do not follow that path here.

In the next section, we provide the theoretical background for

extending convolutions to functions on groups. For the reader’s

convenience, standard concepts from group theory and group

actions that are used to build our new convolution layers are

presented in Appendix 1.

3.1 Generalized convolution operations

Classical CNNs use the standard convolution operation on R
n:

for h, κ :R
n → R, where h is the signal and κ is the kernel, the
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operation is defined as

h ∗ κ(x) =

∫

Rn
h(y)κ(x− y) dy, x = (x1, . . . , xn), y = (y1, . . . yn).

(1)

Here R
n is the underlying space of the function, n = 2 for

2D images, and n = 3 for 3D volumetric images. This operation

can be extended to vector-valued functions (i.e., functions from

R
n → R

m, they have m channels) and multiple kernels, and this

is of course at the heart of the definition of a convolutional layer in

a CNN.

Rewrite Equation 1 as

h ∗ κ(x) =

∫

Tn
h(y)Lyκ(x) dy, Lyκ : x 7→ κ(x− y). (2)

Lyκ translates the kernel κ by vector y. This is the left regular

representation of Tn on the space of kernels (see Appendix 1.2.5).

Using the regular representation, one gets that the standard

convolution (Equation 1) is translation-equivariant, a property

generally acknowledged as the main source of success for CNNs:

(Lzh) ∗ κ(x) = Lz
(

h ∗ κ
)

(x) = h ∗ κ (x− z) . (3)

In Appendix 1.2.5, a general definition for the regular

representation is given for a Lie group G acting on a homogeneous

space M. It is defined by (Lg f )(m) = f (g−1m). This is in

particular the case when M is a principal homogeneous space of

G, and especially when M = G. This leads to a generalization of

convolutions for functions defined on a group G: if h, κ :G → R,

h ∗G κ , or simply h ∗ κ , if there is no ambiguity, is defined by

h ∗ κ(g) =

∫

G
h(u)Luκ(g) du =

∫

G
h(u)κ(u−1g) du. (4)

Here, du refers to a Haar measure in G (Diestel and Spalsbury,

2014). This operation is equivariant to transformations in the group

with respect to the regular representation essentially exactly as in

Equation 3:

∀v ∈ G, (Lvh) ∗ κ(g) = Lv
(

h ∗ κ
)

(g) = h ∗ κ(v−1g). (5)

This operation is also equivariant for the left-representation of

G.

We deal rarely directly with functions whose domain is a non-

trivial group, such as SE(3), or data “indexed” by a non-trivial

group. The domain is instead a homogeneous space of the group of

interest, such as R3 or the sphere ß2 for the groups in this work. In

that situation, kernel convolution generalizes to a lifting operation

that produces a new function, this time defined on the group. If

f :M → R and k :M → R are the function and the kernel,

respectively, define f ∗lifting k, or just f ∗ k, if there is no ambiguity,

by

f ∗ k(g) =

∫

M

f (m)k(g−1m) dm =

∫

M

f (m)Lgκ(m) dm. (6)

and this convolution operation is equivariant with respect to

actions in G:

∀v ∈ G, (Lvf ) ∗ k(g) = Lv
(

f ∗ k
)

(g) = f ∗ k(h−1g). (7)

A bit of caution here, as the first regular representation acts

on a function f :M → R while the second acts on the function

f :G → R. Once the function is lifted onto this group G, group

convolutions on G can be performed on the lifted signals as in

Equation 4,

The group convolutions and lifting can be stacked in layers

like a standard CNN, and this stacking preserves equivariance,

producing equivariant layers. Features at the last group convolution

layer can be projected back onto the original space of the function by

summarizing feature responses over the group. It is similar to max-

pooling-like operations in a standard CNN. This type of operation

will provide invariance.

Therefore, a roadmap for group convolutions can be

summarized as follows:

• Lifting the function signals to the desired group.

• Group convolutions on the lifted signals.

• Projecting the signals back onto the original space.

We formulate these operations in the following sections.

3.1.1 Lifting layer
A function f :M → R

N0 can be lifted to the group G via a

kernel κ :M → R
N1 by

f ∗ κ(g) =





N0
∑

j=1

∫

M

fj(m)κi(g
−1m) dm





N1

i=1

(8)

This is a direct extension of Equation 6 to vector-valued

functions f .N0 is the number of input channels, andN1 the number

of output channels. In practice, in this work, the input function is

scalar-valued, i.e., N0 = 1.

3.1.2 Group convolution layer
A feature function F :G → R

Nl is transformed by a

convolution kernel K :G → R
Nl+1 by

F ∗ K(g) =





Nl
∑

j=1

∫

G
Fj(h)Ki(h

−1g)dh





Nl+1

i=1

. (9)

Here Nl is the number of channels from the output of the last

layer (equivalent to the number of input channels for the current

layer), and Nl+1 is the number of output channels for the current

layer.

3.1.3 Projection layer
If needed, feature map F :G → R

n can be projected to

a function f :M → R
n by summarizing on the fibers (see

appendix 1.2.3.)

F(m) = max
h∈Gm0

F(gh), for any g with g.m0 = m, (10)

where the max is computed component-wise. This operation is

equivariant: LkF = LkF.
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TABLE 1 Groups and homogeneous spaces in this work.

G
M

R
3, x ı2, Ev R

3 × ı2, (x, Ev)

T
3 ,Et x+Et

SO(3),R REv

T
3 × SO(3), (Et,R) x+Et REv (x+Et,REv)

SE(3), (R,Et) Rx+Et REv (Rx+Et,REv)

For each group and each homogeneous space, typical elements are provided, as well as the

action of the group element on the space element. Entries left empty are not used or fail to be

homogeneous spaces for standard group actions on them.

3.1.4 Activation functions and separable kernels
A point-wise activation function α, such as ReLU, is trivially

equivariant Lg(αf ) = α(Lg f ). On manifolds with an underlying

product structure, M = M1 × M2 - this includes homogeneous

spaces and groups - one can choose separable kernels κ = κM1 ⊗

κM2 , and activation functions can be intertwined in between

Equations 8, 9. For instance, lifting Equation 8 can be replaced by

f ∗α κ(g) =

K
∑

i=1

∫

M1

α

(∫

M2

f (m1,m2)κ2(g
−1m2) dm2

)

κ1(g
−1m1) dm1, (11)

where ∗ακ is a shortcut notation for the intertwining of the

kernel and activation function. It is easily seen that it preserves

equivariance. Having separable kernels increases the efficiency of

the model since it increases weight sharing. For example, instead

of having kernels defined in R
3 × ß2, we have kernels defined in

R
3 and in ß2. In this way, all voxels in R

3 share the same spherical

kernels. This is used in this work.

The spaces used in this work are R
3, the sphere ß2, and the

product spaceR3×ß2. The groups that we consider are the group of

translations of R3, T3 ≃ R
3, the group SO(3) or 3D rotations, the

direct product G = T
3 × SO(3), and the special Euclidean group

SE(3) = SO(3)⋉T
3. Note that though G and SE(3) are isomorphic

as manifolds, they are not as groups: in G, (Et,R).(Es, S) = (Et +Es,RS)

while in SE(3), (R,Et).(S,Es) = (RS,Et + REs). This is also reflected

in their respective actions in Table 1, which shows the different

combinations of spaces and groups. We refer the readers to Gerken

et al. (2023) for more detailed theoretical foundation.

3.2 Discretization of spherical signals

The way spherical signals are numerically handled have major

implications for our networks. A DWI signal is treated as a

discretization of a signal f :R3 × ß2 → R. DWIs are acquired, for

each voxel, at N fixed directions p1, . . . , pN on ß2 (here N = 90).

These are represented in two different ways.

• Type 1. Ignoring the spherical structure, at each voxel x, we get

a measurement vector

f (x) = (f (x, p1) . . . , f (x, pN)) ∈ R
N . Thus an image is a

mapping I :R3 → R
N .

• Type 2. A signal at voxel x is interpolated as a proper spherical

function f (x, Ev) = W(v; v1, . . . , vN) where W is a Watson

kernel (Jupp and Mardia, 1989). An image from this type is

a mapping I :R3 × ß2 → R.

3.3 Direct convolution and discretization
of groups

Unlike existing methods that use generalized Fourier-type

transforms to perform convolution on spheres (Cohen et al., 2018;

Gens andDomingos, 2014; Cohen andWelling, 2016a;Weiler et al.,

2018a;Worrall et al., 2017; Kondor and Trivedi, 2018; Bekkers et al.,

2018; Andrearczyk et al., 2020; Chakraborty et al., 2018a,b, 2020),

we implement the convolution for spheres directly as in classical

2D CNNs in the image analysis field. We first discretize the sphere

ß2 using an icosahedron. To lift the function from the sphere to

the SO(3) group, we define a star-shaped kernel k : ß2 7→ R with

a limited support. The kernel then moves around the discretized

sphere and convolves with signals at each vertex of the icosahedron.

It rotates five times at each icosahedral vertex according to the

fives edges each vertex has, and collects convolutional responses

from all five rotations. In this way, the spherical function is

lifted to SO(3), which is discretized by ISO(3)—the 60 rotational

symmetries of an icosahedron. This corresponds to Equation 8 and

is shown in Figure 1A. For the SO(3) group convolution layer, the

kernel is defined on SO(3), which is represented by the icosahedral

symmetries. Here, we specially design the kernel in the way that the

support of it covers exactly a fiber. Therefore, we rotate (permute)

the kernel at each fiber, convolve the rotated kernels with the fiber,

and move the kernel to the next fiber. This is how Equation 9 is

implemented, and more details can be found in Figure 1B. With

the impact of discretization of the groups and the interpolation of

signals, we lose the benefits of learning from raw data. However,

the experiments show that the 60 icosahedral symmetries can

approximate the SO(3) group well enough such that the models can

deal with rotational variations in the data that are different from the

rotations used in the discretization.

3.4 Generic networks used in this work

We present four constructions in which gradual levels of

complexity in group actions are introduced. This can be seen as

a group action ablation study. The precise description of each

network will be provided in Section 4.

3.4.1 Group of translations T3

The ß2-structure of the signal is ignored, using the Type 1

discretization. The group being T
3, just another name for R3, we

just obtain a standard CNN, ignoring rotational information. An

illustration can be found in Figure 2.

3.4.2 SO(3)
This time the spatial structure is ignored, and each voxel

provides a spherical data point. Type 2 discretization is used. The

GCNN takes as input a spherical function and will classify it by

performing SO(3)-lifting, SO(3)-convolutions and summarization.
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FIGURE 1

Three group convolution operators used in this paper. (A) shows the spherical part of the separable lifting convolution. The star-shaped kernel

translates (in this case translation is equivalent to rotation) to the 12 icosahedron vertices like a spider crawling on a sphere. At each vertex location,

the kernel rotates five times aligned with the edges of the icosahedron and gets five responses from all the orientations. Therefore, at each vertex,

the output is a fiber consisting of five elements. There are in total 60 responses from all 12 vertices, and thus 60 rotation matrices to translate the

kernel, assembling a discretization of SO(3) - ISO(3). (B) shows the spherical part of the separable group convolution. The kernel is then defined at

each fiber and is rotated (permuted) again for five times to get the responses of di�erent orientations, as in the lifting convolution. (C) shows the

spatial part of the separable convolution (the spatial convolution is the same in the lifting and group convolution; thus, we only show one). The

spatial kernel is a 3D grid. The grid is rotated to convolve with all 60 spherical responses. The kernel is rotated 60 times, using the same icosahedral

symmetry rotations as those on which the input is sampled.

The convolved function on SO(3) is then projected back to ß2 by

this summarization. It is illustrated in Figures 1A, B. This model

is a fully equivariant implementation of SO(3) group convolution

followed by the work in Liu et al. (2021), which does not hold global

equivariance.

3.4.3 T
3

× SO(3)
Spatial and spherical structures are decoupled. This implies a

standard spatial CNN dealing with only voxel translations, and a

SO(3)-GCNN part for the directional signal. Type 2 discretization

is used for spherical signals. The decoupled R
3-layer and ß2-layer

are with group actions T3 and SO(3), respectively. The illustration

for the ß2-layer can be found in Figures 1A, B, and the illustration

for the R
3-layer can be regarded as only one Conv3D operation

in Figure 1C without the rotations. Note that since the spatial

convolution does not incorporate rotational equivariance, it does

not reflect equivariance of the DWI measurements. I.e., one can

expect that when the brain rotates, the spatial patterns rotate, as

well as their spherical diffusion signals. This model takes rotation

into account in the spherical part of the signal but not the spatial

part. The projection at the end collapses the function in the group

back toR3 by summarizing—in this case, maximizing—over SO(3),

and the resulting feature map is fed into a fully connected layer to

perform the classification task.

3.4.4 SE(3)
Type 2 discretization is used, and the network uses the

full interplay between spatial roto-translations and corresponding
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FIGURE 2

Illustration of the classical CNN. In the grids shown above, which assembles the dimensions of feature maps in the later experiments. Each voxel in

the ith layer contains Ci values, indicating the numbers of channels. C1 here is the number of signal values each voxel from the original scan, thus 90.

Due to striding, the grid shrinks to 1 voxel after 3 convolutional layers and then is fed into a fully connected layer for classification.

rotations of the spherical signal and is thus fully equivariant to

SE(3) transformations on the DWI data. Figures 1A, B shows the

kernels of the ß2-layer. When the kernel moves from one vertex

to another, it follows a specific rotation that maps the one-ring

neighborhood of the source vertex to the one-ring neighborhood

of the target vertex. At each vertex, the kernel has an SO(2)

symmetry group structure discretized by 5 rotations. Figure 1C

shows the kernel for the R
3-layer. It is rotated with the same

rotation matrices that moved the ß2-kernel as in Figures 1A, B.

Since the spatial kernels are cube-shaped grids, interpolation is

required while rotating them. Here, we use linear interpolation,

which can be easily implemented. To perform the segmentation

task, the projection layer collapses the function on SE(3) back to

R
3 by summarizing—again, maximizing—over SO(3).

4 Experiments and results

In this section, we first list all the detailed network setups, after

which we present the results of the experiments. We evaluate our

method on the DWI brain dataset from the human connectome

project (HCP) (Van Essen et al., 2013). We classify the human

brains into four regions - cerebrospinal fluid (CSF), subcortical,

white matter (WM), and gray matter (GM). An illustration of the

task can be found in Figure 3.

We use the preprocessed DWI data (Van Essen et al., 2013)

and normalize each DWI scan for the b-1000 images with the

voxel-wise average of the b0. We use the brain masks provided in

the dataset to obtain the voxels of interest, while background is

ignored. The labels provided with the T1-image are transformed

to the DWI using nearest neighbor interpolation (Figure 3). The

resolution of the DWI images is 145×174×145, and the resolution

of the T1-images is 260 × 311 × 260. Focal Loss (Lin et al.,

2018) is used to counter the class imbalance of the four brain

regions. For Focal Loss, all experiments use γ = 2 and use

α = (0.35, 0.35, 0.15, 0.15) for CSF, subcortical, WM, and GM,

respectively. For the Watson Kernel, all experiments that used this

interpolation (Type 2 discretization) have κ = 10. Batch size for

all experiments is 100, and the learning rate for all experiments is

0.001.

4.1 Experimental setup

Since each DWI scan is highly resoluted, it is not feasible to

use a whole image as input to the networks. Therefore, to reduce

the computational burden, as inputting a full DWI volume is

intractable, we use spatial windows of N3 voxels, with N = 1 for

the SO(3)-action network and N = 7 for the rest. In addition,

due to the effect of striding in spatial convolution, the 73 grid

of voxels shrinks to 13 after 3 spatial convolutions. Therefore, a

separable convolution layer (for bothT3×SO(3) and SE(3) actions)

is equivalent to a single SO(3) convolution layer when the grid

shrinks to 13 since the spatial convolution becomes trivial. ß2 is

discretized by a regular icosahedron. SO(3) is discretized as the

icosahedral rotation group with 60 elements. Each vertex of the

icosahedron is fixed by five rotations, isomorphic to the subgroup

of SO(2) consisting of rotations of angle 2kπ/5, k = 0 . . . 4. This is,

of course, the discretization used for SO(2).

To validate the proposed SE(3) network, we first provide an

ablation study of our proposed four types of networks based

on different group actions. Then, we compare it with Müller

et al. (2021), which implements an SE(3)-GCNN using irreducible

representations.

For the ablation study, based on the networks that were

introduced above and in alignment with the networks presented

in Liu et al. (2022), we design our experiments for them. For

each experiment, in order to explore the impact of model capacity

on the performance, we construct two models with high and low

capacities, respectively, denoted by the superscription + and -. We

choose the architectures for the models with low capacity by trying

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1369717
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Liu et al. 10.3389/frai.2025.1369717

FIGURE 3

Left to right: original di�usion data, the ground truth segmentation, and the processed ground-truth that we are going to learn from. The label colors

for CSF, subcortical, white matter, and gray matter are red, blue, white, and gray, respectively. The figures only illustrate the data, and they are not

necessarily from the same slice of the same scan.

out different complexities and depths and picking the one with

the lowest capacity with the same level of performance. Then for

the models with high capacity, we simply increase the numbers of

kernels in each layer of the models with low capacity.

Detailed descriptions of all the experiments are reported below,

and a summary of the experiments can be found in Table 2.

4.2 Ablation study

4.2.1 T
3-Classical CNN

The architecture we use is ReLU(R3 conv)− ReLU(R3conv)−

ReLU(R3conv)−FC with network setups of a low capacity and a

high capacity. FC here is a fully connected layer. We label the small

network (90 − 5 − 5 − 5 − 4) Classical- and the big network

(90− 120− 120− 90− 4) Classical+.

4.2.2 SO(3)-Baseline
In the experiments, we use the ReLU(lift)

−ReLU(gconv)−project−FC architecture as was used in Liu

et al. (2021) but with true SO(3)-convolution. The projection layer

takes the maximum of the five rotations to collapse the function

back to the sphere. We experimented various sizes of the network

(10−20−proj.−4 and 20−40−proj.−4), in addition to the setup

used in Liu et al. (2021) (1 − 5 − proj. − 4). The network that has

the biggest size did not seem to improve the second biggest one;

thus, we omit it in this paper. Based on the size of the experiments,

we call the small network Baseline- and the big network Baseline+.

4.2.3 T
3

× SO(3)-OursDecoupled
We use the architecture ReLU(lift) − ReLU(gconv) −

ReLU(gconv) − ReLU(gconv) −project−FC. Using separability

discussed in Section 3.1.4, a convolution layer (including lifting)

is split into two, and ReLU activation is added between separable

layers as well. An illustration of the architecture can be found in

Figure 4.

TABLE 2 Criteria and properties of experiments.

Experiment G #Params #Epochs

I :R3 → R
N

Classical-

T
3

13,539
34

ClassicalAug- 66

Classical+

972,694
19

ClassicalAug+ 67

I :R3 × ı2 → R

Baseline-

SO(3)

286
31

BaselineAug- 45

Baseline+

2,104
31

BaselineAug+ 54

OursDecoupled-

T
3 × SO(3)

2,514
41

OursDecoupledAug- 80

OursDecoupled+

59,914
15

OursDecoupledAug+ 54

OursPart-

SE(3)∗

2,514
41

OursPartAug- 49

OursPart+

59,914
15

OursPartAug+ 48

OursFull-

SE(3)

2,514
41

OursFullAug- 86

OursFull+

59,914
15

OursFullAug+ 42

SE(3)∗ indicates the rotations in the spatial part are only a part of the rotations used in the

spherical part.

We again experiment with two sizes of the network - a small

one and a big one. The small network has 5 − 5 − 5 − 5 − 5 −

5 − 5 − proj. − 4 kernels for each layer, while the big network has
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FIGURE 4

Architecture of the network with group action T
3 × SO(3). Each block is a convolutional layer split into two separable layers. The vertical arrows in

each block show the separable convolutions. First, the spherical convolution is applied, followed by the spatial convolution. The last block before the

FC layer is equivalent to a single ß
2-layer as explained in Section 4.1. Illustrations of ReLU actions are omitted for visualization simplicity.

10 − 20 − 20 − 40 − 40 − 20 − 10 − proj. − 4. We label them

OursDecoupled- and OursDecoupled+.

4.2.4 SE(3)-ours
Here too we use the separable setup described in Section 3.1.4.

Thus, a layer is again split into two layers - an ß2-layer and an

R
3-layer, both for lifting and group convolution. The ß2-layer is

defined as shown in Figures 1A, B. We rotate the R3 kernels and

the ß2 kernels using the same actions. The rotational actions of the

kernels can be represented by 60 rotationmatrices and is equivalent

to the discretization of the SO(3) rotation group using the

icosahedral symmetry group, as shown in Figure 1C. As in Section

4.2.3, we use the ReLU(lift) − ReLU(gconv) −ReLU(gconv) −

ReLU(gconv)−project−FC architecture. After the separation of the

layers, the illustration is showcased in Figure 5. As in Section 4.2.3,

ReLU activations are added between separable layers as well.

In addition, we intend to explore the impact of the equivariance

we imposed in R
3 in this section. As was explained above, we align

the rotations of the R3 kernel with the ways the ß2 kernel moved

on the sphere, which is discretized by the 60 rotation symmetries of

an icosahedron. At a vertex xi, i ∈ 1, ..., 12 of an icosahedron, there

exists a stabilizer SO(3)xi discretized by 5 equally divided rotations

that keep xi unchanged. Therefore, we also experiment a partial

equivariance in the R3 roto-translational convolution. This means

at each vertex xi of the icosahedron, we only take 1 out of the 5

rotations that discretized SO(3)xi instead of using all of them to

rotate the spatial kernel. Note that the partially equivariant models

are only fully SE(3)-equivariant when the kernels have a subgroup

SO(2) symmetry in them (Bekkers, 2019; Thm 1), which we do not

impose and thus equivariance is not guaranteed.

Again, we experiment with two sizes of the network with 5−5−

5−5−5−5−5−proj.−4 and 10−20−20−40−40−20−10−proj.−4

kernels, respectively. Therefore, we generate four experiments for

this section: OursFull-, OursPart-, OursFull+, and OursPart+.

4.2.5 Data augmentation experiments
To validate the robustness of GCNNs against data variation

modeled by group actions, we train all the proposed models with

augmented data as well. Each data sample (grid of 73 or 13) is

randomly rotated on the fly before being fed into the model. To

prevent interpolation, the rotations used to transform the data

are sampled from a octohedral symmetry group. For DWI data

that have directional signals in each voxel, the directions of the

signals (b-vectors) in each voxel rotate with the voxel grid. In

order to guarantee the signal values in each voxel are from the

same orientations after augmentation, we interpolate the function

values at the orientations-of-interest using the rotated b-vectors.

Therefore, for Type 1 discretization, we interpolate function

values at the original b-vectors, and for Type 2 discretization, we

interpolate at the pre-defined icosahedron as demonstrated above.

4.3 Results

As was done in Liu et al. (2021), we trained all networks using 1

scan, validated using 1 scan, and tested using 50 scans. We evaluate

the accuracies and Dice scores of the classification of the four

regions, respectively, and the overall classification accuracy across

all test scans. We have also tried training models with more scans

(5 or 10); it does not seem to improve the results significantly.

Therefore, we choose to use 1 scan for training. For each class,

the accuracy is calculated by #CorrectPredictions
#ClassSamples

, and the Dice score

is calculated by 2TP
2TP+FP+FN for the class. The overall accuracy is

calculated by #CorrectPredictions
#AllSamples

.

We trained all models until they converge and before

overfitting; thus, models of different capacities and different setups

are stopped at different epochs. Each model is trained with both

original data and augmented data. Details can be found in Table 2.

The Dice scores and accuracies of models of low capacity can be

found in Tables 3, 4, while the Dice scores and accuracies of models

of high capacity can be found in Tables 5, 6. The numbers shown

in all the tables are the average value and standard deviation across

50 test scans. Examples of predictions compared with the ground

truth can be found in Figure 6A.

4.3.1 The impact of data augmentation
As we can see from the Tables 3–6, models trained with

augmented data do not perform better than their counterparts

trained with just original data, if not worse. Unlike 2D image

datasets in the computer vision community that have various

backgrounds and objects in their images, the HCP dataset is

very uniform; thus, the distribution of the original training

data is expected to be the same as the test set data. However,

after augmentation, the distribution of the training data changed

and it differs from the test data. Therefore, in this case,

data augmentation does not help any of the models since the

augmentation does not represent the diversity in this dataset.

One extreme would be Classical- vs. ClassicalAug- that can

be found in Tables 3, 4, the augmented data confused the

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1369717
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Liu et al. 10.3389/frai.2025.1369717

FIGURE 5

Architecture of the network with group action SE(3).

TABLE 3 Statistics of dice scores from experiments using models of low capacity.

Experiment
Class

CSF Subcortical WM GM

I :R3 → R
N

Classical- 0.756± 0.07 0.376± 0.043 0.834± 0.011 0.839± 0.02

ClassicalAug- 0.625± 0.11 0.128± 0.021 0.77± 0.017 0.806± 0.017

I :R3 × ı2 → R

Baseline- 0.75± 0.073 0.185± 0.04 0.801± 0.012 0.83± 0.011

BaselineAug- 0.741± 0.074 0.232± 0.048 0.805± 0.014 0.835± 0.011

OursDecoupled- 0.817± 0.051 0.705± 0.033 0.867± 0.009 0.909± 0.007

OursDecoupledAug- 0.775± 0.063 0.639± 0.038 0.851± 0.01 0.886± 0.009

OursPart- 0.807± 0.048 0.658± 0.037 0.865± 0.009 0.899± 0.008

OursPartAug- 0.78± 0.06 0.643± 0.037 0.849± 0.01 0.886± 0.009

OursFull- 0.769± 0.06 0.621± 0.038 0.854± 0.01 0.891± 0.008

OursFullAug- 0.772± 0.061 0.637± 0.037 0.846± 0.01 0.884± 0.009

The bold values highlight the maximum value in the column.

TABLE 4 Statistics of classification accuracy from all experiments using models of low capacity.

Experiment
Class

CSF Subcortical WM GM Overall

I :R3 → R
N

Classical- 0.792± 0.08 0.415± 0.053 0.879± 0.024 0.789± 0.034 0.806± 0.017

ClassicalAug- 0.662± 0.105 0.088± 0.017 0.808± 0.042 0.801± 0.039 0.761± 0.014

I :R3 × ı2 → R

Baseline- 0.742± 0.082 0.145± 0.04 0.804± 0.024 0.85± 0.016 0.788± 0.011

BaselineAug- 0.785± 0.074 0.202± 0.055 0.793± 0.028 0.858± 0.018 0.791± 0.012

OursDecoupled- 0.844± 0.061 0.741± 0.033 0.833± 0.02 0.934± 0.013 0.878± 0.009

OursDecoupledAug- 0.769± 0.087 0.716± 0.04 0.854± 0.023 0.87± 0.023 0.853± 0.01

OursPart- 0.787± 0.068 0.717± 0.032 0.848± 0.019 0.906± 0.016 0.868± 0.009

OursPartAug- 0.772± 0.081 0.752± 0.036 0.848± 0.021 0.87± 0.022 0.852± 0.01

OursFull- 0.81± 0.065 0.692± 0.029 0.857± 0.022 0.874± 0.019 0.856± 0.01

OursFullAug- 0.783± 0.077 0.711± 0.054 0.855± 0.023 0.864± 0.021 0.85± 0.01

The bold values highlight the maximum value in the column.

model in terms of the subcortical region - a somewhat mixture

of white and gray matter which is challenging for models

to distinguish. Therefore, from now on, if not specified, we

mainly discuss the models and results trained without data

augmentation.

4.3.2 The impact of the R
3 spatial component

It is easy to observe that the the Baseline experiments perform

worst among all. This is an anticipated outcome since it is usually

the case that neighboring information is an essential type of

local features.
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TABLE 5 Statistics of dice scores from experiments using models of high capacity.

Experiment
Class

CSF Subcortical WM GM

I :R3 → R
N

Classical+ 0.804± 0.053 0.583± 0.036 0.856± 0.011 0.893± 0.009

ClassicalAug+ 0.752± 0.069 0.407± 0.044 0.828± 0.011 0.849± 0.017

I :R3 × ı2 → R

Baseline+ 0.754± 0.069 0.334± 0.037 0.805± 0.013 0.841± 0.012

BaselineAug+ 0.748± 0.072 0.311± 0.037 0.796± 0.016 0.845± 0.011

OursDecoupled+ 0.827± 0.047 0.716± 0.044 0.878± 0.009 0.903± 0.01

OursDecoupledAug+ 0.79± 0.053 0.721± 0.033 0.87± 0.009 0.902± 0.007

OursPart+ 0.834± 0.045 0.752± 0.034 0.878± 0.009 0.914± 0.007

OursPartAug+ 0.789± 0.059 0.736± 0.035 0.872± 0.009 0.902± 0.008

OursFull+ 0.788± 0.05 0.746± 0.034 0.877± 0.008 0.909± 0.006

OursFullAug+ 0.792± 0.051 0.737± 0.031 0.873± 0.009 0.907± 0.007

The bold values highlight the maximum value in the column.

TABLE 6 Statistics of classification accuracy from all experiments using models of high capacity.

Experiment
Class

CSF Subcortical WM GM Overall

I :R3 → R
N

Classical+ 0.815± 0.061 0.702± 0.026 0.834± 0.022 0.89± 0.011 0.854± 0.012

ClassicalAug+ 0.687± 0.088 0.42± 0.04 0.863± 0.031 0.818± 0.038 0.812± 0.015

I :R3 × ı2 → R

Baseline+ 0.778± 0.07 0.379± 0.065 0.784± 0.024 0.848± 0.02 0.792± 0.013

BaselineAug+ 0.776± 0.076 0.351± 0.067 0.749± 0.029 0.875± 0.017 0.789± 0.014

OursDecoupled+ 0.865± 0.061 0.783± 0.035 0.867± 0.017 0.902± 0.019 0.879± 0.011

OursDecoupledAug+ 0.821± 0.066 0.759± 0.052 0.876± 0.02 0.891± 0.018 0.876± 0.008

OursPart+ 0.819± 0.065 0.816± 0.031 0.845± 0.019 0.936± 0.011 0.888± 0.009

OursPartAug+ 0.756± 0.084 0.816± 0.033 0.876± 0.017 0.888± 0.017 0.877± 0.009

OursFull+ 0.896± 0.042 0.826± 0.023 0.857± 0.017 0.912± 0.014 0.883± 0.008

OursFullAug+ 0.864± 0.048 0.78± 0.031 0.866± 0.019 0.905± 0.016 0.88± 0.008

The bold values highlight the maximum value in the column.

4.3.3 Type 1 discretization vs Type 2
discretization

The classical CNNs use Type 1 discretization, while Type 2

discretization is used for the rest of the models. The classical

CNNs do not perform as well as models that take into account

the spherical geometry with spatial information but performs

better than Baseline. However, Classical- is not much better

than Baseline+ while having far more parameters to train, and

Classical+ performs even worse than OursDecoupled-, OursPart-,

or OursFull-, which have much less training parameters.

The results of the two extreme cases—Baseline that

only takes into account spherical geometry but ignore any

spatial information and Classical that only looks into the

spatial part and discards spherical geometry—show that the

voxel geometry and neighboring voxel correlation can both

capture some decent amount of information to deal with the

segmentation task, but they both have something that the

other one cannot grasp, and combining the spherical geometry

and the spatial correlation can boost the performance to a

promising extent.

4.3.4 The impact of adding an R
3 part to baseline

On top of the Baseline, the easiest way to add spatial

information to the purely voxel-based framework is what was

done in OursDecoupled Section 4.2.3—a GCNN on ß2 to learn

the geometric signals in individual signals and a regular classical

CNN to take into account the local spatial information. We can

see from the results that this setup immediately boosted the

performance compared to the Baseline. We can also see that

OursDecoupled+ performs better than OursDecoupled-, for the

sake of model capacity.
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FIGURE 6

Examples of predictions. (A) shows the predictions from the original test set, and (B) shows the predictions from the augmented (rotated) test set. In

(A), from left to right are ground-truth, Classical+, Baseline+, OursDecoupled+, OursPart+, and OursFull+. In (B), from left to right are Classical+ ,

Baseline+, OursDecoupled+, OursPart+, and OursFull+. The colors of CSF, subcortical, WM, and GM are red, blue, white, and gray, respectively. (A)

Predictions using original data. (B) Predictions using rotated data.

TABLE 7 Statistics of dice scores from experiments using rotated data and models of low capacity.

Experiment
Class

CSF Subcortical WM GM

I :R3 → R
N

Classical- 0.631± 0.097 0.101± 0.014 0.696± 0.019 0.558± 0.044

ClassicalAug- 0.678± 0.094 0.117± 0.025 0.775± 0.018 0.813± 0.019

I :R3 × ı2 → R

Baseline- 0.735± 0.076 0.158± 0.037 0.799± 0.013 0.829± 0.011

BaselineAug- 0.741± 0.074 0.237± 0.047 0.804± 0.014 0.834± 0.011

OursDecoupled- 0.708± 0.073 0.531± 0.033 0.801± 0.012 0.851± 0.006

OursDecoupledAug- 0.771± 0.065 0.641± 0.036 0.851± 0.01 0.886± 0.009

OursPart- 0.714± 0.069 0.536± 0.035 0.804± 0.011 0.851± 0.008

OursPartAug- 0.784± 0.059 0.642± 0.036 0.849± 0.01 0.887± 0.009

OursFull- 0.737± 0.065 0.517± 0.033 0.823± 0.01 0.867± 0.009

OursFullAug- 0.774± 0.061 0.636± 0.036 0.846± 0.01 0.884± 0.009

The bold values highlight the maximum value in the column.

4.3.5 The argument for OursFull not performing
the best

For models of low capacity, however, we can observe from

Tables 3, 4 that our proposed method performs worse than

OursDecoupled-. In addition, for models of high capacity, even

though we can see that OursFull+ and OursPart+ improve from

their low capacity counterparts more than OursDecoupled+,

OursFull+ does not perform as well as OursPart+ as shown in

Tables 5, 6. This differs from our expectation since models with full

roto-translational equivariance should be more capable of handling

variances in data, thus should have better performance. Recall that

the HCP dataset (Van Essen et al., 2013) contains scans that are

preprocessed and aligned with axes, thus there is little variance in

rotation. In this case, enforcing SE(3) equivariance in themodel can

be futile and be even confusing for the model.

To verify this theory, we evaluated all models on the rotated

test set. Taking the N3 (N = 1 for Baseline models and N =

7 for the rest) grids of voxels we extracted from the test scans,
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TABLE 8 Statistics of classification accuracy from experiments using rotated data and models of low capacity.

Experiment
Class

CSF Subcortical WM GM Overall

I :R3 → R
N

Classical- 0.643± 0.106 0.24± 0.047 0.767± 0.051 0.421± 0.048 0.563± 0.023

ClassicalAug- 0.677± 0.105 0.08± 0.02 0.811± 0.044 0.811± 0.043 0.767± 0.016

I :R3 × ı2 → R

Baseline- 0.733± 0.085 0.12± 0.035 0.802± 0.024 0.852± 0.016 0.786± 0.011

BaselineAug- 0.786± 0.074 0.21± 0.057 0.793± 0.029 0.856± 0.018 0.79± 0.012

OursDecoupled- 0.755± 0.076 0.528± 0.037 0.779± 0.02 0.871± 0.013 0.81± 0.008

OursDecoupledAug- 0.765± 0.09 0.72± 0.038 0.853± 0.023 0.871± 0.023 0.853± 0.01

OursPart- 0.69± 0.084 0.599± 0.033 0.791± 0.02 0.852± 0.018 0.809± 0.009

OursPartAug- 0.778± 0.081 0.745± 0.038 0.849± 0.021 0.87± 0.021 0.853± 0.01

OursFull- 0.79± 0.067 0.591± 0.026 0.835± 0.023 0.84± 0.022 0.823± 0.01

OursFullAug- 0.785± 0.077 0.707± 0.053 0.854± 0.023 0.865± 0.021 0.85± 0.01

The bold values highlight the maximum value in the column.

TABLE 9 Statistics of dice scores from experiments using rotated data and models of high capacity.

Experiment
Class

CSF Subcortical WM GM

I :R3 → R
N

Classical+ 0.549± 0.106 0.124± 0.007 0.535± 0.014 0.59± 0.022

ClassicalAug+ 0.768± 0.066 0.445± 0.038 0.82± 0.015 0.857± 0.014

I :R3 × ı2 → R

Baseline+ 0.733± 0.076 0.282± 0.036 0.799± 0.013 0.839± 0.012

BaselineAug+ 0.748± 0.072 0.311± 0.037 0.796± 0.016 0.844± 0.011

OursDecoupled+ 0.702± 0.075 0.497± 0.037 0.8± 0.011 0.829± 0.009

OursDecoupledAug+ 0.794± 0.054 0.723± 0.033 0.87± 0.009 0.902± 0.007

OursPart+ 0.734± 0.063 0.58± 0.033 0.806± 0.011 0.862± 0.006

OursPartAug+ 0.791± 0.058 0.736± 0.034 0.872± 0.009 0.901± 0.008

OursFull+ 0.74± 0.06 0.604± 0.034 0.835± 0.01 0.877± 0.008

OursFullAug+ 0.79± 0.051 0.735± 0.03 0.872± 0.009 0.907± 0.007

The bold values highlight the maximum value in the column.

we randomly rotate each grid using a rotation sampled from the

octahedral symmetry group to create a new rotated test set. In this

way, we do not need to interpolate while rotating, and the rotations

are not aligned with the ones we used in our models to rotate the

kernels while still resemble a discretization of the SO(3) group.

Hence, we have two categories of models as well as two categories

of the test set: models trained with original data vs. models trained

with augmented data, and original test set vs. the randomly rotated

test set.

4.3.6 Models trained with data augmentation
tested with rotated test set

We see that all models trained with augmented training set have

very similar performance results to the same models tested with

the original test set, and they all perform better in this task than

their counterparts trained with the original training set. This checks

with our statement in Section 4.3.1 that the consistency of data

distributions of the training and test sets boosts test performance.

In this case, we used the same kind of rotations while augmenting

the training set and test set; therefore, the consistency of data

distributions is maintained. However, this can never be guaranteed

in real life. We can see this from Tables 7–10.

4.3.7 Models trained with original data tested
with rotated test set

In this section, only models trained without data augmentation

are compared and discussed. For models with both low and

high capacity, OursFull models have the best performance among

other models. OursFull- remains 0.823 accuracy, decreased from

0.856 while OursFull+ decreased from 0.883 to 0.84. This is

illustrated in Tables 8, 10. In terms of Dice scores, OursFull-

performs the best for all classes but the subcortical class,

and OursFull+ has the best results for all classes, as shown

in Tables 7, 9.
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TABLE 10 Statistics of classification accuracy from experiments using rotated data and models of high capacity.

Experiment
Class

CSF Subcortical WM GM Overall

I :R3 → R
N

Classical+ 0.632± 0.097 0.452± 0.02 0.434± 0.018 0.5± 0.03 0.471± 0.015

ClassicalAug+ 0.71± 0.088 0.517± 0.033 0.811± 0.038 0.85± 0.034 0.812± 0.015

I :R3 × ı2 → R

Baseline+ 0.769± 0.074 0.307± 0.059 0.782± 0.024 0.846± 0.02 0.786± 0.013

BaselineAug+ 0.776± 0.076 0.356± 0.068 0.749± 0.029 0.873± 0.017 0.788± 0.014

OursDecoupled+ 0.756± 0.082 0.597± 0.034 0.797± 0.019 0.81± 0.019 0.791± 0.01

OursDecoupledAug+ 0.819± 0.067 0.761± 0.051 0.876± 0.019 0.891± 0.018 0.876± 0.008

OursPart+ 0.716± 0.078 0.635± 0.033 0.78± 0.021 0.876± 0.012 0.819± 0.008

OursPartAug+ 0.762± 0.085 0.811± 0.032 0.878± 0.018 0.886± 0.017 0.877± 0.009

OursFull+ 0.88± 0.048 0.659± 0.028 0.83± 0.019 0.868± 0.018 0.84± 0.009

OursFullAug+ 0.862± 0.049 0.78± 0.031 0.865± 0.019 0.904± 0.016 0.88± 0.008

The bold values highlight the maximum value in the column.

It is worth noticing that Baseline models almost do not suffer

from performance drop while applied with rotated data. It is an

SO(3)-network that preserves rotational equivariance on ß2. For

a single-voxel input, the network is very resistant to variations,

but the performance of this model is limited due to the lack of

spatial interaction and thus in general worse than models with

spatial interplay.

Examples of predictions using the rotated test set can be

found in Figure 6B. It is easily observed that the classical CNN

does not generalize well to the data variation, while models with

rotational symmetry (either SO(3), T3 × SO(3), or SE(3)) generate

better results. However, it is also noticeable that for a challenging

minority class, subcortical region, OursFull+ performs better than

the others while other models with some rotational equivariance

do not predict a concentrated subcortical region. Zoom-in

examples can be found in Figure 7. Predictions from Baseline

are omitted from Figure 7 since it does not have the same level

of performance.

4.3.7.1 Augmentation in training data vs. augmentation in

testing data

We have experimented models trained with both the original

training set and augmented training set, and models tested with

both the original test set and randomly rotated test set. The random

rotations applied to the test set can be seen as augmentation

too. As was discussed above, data augmentation changes the

distribution of the dataset, which creates inconsistency between the

training and testing set. However, augmentation in the training

set enables the models to see more data and thus even tested

with the original test set, the performance of any model does not

go far off, since the model has seen the type of data in the test

set. The performance of models trained with data augmentation

is worse than that of models trained with the original training

set, though, due to the inconsistency of distributions between the

training set and test set when only one of them is augmented.

Figure 8A shows, for models tested with the original test set only,

the decrease of model performance from models trained with the

original training set to models trained with data augmentation.

The y-axis shows the logistic map of the ratio of the performance

decrease and is calculated by L(x) = 1
e−αx with α = 20, x =

Coriginal

Caugmented
, and Coriginal and Caugmented are the numbers indicating

the performance (in this case, either dice score or accuracy as

shown in the figure) of models tested with only the original test set

but trained with the original (Coriginal) or augmented (Caugmented)

training set. We can see from Figure 8A that the performance of the

equivariant models we propose decrease less. This shows, from one

perspective, the resistance of equivariant models to inconsistency of

data distributions between training and testing data. On the other

hand, having data augmentation only in the test set becomes a

big problem for models without equivariance. Figure 8B shows, for

models trained with the original training set only, the performance

decrease from models tested with the original test set to those

tested with rotated data. The y-axis values are calculated the same

as the formula above, but the Coriginal and Caugmented become the

numbers indicating the performance of models trained with the

original training set only but tested with the original (Coriginal) or

rotated (Caugmented) test set. We can see clearly from Figure 8B

as well that the performance of classical CNN decreases the

most using rotated data, and the decrease of performance goes

down when we enforce more spatial equivariance in the model.

Baseline models decrease the least, but again, the performance

is limited due to the lack of information in R
3. Furthermore,

the SE(3)-equivariance is implemented separately for the spatial

and spherical parts and is with interpolation in the spatial part;

thus, there are some errors introduced to it. Therefore, OursFull

models always perform the best when there is variation in the

test data.

4.3.7.2 Rotational invariance for Type 1 discretization

Furthermore, we have also experimented with networks that

have some rotational invariance but in the classical CNN setup -

viewing the DWI images as I :R3 → R
N . Taking the classical CNN

setup we have in Section 4.2.1, we rotate the CNN kernels in each
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FIGURE 7

Showcases of zoom-in regions from predictions of the rotated test set. For both scan slices presented, from left to right, top to bottom, are the

ground truth, prediction from OursDecoupled+, OursPart+, and OursFull+. The colors of di�erent regions are the same as in Figure 6. (A) A test scan

slice. (B) Another test scan slice.

FIGURE 8

Logistic map of the ratio of two criteria to evaluate the proposed models. One criterion is for the models trained with augmented data compared to

their counterparts trained with original data. For models trained both with original and augmented data, the left figure shows the decrease of test

results while trained with data augmentation and tested with the original test set as shown in Tables 3–6. The second criterion is for the models

trained with original data only. It is the decrease of performance while tested with rotated data, shown on the right figure. (A) Model performance

decrease while trained with data augmentation. (B) Model performance decrease while applied with rotated test set.

layer using the same rotations as in Section 4.2.4 to discretize SO(3).

As was done above, we use the 60 rotations from the icosahedral

symmetry group as well as only 12 of them (1 at each rotation

axis) to act on the CNN kernels. In each layer, one rotation of the

kernel is only convolved with the response of the corresponding

rotation from the last layer; thus, this network is in fact 60 (or

12) independent networks, in which they share the same weights

of different rotations. At the end, we take the average of the 60

(or 12) responses from all the rotations. With a small trial, we

discovered that, as expected, even though this type of network does

not perform as well as our spatial-directional GCNN as a whole, the

performance decreases little in the full icosahedral group case with
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TABLE 11 Augmented CNN tested with original and rotated data.

Rotations Data type CSF dice Subcortical dice WM dice GM dice Overall ACC

90− 5− 5− 5− FC, #Param 13539

Part(12)
Original 0.798± 0.058 0.425± 0.052 0.843± 0.01 0.875± 0.01 0.838± 0.011

Rotated 0.71± 0.074 0.306± 0.042 0.755± 0.014 0.796± 0.014 0.75± 0.013

Full(60)
Original 0.754± 0.065 0.485± 0.059 0.823± 0.014 0.848± 0.02 0.818± 0.016

Rotated 0.75± 0.063 0.479± 0.059 0.813± 0.013 0.838± 0.02 0.809± 0.016

TABLE 12 Statistics of results from both our method and Müller’s method.

Experiment
Class

CSF Subcortical WM GM Overall

Accuracy

Ours 0.804± 0.073 0.754± 0.033 0.871± 0.018 0.908± 0.011 0.882± 0.008

Müller’s 0.583± 0.123 0.442± 0.176 0.83± 0.036 0.834± 0.033 0.805± 0.015

Dice score

Ours 0.799± 0.053 0.722± 0.034 0.877± 0.008 0.908± 0.006

Müller’s 0.655± 0.086 0.41± 0.105 0.813± 0.015 0.849± 0.016

The bold values highlight the maximum value in the column.

60 rotations when tested with augmented data and decreases more

when only a subset (12) of the group is used to rotate the kernels

(see Table 11).

This further demonstrates that having rotational equivariance

in the model makes it much more robust to variance in the data -

which, with no need of explanation, is inevitable when dealing with

real-world raw data. Averaging rotational copies of a classical CNN

achieves the goal of dealing with variance in data, but for non-linear

data such as DWI, for which signals in voxels have some geometric

structure, our full SE(3)-GCNN provides the best solution.

4.4 Comparison to state-of-the-art

We now compare our method to the approach of Müller et al.

(2021). They used DWI data with q-space encoding in the diffusion

part and the spatial part of the data is referred to as p-space, and

these two parts of the data resemble the ß2 and R
3 spaces in our

formulation. We use the b-vectors from the HCP dataset as the

input to the q-space. In their case, the input of the network is

a whole DWI scan, not a series of extracted patches like we do,

and we cannot fit an entire HCP scan into the model without

exceeding the memory limit of a 24 GB GPU. After discussion

and agreement with one of the authors (V. Golkov), we decided

to use a modified architecture of their network to get an as fair as

possible comparison: (1) we provide their network with patches of

the same size as ours (7×7×7), but with DWI signals that are only

normalized by b0 instead of interpolated spherical functions in each

voxel like we did in our method. (2) The best performing model

hyper-parameters they provided in the paper (with 4 and 5 layers in

totals) are optimized for receptive fields that are much larger than

ours, we use instead their 3-layer network, which has almost the

same level of performance. (3) We have also disabled padding in

their network to cancel biases introduced in the networks. After 3

p-spatial layers, the output of their network without padding has

spatial dimensions 1× 1× 1. Their method and ours thus perform

the same task: voxel-wise classification. We used the Focal Loss

(Lin et al., 2018) using the same parameters as all the experiments

above. We used the suggested structure of their network with fully

connected layers in the radial basis, which reportedly has better

performance than ones without them. Tomake the comparison fair,

we use a network whose hyper-parameters are different from what

was presented in Liu et al. (2022) such that the number of trainable

parameters is similar to that of Müller et al. (2021).

4.4.1 Network architectures
For Müller et al. (2021), we use the 1(pq)+ 1(q− reduction)+

2(p) layer structure with the TP ± 1 basis presented in their

paper and channels (5, 3, 0, 0), (5, 3, 0, 0), (10, 5, 0, 0), (4, 0, 0, 0) as

presented in the Appendix section E.1 in their paper, except that we

changed the output channel to 4 to fit our multiclass classification

task and changed the p-space kernel sizes to 3 to ensure that the

receptive field of the network is 7 × 7 × 7, as we discussed with

the author. For our method, we use a ReLU(lift) − ReLU(gconv) −

ReLU(gconv) − project − FC architecture such that there are three

spatial layers as in Müller et al. (2021). With each layer split into

2, we use 10 − 10 − 20 − 40 − 20 − 10 − proj. − 4 as our

layer structure such that we have similar numbers of parameters

as Müller et al. (2021). Our method has 34964 parameters, while

Müller et al. (2021) has 34,781 parameters.

4.4.2 Results
The results are shown in Table 12. We can see that our method

performs better thanMüller et al. (2021). To test the equivariance of

bothmethods, we again test bothmodels with the randomly rotated

test set as presented above, and the results can be found in Table 13.
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TABLE 13 Statistics of results from both our method and Müller’s method tested with rotated test set.

Experiment
Class

CSF Subcortical WM GM Overall

Accuracy

Ours 0.725± 0.083 0.596± 0.036 0.834± 0.02 0.874± 0.013 0.838± 0.008

Müller’s 0.445± 0.1 0.337± 0.146 0.823± 0.036 0.789± 0.031 0.771± 0.014

Dice score

Ours 0.742± 0.067 0.593± 0.032 0.832± 0.009 0.875± 0.006

Müller’s 0.426± 0.055 0.343± 0.104 0.787± 0.015 0.813± 0.015

The bold values highlight the maximum value in the column.

FIGURE 9

Comparison of model performance decrease while applied with rotated test set between our method and Müller’s. The radial axis indicates the

decrease, and it is the logistic map of the ratio calculated by the same scheme used in Figure 8.

We can see from the numbers that the performance of Müller

et al. (2021) does not drop much either while tested with unseen

rotated test set, similar to our method. As we can see from Figure 9,

overall, Müller et al. (2021) lost less in percentage of the Dice

scores of Subcortical, White matter, and overall accuracy but more

in CSF Dice score. Both equivariant methods are more resistant

to variations in the distributions of the training and test set than

the non-equivariant models presented above. Moreover, since the

overall performance decrease of Müller et al. (2021) while tested

with rotated data is lower than our fully equivariant model, Müller

et al. (2021) actually has better equivariance than all models we

presented even though their prediction accuracies and dice scores

are lower.

4.5 Comparison to non-NN spherical
harmonics feature classification

Following the method described in their paper, we extracted

spherical harmonic features from each voxel of b − 1000 DWIs

and used SVMs for classification. Both one-vs-one and one-vs-all

SVM configurations were applied to evaluate their comparative

effectiveness in handling multiclass data. To normalize features,

we experimented with both standard and min-max normalization

methods. The performance of each setup was assessed using

accuracy and Dice score metrics, consistent with the evaluation

metrics for our proposed method. The results are shown in

Table 14.

As shown in Table 14, the performance of the method from

Schnell et al. (2009) is significantly lower than that of our

proposed approach. In particular, for the challenging class–

the subcortical region–the model showed minimal recognition

capability. This result is expected as the rotation-invariant features

derived independently from individual voxels inherently disregard

the spatial relationships among voxels, which undermines model

robustness. Furthermore, our SO(3) models, which similarly do

not incorporate spatial voxel connectivity, nonetheless outperform

the method in Schnell et al. (2009), underscoring the robustness

and stability introduced by the equivariant convolutions within our

model.

5 Discussion

The resistance to data variation that has been shown by

our fully equivariant network was demonstrated on synthetically

augmented data - with 90-degree rotations. Even though this

synthetic augmentation did not cost any loss of signals or
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TABLE 14 Results for all models from Schnell et al. (2009) for b = 1000.

Norm, metric CSF Subcortical WM GM Overall

OVO

Standard, ACC 0.772± 0.007 0.007± 0.000 0.918± 0.005 0.538± 0.057 0.678± 0.000

Standard, Dice 0.732± 0.006 0.014± 0.000 0.728± 0.003 0.627± 0.025

Minmax, ACC 0.785± 0.006 0.003± 0.000 0.906± 0.007 0.576± 0.075 0.692± 0.000

Minmax, Dice 0.729± 0.007 0.005± 0.000 0.739± 0.004 0.642± 0.034

OVR

Standard, ACC 0.695± 0.011 0.000± 0.000 0.920± 0.004 0.570± 0.044 0.693± 0.000

Standard, Dice 0.737± 0.006 0.000± 0.000 0.738± 0.003 0.659± 0.018

Minmax, ACC 0.724± 0.010 0.000± 0.000 0.920± 0.006 0.554± 0.069 0.686± 0.000

Minmax, Dice 0.740± 0.006 0.000± 0.000 0.736± 0.004 0.633± 0.031

Both One-vs.-One (OVO) and One-vs.-Rest (OVR) models using Standard and Minmax normalizations are presented. The values shown in the table are the mean and standard deviation of

the chosen metrics, and three decimals are used; therefore, some very small values are shown as 0.

any interpolation-caused inaccuracy, it is desirable to verify the

robustness of more complex group actions in CNNs using data with

real-world variations (e.g., subjects scanned in different positions,

affine variations in shapes). Acquiring this type of data is another

challenge. On the other hand, data augmentation seems to be

very robust against the variations in the rotated test set. However,

this is because the augmentations applied in the training set and

the test set are identical, and they modeled exactly the same

distribution in the data. Our proposed equivariant methods deal

with inconsistent distributions between the training set and the

test set much better, which is usually the case in real world. In

addition, our method outperforms (Müller et al., 2021) with the

same amount of information given to themodels. Even though both

methods show similar resistance to variations in the distributions

of the training and test set, our model has a more light-weight

implementation using regular group representation with separable

kernels. Furthermore, the experiments we conducted using Schnell

et al. (2009) have shown the power of equivariant learning in

non-Euclidean spaces. Using rotation-invariant features as in

Schnell et al. (2009) is beneficial in terms of getting consistent

features from spherical functions, regardless of the orientation.

However, extracting invariant features from the very beginning

also discards potentially valuable orientational information that is

implicitly embedded in the data, and discarding spatial information

completely severely weakens the capability of the model. This is

easily shown by the fact that our SO(3) models that also discard

spatial relationships outperform (Schnell et al., 2009).

In conclusion, we presented a systematic study of GCNNs of

various group actions with the application to DWI segmentation.

We interpreted images of DWI scans (I :R3×ß2 → R) as functions

in the homogeneous spaces of groups with different complexities

of symmetries and provided a detailed analysis of how different

levels of complexities of these symmetries impact the performance

of the network. It is shown from the models OursDecoupled

and OursFull that whether or not more complex transformations

should be imposed in the model is not always a clear-cut, since

while tested on the original test set, OursDecoupled has a slightly

better performance. OursDecoupled incorporates a mathematically

well-defined, but physically impossible group action, yet it is

computed more cheaply, while OursFull incorporates the SE(3)

action, which corresponds to the expected physical transformations

of the data. And, under any physically realistic turbulence

in the test data resulting in unseen distributions, adding to

the model possible transformations of the data (to the limit

of their discretizations) provides a more stable performance.

Therefore, we emphasize the importance of imposing the full

roto-translation transformations in models as it is the kind that

appears in the data. From the experiments, we conclude that

(1) exploiting the spatial-directional interactions in the data is

crucial for efficient learning of the features; (2) incorporating

complex group actions of 3D rigid motions—SE(3)—might not

be essential for highly aligned and preprocessed data such as the

human connectome project (HCP) (Van Essen et al., 2013), but

it shows significantly higher resistance to variations in data. For

real-world raw data in which the positions of subjects are not

perfectly aligned as in Van Essen et al. (2013), our proposal shows

significant potential.
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