
TYPE Original Research

PUBLISHED 20 June 2025

DOI 10.3389/frai.2025.1377944

OPEN ACCESS

EDITED BY

Mayukh Das,

Microsoft Research, India

REVIEWED BY

Rishad Shafik,

Newcastle University, United Kingdom

Antonio Sarasa-Cabezuelo,

Complutense University of Madrid, Spain

Hyun Kwon,

Korea Military Academy, Republic of Korea

Brijraj Singh,

Sony Research India, India

*CORRESPONDENCE

Negar Elmisadr

elmisadr.negar@gmail.com

Anis Yazidi

anisy@oslomet.no

RECEIVED 28 January 2024

ACCEPTED 30 April 2025

PUBLISHED 20 June 2025

CITATION

Elmisadr N, Belaid M-B and Yazidi A (2025)

Stochastic and deterministic processes in

Asymmetric Tsetlin Machine.

Front. Artif. Intell. 8:1377944.

doi: 10.3389/frai.2025.1377944

COPYRIGHT

© 2025 Elmisadr, Belaid and Yazidi. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Stochastic and deterministic
processes in Asymmetric Tsetlin
Machine

Negar Elmisadr1*, Mohamed-Bachir Belaid2 and Anis Yazidi3*

1Department of Computer Science, Faculty of Technology, Art and Design, OsloMet–Oslo

Metropolitan University, Oslo, Norway, 2NILU, Climate and Environmental Research Institute, Oslo,

Norway, 3Department of Computer Science, Faculty of Technology, Art and Design, OsloMet–Oslo

Metropolitan University, Oslo, Norway

This paper introduces a new approach to enhance the decision-making

capabilities of the Tsetlin Machine (TM) through the Stochastic Point

Location (SPL) algorithm and the Asymmetric Steps technique. We incorporate

stochasticity and asymmetry into the TM’s process, alongwith a decaying normal

distribution function that improves adaptability as it converges toward zero

over time. We present two methods: the Asymmetric Probabilistic Tsetlin (APT)

Machine, influenced by randomevents, and the Asymmetric Tsetlin (AT) Machine,

which transitions from probabilistic to deterministic states. We evaluate these

methods against traditional machine learning algorithms and classical Tsetlin

(CT)machines across various benchmark datasets. Both AT and APT demonstrate

competitive performance, with the AT model notably excelling, especially in

complex datasets.

KEYWORDS

Tsetlin Machine (TM), Stochastic Point Location (SPL) algorithm, decaying normal

distribution function, probabilistic and deterministic behavior, Asymmetric Tsetlin

(AT) Machine, Asymmetric Probabilistic Tsetlin (APT) Machine, cumulative distribution

function (CDF)

1 Introduction

Artificial Intelligence (AI) and Machine Learning (ML) techniques have transformed

the field of pattern classification. Pattern classification involves the process of assigning

a label or category to an input based on its features. This has numerous applications

in computer vision, speech recognition, natural language processing, and more (Escobar

and Morales-Menendez, 2018). Machine learning algorithms are well-suited for pattern

classification tasks, as they can learn to recognize patterns in data. This is achieved

by analyzing large amounts of training data and extracting features that are relevant

to the classification task. Once the features have been extracted, the machine learning

algorithm can use them to make predictions about new unseen data (Sarker, 2021).

The ability of machine learning algorithms to learn from data and make predictions

has led to numerous applications in various domains, and the continued development

of machine learning algorithms is expected to advance the field of pattern classification

further. Recent advancements in adversarial attacks highlight the complexity of securing

deep learning systems. Hyun Kwon et al. have contributed significantly to this field,

proposing innovative attack and defense methods. In Kwon (2023), Kwon introduced

color-weighted distortions for image perturbations, while in Kwon andKim (2023), a dual-

mode method for generating adversarial examples was developed. These techniques were

extended to specialized domains, such as helicopter recognition systems (Lee et al., 2024)

and speech recognition, where multi-targeted audio adversarial attacks (Ko et al., 2023)

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1377944
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1377944&domain=pdf&date_stamp=2025-06-20
mailto:elmisadr.negar@gmail.com
mailto:anisy@oslomet.no
https://doi.org/10.3389/frai.2025.1377944
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1377944/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

and detection mechanisms using style transfer (Kwon et al., 2023)

and classification scores (Kwon and Nam, 2023) were explored.

Additionally, Kwon and Lee addressed textual adversarial examples

using text modification strategies (Kwon and Lee, 2023). Together,

these studies demonstrate the multifaceted nature of adversarial

threats and provide insights into enhancing AI system resilience

across modalities.

The introduction of learning automata has further enhanced

the capabilities of AI and ML in pattern classification (Barto

and Anandan, 1985). Learning automata are a type of artificial

intelligence that can learn and adapt to their environment. They

can make decisions based on feedback from their environment and

adjust their behavior accordingly. In the context of classification

tasks, learning automata can be used to optimize the parameters of

a classification model based on feedback from the data, improving

its performance over time Guo et al. (2017). Recognizing that

decision-making involves a broad spectrum of challenges,

including sequential processes and dynamic environments,

the current work aims to focus on establishing fundamental

mechanisms through predictive modeling tasks. Hence, the

presented foundational approach is expected to allow us to validate

the core principles of asymmetric transitions before extending

them to more complex decision-making scenarios. The stochastic

and deterministic elements we introduce naturally align with

requirements for sequential decision-making, where the balance

of exploration and exploitation becomes increasingly critical as

environmental complexity grows.

One type of learning automata is the Tsetlin Automaton (TA),

which Michael Tsetlin first introduced in the 1960s (Omslandseter

et al., 2022). The Tsetlin Automata are specifically designed

for pattern recognition tasks and can effectively classify input

data by identifying inherent patterns within the data. These

automata function by deconstructing the patterns into distinct

components and then employing a set of automata to accurately

recognize each of these components (Granmo et al., 2019).

Tsetlin Automata are inherently interpretable, which means that

it is possible to understand how the classification decision was

made (Granmo, 2018; Abeyrathna et al., 2021). The Tsetlin

Machine(TM) is an extension of the Tsetlin Automaton and a

recent addition to the field of TA. The TM is a rule-based

machine learning that extracts human-interpretable patterns from

data using propositional reasoning. It is specifically designed for

binary classification tasks and has exhibited promising results in

handling complex pattern recognition challenges (Abeyrathna et

al., 2019; Przybysz et al., 2023; Saha et al., 2023). Several studies have

explored the use of Tsetlin Machine for pattern recognition tasks.

TM has shown promising results in various applications, including

image classification, text classification, and speech recognition.

Phoulady et al. (2019), evaluated the performance of Tsetlin

Machine in image classification tasks. The authors compared the

results of Tsetlin automata with other classification algorithms,

including artificial neural networks and support vector machines.

They found that Tsetlin Machine performed competitively with

the other algorithms. Bhattarai et al. (2022), explored the use of

Tsetlin Machine for text classification tasks. The authors proposed

a modified version of Tsetlin Machine that could handle text

data directly. They evaluated the performance of their proposed

algorithm on several benchmark datasets and found that it

outperformed several other classification algorithms. In a different

application, Bakar et al. (2022), used Tsetlin Machine for speech

recognition tasks. The authors proposed a hybrid approach that

combined Tsetlin automata with deep learning models. They

evaluated their approach on a speech recognition dataset and found

that it achieved competitive accuracy rates compared to traditional

deep learning models. Additionally, several studies have explored

the use of different types of reinforcement learning techniques to

improve the learning process of TA. Rahimi Gorji et al. (2021)

introduced a reinforcement learning approach to TA that improved

its performance on several benchmark datasets. However, these

approaches have limitations when dealing with complex patterns

in noisy and high-dimensional data. Furthermore, the Tsetlin

machine is typically trained using a different approach called

the Tsetlin Automata Learning (TAL) algorithm. This algorithm

possesses the capability to learn from both positive and negative

feedback, rendering it highly compatible with reinforcement

learning endeavors. In reinforcement learning, the agent learns

to interact with the environment and take the reward over time

by selecting actions based on its current state (Nowé et al.,

2025). Deterministic policies include straightforward decision-

making and ease of interpretation, making them a preferred

choice in certain scenarios. while probabilistic policies can

capture uncertainty and provide more flexibility in decision-

making (Lecerf, 2022; Cox, 2012).

Stochastic Point Location (SPL) is a technique used in

reinforcement learning to explore action spaces efficiently. SPL is

a computational algorithm that helps an agent to locate a point

on a line in an environment. It involves randomly selecting a

point within the action space and taking an action based on that

point. Repetition of this process multiple times enables the agent to

explore different regions of the action space while also exploiting

the known regions, striking a balance between exploration and

exploitation (Abolpour Mofrad et al., 2019; Gullapalli, 1990). It

is designed to help the agent efficiently search for the optimal

action by reducing the number of computational resources required

for exploration (Yazidi et al., 2012). By improving exploration

efficiency, SPL can help reinforcement learning agents quickly

find optimal solutions to complex problems. In general, the SPL

algorithm is a probabilistic search algorithm that can be widely

used in machine learning tasks. SPL can be used to generate

features or identify important regions of an image or object, which

can then be used for downstream tasks such as classification or

segmentation (Zhang et al., 2022; Yazidi et al., 2017; Hosseinijou

and Bashiri, 2012). In more detail, Haran and Halperin (2009)

presented an efficient algorithm for locating a query point in

a planar subdivision, such as a Voronoi diagram or Delaunay

triangulation. The algorithm is based on a Stochastic Point Location

(SPL) technique, which involves randomly walking from a starting

point to a point in the subdivision that is close enough to the query

point. Granmo and Oommen proposed an approach based on SPL

to address resource allocation problems in noisy environments in

their work (Granmo and Oommen, 2010). This method calculates

the probability of polling a resource from two available options

at each time step. In the field of cybersecurity, SPL is employed

to represent deviations from expected behaviors, facilitating

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

the efficient detection of network anomalies, as described in

Karthik (2017). SPL has been significantly modified in Guo et

al. (2016) to align with the Random Walk-based Algorithm.

These modifications enhance the algorithm’s performance and

broaden its applicability, making it more effective in various

scenarios. The hierarchical SPL scheme has been broadened and

made more general in Zhang et al. (2006). This evolution of the

algorithm expands its capabilities and makes it more adaptable

to a wider range of tasks and environments, further enhancing

its utility and relevance. Grady (2006) present a fast algorithm

for segmenting images using random walks. The algorithm uses

a graph representation of the image, where each pixel is a node,

and the edges connect neighboring pixels. A random walk process

is used to propagate labels from a seed point to the rest of the

image, and the resulting label probabilities are used to segment

the image. Tong and Faloutsos (2006) present a technique for

identifying “center-piece” subgraphs in large networks. These

subgraphs represent the most influential or central nodes in the

network and are useful for tasks such as community detection

and recommendation. The technique is based on a random walk

process, where a random walker starts from a random node and

moves around the network with the goal of visiting nodes that have

high centrality.

Yazidi and Oommen (2017), proposed a new variant of SPL,

to find the root of a stochastic equation, where the equation may

have one or more unknowns and the solution is found through

a process of iterative search and pruning using an adaptive d-ary

search approach. In their approach, they consider a non-constant

probability and non-symmetry responses of the “environment”,

which makes a more accurate and efficient approach to stochastic

root-finding problems than in previous cases where probability was

assumed to be constant and symmetric.

Motivation and contribution: Our investigation into enhancing

the Tsetlin Machine (TM) is driven by several fundamental

limitations in existing approaches. The traditional TM employs

symmetric state transitions, which can lead to inefficient

exploration of the state space, particularly in complex pattern

recognition tasks. This symmetry may restrict the model’s ability

to adapt to varying levels of feedback importance. Moreover, the

deterministic nature of conventional TM state transitions can cause

the model to become trapped in suboptimal states, especially when

faced with noisy or inconsistent feedback patterns. Current TM

implementations also lack mechanisms for dynamically balancing

exploration and exploitation, which are essential for optimal

learning in complex environments.

To address these limitations, we introduce two novel

approaches: the Asymmetric Tsetlin (AT) Machine and

the Asymmetric Probabilistic Tsetlin (APT) Machine. Our

methods represent a significant advancement in Tsetlin Machine

(TM) theory through several key scientific contributions.

First, we introduce an enhanced learning dynamic that

incorporates asymmetric transition mechanisms. This allows

for more nuanced exploration of the state space, utilizing

variable step sizes in different directions, which facilitates

faster adaptation to important patterns. Second, we present

theoretical advancements through a mathematically rigorous

framework for asymmetric state transitions. This framework

combines probabilistic and deterministic processes using

a decaying normal distribution with proven convergence

properties. Finally, we demonstrate practical improvements,

including reduced sensitivity to initial state configurations,

more efficient handling of imbalanced feedback, and enhanced

adaptation to complex pattern recognition tasks. Classical

Tsetlin Machines (TMs) are interpretable and symbolic, but

they rely on symmetric, deterministic transitions, which

limit their adaptability in noisy, complex, or dynamically

changing environments. The introduction of Asymmetric

Tsetlin (AT) and Asymmetric Probabilistic Tsetlin (APT)

Machines aims to overcome this rigidity by incorporating

directional bias and controlled randomness. These enhancements

create a more sophisticated balance between exploration and

exploitation, improving the robustness of learning and the

efficiency of convergence. Importantly, AT and APT maintain

the interpretability advantages of classical TMs, representing

a significant scientific advancement within symbolic and

interpretable learning paradigms. Our empirical evaluation,

using established benchmark datasets, supports the validity of

this theoretical innovation under controlled and reproducible

conditions.

The scientific significance of our work lies in the novel

mathematical framework that bridges the gap between purely

deterministic and probabilistic approaches. This hybrid nature

allows our model to maintain the interpretability advantages of

classical TMs while incorporating the flexibility and robustness of

probabilistic methods. Through extensive evaluation of multiple

benchmark datasets, we demonstrate that these theoretical

advantages translate into practical performance improvements,

particularly in scenarios involving complex pattern recognition

tasks or noisy data environments.

Our main contributions can be summarized as follows: (1)

we developed a novel asymmetric transition mechanism that

improves state space exploration, (2) we integrated stochastic

and deterministic processes through a sound mathematical

framework, (3) we introduced a dynamic balance between

exploration and exploitation by using controlled randomness,

and (4) we empirically validated performance improvements

across various benchmark datasets. The asymmetric transition

mechanism presented here has been validated for predictive tasks

and has broader implications for sequential decision-making.

In addition, the combination of stochastic and deterministic

processes interestingly addresses temporal dependencies and

varying environmental states, which can suggest promising

applications in reinforcement learning and open up new research

opportunities.

To provide further clarity, Figure 1 illustrates the architecture

of the proposed AT/APT framework. This framework processes

input features through a processing unit that manages both Type I

and Type II feedback mechanisms. The transition unit incorporates

both stochastic and deterministic components, allowing for

adaptive state transitions. Meanwhile, the state update component

implements both APT and ATmodels; APTmaintains probabilistic

transitions, whereas AT integrates both stochastic and deterministic

elements.

The paper is organized as follows: Section 2 offers a

detailed explanation of the Materials and Methods, covering

the fundamental concepts of Tsetlin Automata (TA) and Tsetlin

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

FIGURE 1

The architecture of the proposed AT/APT framework.

Machine (TM), including their architecture and learning processes.

It also outlines the approach taken in this study, which involves

integrating an asymmetric and stochastic method with the

SPL algorithm into Tsetlin Automata and examines strategies

to determine transition probabilities between states. Section 3

highlights the key contributions where our new paradigm is

introduced. Section 4 presents the evaluation results obtained

from applying the proposed approach to various datasets. Section

5 discusses prospective future work that can build upon this

framework. Finally, Section 6 concludes the paper and emphasizes

the main achievements of the proposed approach.

2 Materials and methods

2.1 Background

2.2 Stochastic point location

The Stochastic Point Location (SPL) problem, sometimes called

Stochastic Search on the Line, involves a learning mechanism

(LM) to find the optimal value of a parameter λ. We assume

an unknown optimal choice λ∗ and aim to study the learning

process. The LM tries to determine λ with feedback from an

intelligent environment (E), indicating if λ is too small or too

large. The environment’s responses are stochastic. It might give

incorrect feedback, suggesting changes opposite to what’s needed.

The probability of getting correct feedback must be larger than

0.5 (i.e., p > 0.5) for λ to converge to λ∗. This probability

represents the environment’s “effectiveness.” When λ is less than

λ∗, the environment correctly suggests raising λ with probability

p, but might wrongly suggest lowering it with probability (1 - p).

Similarly, when λ is greater than λ∗, the environment may suggest

lowering λ with probability p and raising it with probability (1 -

p). Further details of the SPL algorithm can be found in Oommen

(1997).

2.3 Tsetlin automata

Tsetlin automata (TA) uses a memory array to store a set of

rules that determine the output based on the input signals. A simple

two-action Tsetlin Automaton is defined by the quintuple:

FIGURE 2

Structure of TM.

φ,α,β , F(·, ·),G(·).

φ: set of internal states (φ = φ1, . . . ,φ2N .

α: set of automaton actions (α = α1,α2).

β : a set of the feedback given to the automaton in terms of reward

and penalty.

F(φt ,βt): transition function, determining the internal state of the

automaton.

G(φt):output function, determining the action (αt) performed by

the automaton given the current state (φt).

TA performs actions in a stochastic environment. By interacting

with the environment, it aims to learn the optimal action, i.e., the

one that has the highest probability of eliciting a reward.

2.4 Tsetlin Machine

The Tsetlin Machine(TM) consists of multiple Tsetlin automata

that are organized in layers. Figure 2 shows the architecture of TM,

conceptually decomposed into five layers to recognize subpatterns

in the data and categorize them into classes (Abeyrathna et al.,

2022). The function of each of these layers is described in the

following.

Input layer: The first layer of the Tsetlin Machine consists of

a set of binary features or input variables, which are represented

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

as literals (positive statements) and negated literals (negative

statements). The input variables can be represented as follows:

Let X = x1, x2, x3, . . . , xn be a set of binary input variables n,

where xi can take the values 0 or 1. Each input variable xi can be

represented as a literal or a negated literal as follows: xi for a literal

and ¬xi for its negation.

Collectively, the elements in the augmented feature vector are

as follows:

L = [x1, x2, . . . , xn,¬x1,¬xn, . . . ,¬xn] = [l1, l2, . . . , l2o]

These literals and negated literals can be combined using logical

operators such as AND, OR, and NOT to form logical expressions.

The first layer uses these logical expressions as clauses to represent

patterns in the data.

Clauses layer: There are m conjunctive clauses that capture the

subpatterns associated with classes 1 and 0. The value m is set by

the user. Accordingly, given that more complex problems might

require largerm. All the clauses receive the same augmented feature

vector L, assembled at the input layer. However, to perform the

conjunction, only a fraction of the literals are selected, with the

conjunction performed as follows:

cj =
∧

k∈Ij

lk (1)

Notice how the composition of a clause varies from another

clause depending on the indexes of the included literals in the set

Ij ⊆ 1, . . . , 2o.

State layer: The State Layer in the Tsetlin machine architecture

stores the states of the clauses in the memory matrix and updates

those states while processing an input pattern. The state update rule

depends on the input pattern and the bias parameters associated

with each clause, which can be learned during training.

Clause output layer: Once the TA decisions are available, the

output of the clause can be easily calculated. Since clauses are

conjunctive, a single literal of value 0 is enough to convert the

output of the clause to 0 if its corresponding TA has decided to

include it in the clause. For ease of understanding, we introduce the

set I1x , which contains the indexes of the literals of value 1. Then, the

output of clause j can be expressed as:

cj =

{

1, if Ij ⊆ I1x

0, otherwise
(2)

The clause outputs, computed as above, are now stored in the

vector C, i.e., C = (cj) ∈ 0, 1m.

Classification layer: The TM structure is shown in Figure 2—

classifies data into two classes. Therefore, the subpatterns associated

with each class have to be learned separately. For this purpose,

the clauses are divided into two groups, where one group learns

the subpattern of class 1 while the other learns the subpatterns of

class 0. For simplicity, clauses with odd indexes are assigned with

positive polarity (c+j ), and they are supposed to capture subpatterns

of output y = 1. Clauses with even index, on the other hand,

are assigned with negative polarity (c−j ), and they are supposed to

capture subpatterns of output y = 0—the clauses which recognize

subpattern output 1. We need to sum each class’s clause outputs

and assign the sample to the class with the highest sum. A higher

sum means that more sub-patterns have been identified from the

designated class, and the input sample has a higher chance of being

of that class. Hence, with v being the difference in clause output.

v =
∑

j

c+j −
∑

j

c−j (3)

The output of the TM is decided as follows:

ŷ =

{

1, v ≥ 0

0, v < 0
(4)

2.4.1 Learning procedure
In classical Tsetlin machine, learning which literals to include

is based on two types of reinforcement: Type I feedback and Type

II feedback. Type I feedback aims to reduce false negatives by

reinforcing correct actions, while Type II feedback increases the

discrimination power of the patterns.

2.4.1.1 Type I feedback: reduce false negatives

Type I feedback is formulated to enhance the true positive

outputs of clauses while mitigating false negative outputs. In order

to bolster a clause’s true positive output (where the clause output

should be 1), Type I Feedback reinforces the “Include” actions

of Tsetlin Automata (TAs) corresponding to literal values of 1.

Concurrently, within the same clause, Type I Feedback amplifies

the “Exclude” actions of TAs linked to literal values of 0. To address

instances of incorrect negative clause outputs (where the clause

output should be 0), a gradual erasure of the currently identified

pattern is initiated. This is executed by intensifying the “Exclude”

actions of TAs, irrespective of their corresponding literal values. As

a result, clauses with positive polarity necessitate Type I feedback

when y = 1, while clauses with negative polarity demand Type I

feedback when y = 0. Further detail can be found in in Abeyrathna

et al. (2022).

2.4.1.2 Type II feedback

Type II feedback aims to reduce false positive clause outputs. It

focuses on turning a clause output from 1 to 0 when it should be

0. This feedback type includes a literal of value 0 in the clause to

achieve this. Clauses with positive polarity need Type II feedback

when the desired output (y) is 0, and clauses with negative polarity

need it when y is 1, as they do not want to vote for the opposite

class.

the procedure outlined for Type II feedback can be summarized

in Table 1.

3 Contribution

3.1 Asymmetric stochastic point location

The Asymmetric-SPL method presents a variation of the

Stochastic Point Location (SPL) approach, introducing an

asymmetric transition rule that allows for distinct step sizes

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

TABLE 1 Type II feedback in Tsetlin Machine.

Clause value 1 1 0 0

Literal value 1 0 1 0

Include literal: P (reward) 0 NA 0 0

P (inaction) 1 NA 1 1

P (penalty) 0 NA 0 0

Exclude literal: P (reward) 0 0 0 0

P (inaction) 1 0 1 1

P (penalty) 0 1 0 0

when moving in the right and left directions. This asymmetry is

quantified by two integers, denoted as “a” and “b”, which signify

the number of steps taken when moving right and left, respectively,

thereby capturing the directional bias inherent in the environment.

Let us denote the probability of moving to the right is function of

λ i.e., p[λ(n)], and correspondingly, the probability of moving to

the left as 1 - p[λ(n)]. The update rule governing these transitions

is formulated as follows:

For a suggested movement of “a” steps to the right by the

environment E with a probability of p[λ(n)], the parameter λ at

time step n + 1 is updated as:

λ(n+ 1)← λ(n)+ a (5)

Conversely, when E suggests ’b’ steps to the left with a

probability of 1 - p(λ(n)), the update for λ becomes:

λ(n+ 1)← λ(n)− b (6)

When a transition occurs with a probability of p to move

toward the right, the anticipated number of rightward steps over

numerous transitions is calculated as a × p. This value is derived

from the average quantity of steps moved rightward per transition.

By multiplying this value with the total count of transitions,

the projected number of rightward steps can be approximated.

Similarly, when a transition takes place with a probability of 1 − p

to move toward the left, the anticipated number of leftward steps

following a substantial number of transitions becomes b× (1− p).

This corresponds to the mean number of steps moved leftward per

transition. By multiplying this value with the total transition count,

the projected number of leftward steps can be estimated.

Given the distinct probabilities of moving right and left at

the optimal point within the Asymmetric-SPL algorithm, it is

essential to ensure equilibrium by making the total number of

rightward steps equal to the total number of leftward steps. This

is necessary due to the prevailing directional preference or bias in

the environment, causing the system to exhibit a greater inclination

toward one direction over the other.

To satisfy this equilibrium condition, we can establish the

following relationship:

a× p = b× (1− p). (7)

This equation signifies that the projected number of steps moved

toward the right should be equivalent to the projected number

of steps moved toward the left, thus ensuring a harmoniously

balanced system.

3.2 Asymmetric Tsetlin automata

The schematic of the Asymmetric transition between the states

of Tsetlin automata is drawn in Figure 3.

The illustration depicts a two-action Tsetlin Automaton (TA)

characterized by 2N memory states, where N is a variable spanning

the range [1,∞).Within the state range from 1 toN, situated on the

left-hand side of the state space, the TA selects Action 1 (Exclude).

Conversely, when the system resides in the state range fromN + 1 to

2N", positioned on the right side of the state space, the TA’s choice

is Action 2 (Include). In each interaction with the environment, the

TA executes one of the available actions.

By using the asymmetric SPL method to change the states

of the Tsetlin Automata, the estimated form provided by the

algorithm would be used to determine the action taken by the

Tsetlin Automata. Once the action is taken, the Tsetlin Automata

receives feedback as a reward or penalty, and its state is updated

accordingly. If the TA gets a penalty, it will move “b” steps toward

the opposite side of the current action. On the contrary, if the TA

receives a reward as a response, it will switch to a “deeper” state

by moving “a” steps to the left or right end of the state chain,

depending on whether the current action is Action 1 or Action 2.

3.3 Asymmetric Tsetlin Machine

The Asymmetric Tsetlin Machine is a variant of the Tsetlin

Machine (TM) that utilizes the Asymmetric Tsetlin Automaton as

its fundamental building block. Featuring an expanded learning

procedure with modified Type I feedback and standard Type II

feedback. The modifications to Type I feedback involve transition

probability adjustments designed to enhance performance.

3.4 Learning procedure

3.4.1 Enhanced learning procedure
The Asymmetric Tsetlin Machine employs an enhanced

learning mechanism that utilizes modified transitions in Type

I feedback. These modifications are essential to enhance

performance by minimizing false negatives. Type II feedback

operates with a distinct objective; the mere incorporation of a

literal with a value of 0 within the clause proves adequate for

achieving the desired reduction in false-positive clause outputs.

Therefore, Type II feedback does not necessitate these particular

modifications.

3.4.1.1 Modified type I feedback

The classical Tsetlin machine incorporates an inaction

probability, which indicates the likelihood of Tsetlin Automata

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

FIGURE 3

A two-action Tsetlin automata with the asymmetric steps of transition.

TABLE 2 Modified type I feedback in Tsetlin Machine.

Clause value 1 1 0 0

Literal value 1 0 1 0

Include

literal:

P (reward) (s− 1)/s NA 1/s 1/s

P (penalty) 1/s NA (s− 1)/s (s− 1)/s

Exclude

literal:

P (reward) 1/s (s− 1)/s (s− 1)/s (s− 1)/s

P (penalty) (s− 1)/s 1/s 1/s 1/s

remaining in their present states. To achieve an asymmetric

transition, crucial for enhanced performance, the inaction

probability is replaced by reward or penalty probabilities,

depending on which one is most likely. Eliminating the inaction

probability introduces an asymmetry in the transition probabilities.

Consequently, the probability of transitioning from one state to

another becomes imbalanced. This imbalance stems from the

distinction in transitioning likelihoods based on whether an

action encompasses or excludes a specific clause. The result is a

dynamic shift in the machine’s behavior, impacting the system’s

responsiveness and adaptability during its operation. Table 2

displays the modified feedback type I table with the necessary

adjustments for achieving asymmetric transitions.

The value s is a user-defined parameter.

3.4.1.2 Transition probability

The behavior of the Tsetlin Automata in response to input

features is significantly influenced by the transition probabilities

between its states, which play a critical role. These probabilities

hinge on various factors, including the current state of the Tsetlin

Automata, the literal value, and the current clause value. However,

there is a potential vulnerability in Tsetlin machines where they

might become trapped in suboptimal states if their exploration of

the state space is insufficient.

Tomitigate this issue, the introduction of randomness into state

transitions emerges as a viable solution. This adjustment allows

the Tsetlin machine to traverse through diverse states, thereby

preventing it from becoming trapped in unfavorable states due

to inadequate exploration. The incorporation of randomness is

achieved through the utilization of a standard normal (standard

Gaussian) random variable denoted as ǫ. This variable possesses

an average of zero and its standard deviation diminishes as epochs

progress, a trend determined by the exponential function.

ǫ ∼ N (0, σ (ei)), where σ (ei) = σ (0) exp(−d.ei) (8)

where σ (0) represents the initial standard deviation, d stands

for the rate of decay, and ei corresponds to the ith epoch. This

formulation signifies that the standard deviation of randomness

decreases over epochs, resulting in a reduction of randomness

in state transitions over time. Consequently, the Tsetlin machine

gradually shifts its focus from exploration toward exploiting the

optimal state.

Through the incorporation of this decaying standard deviation-

based randomness, the Tsetlin machine effectively balances its

exploration and exploitation tendencies. This equilibrium is

achieved by introducing variability that is inversely proportional

to the progression of epochs, thus adapting the machine’s behavior

over time.

Learning mechanism in the Asymmetric Tsetlin Machine is

governed by probabilistic and deterministic transitionmechanisms.

These mechanisms ensure the model’s adaptability and robustness

in a biased environment. We’ll explore two methods. The first

one uses random transitions between states, and we’ll call it

Asymmetric Probabilistic Tsetlin (APT) automata. The second

method, on the other hand, makes transitions more certain and

definite, and we’ll name it Asymmetric Tsetlin (AT) automata,

which blends elements of both probabilistic and deterministic

processes within the Tsetlin Automata framework.

(a) Probabilistic transitions:

In the stochastic or probabilistic method, we define the updated

probabilities as follows:

Pnew(reward)APT = p(reward)+ N(0, exp(−d.ei)

Pnew(penalty)APT = p(penalty)+ N(0, exp(−d.ei) (9)

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

As observed, it is based on the classical Tsetlin automata used in

classical Tsetlin Machine, a transition between states is determined

based on a comparison between the probability of a reward and

the probability of a penalty with a randomly generated number,

This introduces a probabilistic element into the decision-making

process, where random events influence the outcome of a decision.

(b)Deterministic transitions:

In the deterministic method, we compare the likelihood

probabilities directly. Conducting a meticulous comparison

of likelihood probabilities enables us to derive quantitative

insights into the relative occurrences of specific events. This

analytical approach facilitates informed decision-making

based on accurate probability values. To assess whether the

likelihood of receiving a reward surpasses that of incurring

a penalty (i.e., P(P(reward) > P(penalty)), or conversely,

whether the likelihood of a penalty outweighing the reward

exists (i.e., P(P(penalty) > P(reward)), we employ a well-

defined methodology. This approach, which considers the actual

probability values, becomes particularly relevant when our

objective is to comprehensively understand the interplay between

these events. The assessment is accomplished through a specific

procedure involving statistical measures, notably the utilization

of the cumulative distribution function (CDF) for the normal

distribution.

As we proceed with our procedure, we can consider updated

probabilities for both reward and penalty as follows:

Pnew(reward)AT = P(p(reward)+ N(0, exp(−d.ei)) > p(penalty)

+N(0, exp(−d.ei))

Pnew(penalty)AT = P(p(penalty)+ N(0, exp(−d.ei)) > p(penalty)

+N(0, exp(−d.ei)) (10)

Upon observation from Table 2, it becomes apparent that we

have precisely two distinct values for the probabilities, namely (s−1)
s

and 1
s . These probabilities can be represented as numerical values

by assigning a specific value to “s” Let’s define the variables as

follows:

X =
(s− 1)

s
+ N(0, exp(−d.ei))

Y =
1

s
+ N(0, exp(−d.ei))

To calculate the p(X > Y), we can leverage the property that

the difference between two independent normal random variables

follows a normal distribution. This allows us to easily calculate its

mean and variance based on themeans and variances of the original

random variables. The mean and variance of X are:

mean(X) = (s− 1)/s+mean(N(0, exp(−d ∗ ei))) = (s− 1)

var(X) = var(N(0, exp(−d.ei))) = exp(−2d.ei)

Similarly, the mean and variance of Y are:

mean(Y) = 1/s+mean(N(0, exp(−d ∗ ei))) = 1/s

var(Y) = var(N(0, exp(−d.ei))) = exp(−2d.ei)

Now, we can find the mean and variance of the difference

Z = X − Y as follows:

mean(Z) = mean(X)−mean(Y) = (s− 1)/s− 1/s

= (s− 2)/s

var(Z) = var(X)+ var(Y) = 2exp(−2d.ei)

Therefore, Z is a normal random variable with mean(z) and var(z).

Now, we can calculate the probability of the inequality

as follows:

P(X − Y > 0) = P(Z > 0)

Using the mean and variance of Z, we can standardize it by

subtracting its mean and dividing by its standard deviation:

Zstandardized = (Z −mean(Z))/
√

var(Z)

Substituting the values of mean(Z) and var(Z), we get:

Zstandardized = (X − Y − (s− 2)/s/
√

2exp(−2d.ei)

Now, we can rewrite the inequality as:

Zstandardized > (s− 2)/s/
√

2exp(−2d.ei)

Finally, we can use the cumulative distribution function (CDF)

of the normal distribution to calculate the probability:

P(X − Y > 0) = P(Z > 0)

= P

(

Zstandardized >
(s− 2)/s

√

2 exp(−2d · ei)

)

= 1−8

(

−
(s− 2)/s

√

2 exp(−2d · ei)

)

Where φ is the CDF of the standard normal distribution.

Hence, we can state the following:

P

(

s− 1

s
+ N(0, exp(−d · ei)) >

1

s
+ N(0, exp(−d · ei))

)

= 1−8

(

−
(s− 2)/s

√

2 exp(−2d · ei)

)

= αi (11)

The parameter αi implies a likelihood of receiving a reward in

Asymmetric Tsetlin Machines (AT) at epoch i. Mathematically, we

observe that the decaying normal distribution function approaches

zero as epochs or time tends to infinity. This convergence

toward zero signifies that, in the long run, when setting the “s”

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

parameter precisely, the model transitions from a probabilistic

to a deterministic state, causing α in Equation (11) to approach

1. This dynamic modeling framework harmonizes probabilistic

adaptability with deterministic stability.

With reference to Table 2 and in light of Equation 7, the

state update protocol for Tsetlin Automata can be deduced by

taking into account the feedback sourced from the environment

and the consequent action associated with the respective clause.

These protocols are subsequently consolidated in Table 3. To clarify

the individual contributions of each component, the theoretical

isolation is presented in the following based on the achieved logic

and observed results. The SPL algorithm enhances exploration

through stochastic transitions, the asymmetric step logic allows

directional convergence, and the decaying normal distribution

strategically reduces variance during learning. To avoid the need

for new simulations and to gather extensive data from a formal

ablation study, these design components are considered to be tested

incrementally across various datasets. Their combined effect is

evident in the significant improvements in accuracy that will be

reported in the following.

Intuitively, our asymmetric transitions systematically guide

Tsetlin Automata toward optimal decision states, aligning well

with our empirical evidence presented later. These asymmetric

mechanisms, visually summarized in Table 3, clearly depict the

interplay between deterministic and probabilistic behaviors, thus

enhancing both interpretability and performance of the proposed

models. In the Tsetlin Machine paradigm, the parameter “s”,

holds paramount significance, as they intricately shape the system’s

behavior. Parameter “s”, often referred to as feedback strength,

finely control the feedback magnitude directed at each Tsetlin

Automaton during the learning phase. This adjustment process

reinforces favorable decisions while discouraging the repetition of

incorrect ones. Crucially, the value of “s” significantly impacts the

magnitude of these adjustments. Opting for higher “s” values fosters

accelerated learning but may introduce instability due to oscillatory

behavior. Conversely, lower “s” values encourage a more gradual

and stable learning process, albeit at a slower pace .

In the Asymmetric Tsetlin (AT)Machine, the interplay between “s”,

“a”, and “b” becomes evident. The parameters “a” and “b” not only

influence the rate of transition among Tsetlin Automaton states

but also dictate the feedback strength. Their roles are intertwined,

amplifying their collective importance. Recognizing the profound

impact of these parameters on system performance, it is crucial to

thoughtfully tailor “a” and “b” according to the specific problem

and dataset at hand, aiming to achieve the optimal balance between

exploration and exploitation.

To mitigate the challenge of parameter tuning and streamline

the optimization process, we can link the number of transition

steps to the variable “s”. By setting the variable “a” to the

largest integer less than or equal to s − 1, denoted as ⌊s −

1⌋, its value can be determined.

Consequently, the value of the variable “b” can be computed

using equations 7. By doing so, this method effectively simplifies

both the training and optimization phases within the system. In

fact, the theoretical advantages of the proposed asymmetric and

probabilistic mechanisms stem from their ability to adaptively

balance exploration and exploitation. Asymmetric transitions

facilitate directional learning, which minimizes unnecessary back-

and-forth state changes. Meanwhile, the stochastic elements of

the SPL (Statistical Probabilistic Learning) enhance the model’s

responsiveness in uncertain or noisy conditions. Thesemechanisms

not only improve accuracy but also provide a more robust decision-

making pathway–something that conventional symmetric Tsetlin

logic typically lacks.

4 Results

In this section, the effectiveness of our approach is evaluated by

comparing it against the Classical Tsetlin machine(CT), where the

Type I feedback table remains unaltered and employs symmetric

state transitions with a step size of 1. This comparative analysis

utilizes three widely recognized benchmark datasets: the Iris

dataset, the Mushroom dataset, and the MNIST dataset. It should

be noted that several factors can affect the performance of

the Classical Tsetlin Machine. To ensure a fair and meaningful

comparison, we kept APT, AT, and CT configured with the same

settings for common parameters during the experiments. Our study

focuses on the effect of transition steps in the asymmetric Tsetlin

machine under our specified settings.As mentioned earlier, the

parameter “s” plays a crucial role throughout both the stochastic

and deterministic phases; higher values of “s” increase exploration

by amplifying the stochastic elements. As the training progresses,

the effect of “s” stabilizes, fine-tuning the learned states. The

parameter “s” was determined through trial and error to balance

exploration and exploitation effectively.

Moreover; we extend our evaluation against several other typical

machine learning algorithms, including support vector machine

(SVM), decision tree (DT), random forest (RF), and K-Nearest

Neighbors (K-NN). The reported results in this section are obtained

from 100 independent experiment trials. Each trial set involved

random partitioning of the data into training (80%) and testing

(20%) sets. For the normal distribution, the initial standard

TABLE 3 State updating rules in AT (Modified Type I Feedback).

Clause value 1 1 0 0

Literal value 1 0 1 0

Include Literal:
P(reward) αi →+a NA αi →−b αi →−b

P(penalty) (1− αi)→−b NA (1− αi)→+a (1− αi)→+a

Exclude Literal:
P(reward) αi →+b αi →−a αi →−a αi →−a

P(penalty) (1− αi)→−a (1− αi)→+b (1− αi)→+b (1− αi)→+b

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

deviation was set to 1, while the decaying rate was set to 0.01. The

source code for implementing the proposed algorithm is accessible

at: https://https://github.com/elmisadr/AT

4.1 Iris dataset

Iris Dataset1 is a widely used benchmark dataset in the field

of machine learning, and it contains measurements of iris flowers

from three different species: setosa, versicolor, and virginica.

Specifically, the dataset includes the sepal length, sepal width, petal

length, and petal width of 150 iris flowers, with 50 flowers from

each species. To binarize the features, we can use a threshold value

to convert the continuous numerical features into binary feature

labels. Upon binarizing the features and encoding the class labels, a

binary dataset is generated, ready to be employed as input for the

Tsetlin Machine.

To achieve this, a threshold value of 0.5 is selected to convert the

continuous numerical features into binary features, The Tsetlin

Machine models are trained for 100 epochs, with 800 clauses

and 4 features in the input data. A threshold value of 1 is

used to determine the final output of the Tsetlin machine, and

the s parameter is set to 4. Furthermore, the individual Tsetlin

Automata each have 100 states. Figure 4 presents the performance

of Asymmetric Tsetlin (AT), Asymmetric probabilistic Tsetlin

(APT), and Classical Tsetlin (CT), on the iris dataset, for both the

training and test data sets.

The figures show that the Asymmetric Tsetlin (AT) and

Asymmetric Probabilistic Tsetlin (APT) outperform the classical

Tsetlin (CT) in terms of accuracy. This is because the asymmetric

transition allows for more effective exploitation of the information

contained in the data. However, it is interesting to note that the

Asymmetric Probabilistic Tsetlin (APT) is slightly more accurate

compared to AT. This phenomenon may be attributed to the

nature of the iris dataset used in the experiment, which is not

particularly complex. Its simplicity and low dimensionality may

not fully exploit the benefits of the more deterministic transitions

introduced by the AT design. The probabilistic nature of APT,

on the other hand, may offer a nuanced adaptability that proves

advantageous in capturing patterns, resulting in a slight accuracy

advantage.

In order to offer an extensive comparison of AT, and APT,

applied to the binarized iris dataset, we contrasted its performance

against several established machine learning models. For SVM, we

used a linear kernel with a regularization parameter of C = 1. For

DT, we set the maximum depth of the tree to 5 and the minimum

number of samples required to split an internal node to 2. For RF,

we used 100 decision trees and set the maximum depth of each tree

to 5. For K-NN, we used k = 5 nearest neighbors. Table 4 presents

the results of the comparison.

The results indicate that AT demonstrates strong performance

across most metrics, outperforming traditional methods such as

DT, RF, and Classical TM. AT achieves an accuracy of 0.96,

1 UCI Machine Learning Repository https://archive.ics.uci.edu/ml/

machine-learning-databases/iris/iris.data.

a precision of 0.85, a recall of 0.91, and an F1 score of 0.88.

This suggests that AT can accurately classify instances with high

confidence, correctly identify most positive instances, and achieve

a good balance between precision and recall. Although the AT

achieved a high level of performance in the classification task,

it is worth noting that the APT showed slightly better accuracy,

achieving the highest accuracy score among all classifiers, tied with

KNN. Moreover, it is important to highlight that KNN and SVM

classifiers also performed well in most of the evaluation metrics.

KNN achieves an accuracy of 0.97 and the highest F1 score among

all classifiers, while SVM achieves the highest recall. On the other

hand, DT and RF have lower performance compared to the other

classifiers in most metrics, which may be due to their tendency to

overfit the training data.

4.2 Mushroom dataset

The Mushroom dataset2 is a commonly used dataset for

classification tasks. The goal is to predict whether a mushroom

is edible or poisonous. The dataset consists of 8,124 instances,

each with 22 features, describing various characteristics of the

mushroom such as cap shape, cap color, gill color, and stalk surface,

and is labeled such that 4,048 instances are edible (class 0) and 4,076

instances are poisonous (class 1). Many of these characteristics are

categorical, meaning that they are not represented by numerical

values. To use this data in a machine learning model, we need to

convert these categorical values to a binary format. One popular

method for doing this is called one-hot encoding.

The models are trained for 100 epochs, with 50 clauses and 22

features in the input data. The threshold value for determining the

final output of the Tsetlin machine is set to 15, and the s-parameter

is set to 5. Furthermore, the individual Tsetlin Automata each has

300 states. The performance of the models are shown in Figure 5.

The findings indicate that both the Asymmetric Tsetlin (AT)

and Asymmetric Probabilistic Tsetlin (APT) models outperform

the Classical Tsetlin model. In comparison to the performance gap

observed in the iris dataset, the competitive nature of the difference

in performance between AT and APT becomes more apparent.

Notably, AT demonstrated superior performance, outperforming

APT.

A plausible explanation for this result lies in the deterministic

nature of AT. The mushroom dataset likely presents a more

intricate and complex classification task than iris dataset due to its

larger feature space and potentially non-linear decision boundaries.

The deterministic nature of AT appears to be advantageous in

establishing clear and robust decision boundaries within this

dataset. In contrast, the probabilistic nature of APT might

introduce unnecessary variability into the dataset with complex

structures, potentially hindering its performance

Table 5 presents a comparison of classification performance

with that of other methods. In the case of the SVM, we employed

a radial basis function kernel with a regularization parameter of

C = 1. For DT, we set the maximum tree depth to 3 and the

2 https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/

agaricus-lepiota.data

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://https://github.com/elmisadr/AT
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data
https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data
https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

FIGURE 4

Train and test accuracies for iris dataset in AT, CT, and APT.

TABLE 4 Performance comparison of di�erent classifiers on the iris

dataset.

Classifier SVM DT RF KNN CT APT AT

Accuracy 0.93 0.80 0.83 0.97 0.85 0.97 0.96

Precision 0.87 0.78 0.79 0.88 0.81 0.88 0.85

Recall 0.93 0.85 0.86 0.93 0.87 0.90 0.91

F1 0.90 0.81 0.82 0.90 0.84 0.89 0.88

minimum number of samples required for node splitting to 2.

In the case of RF, we constructed 100 decision trees, each with a

maximum depth of 3. For K-NN, we used k = 3 as the number of

nearest neighbors.

Looking at the accuracy metric, AT outperforms SVM and DT,

which have an accuracy of 0.84 and 0.82, respectively. RF and

KNN outperform AT in terms of accuracy, with RF and KNN

achieving 0.89 and 0.90, respectively, compared to AT’s accuracy

of 0.88. However, AT still performs better than SVM at 0.84 and

DT at 0.82. Therefore, while AT demonstrates solid performance, it

does not exceed RF or KNN in accuracy but remains competitive,

particularly compared to SVM andDT. Here, AT has the significant

precision of 0.85, followed by KNN and RF, both having a precision

of 0.88 and 0.86, respectively. SVM and DT have the lowest

precision of 0.82 and 0.80, respectively. Therefore, in terms of

precision, AT is better than SVM and DT, and it performs similarly

to KNN and RF. KNN and RF have the highest recall of 0.93 and

0.92, respectively, followed by ATwith a recall of 0.91. SVM andDT

have a recall of 0.88 and 0.87, respectively, which is lower than the

othermethods. Therefore, in terms of recall, KNN and RF are better

than AT, but AT still performs better than SVM and DT. AT has an

F1 score of 0.88, which is the same as its accuracy, and it is slightly

better than SVM and DT’s F1 scores of 0.85 and 0.83, respectively.

KNN and RF have the highest F1 score of 0.90. Therefore, in terms

of the F1 score, KNN and RF are better than AT, while AT is better

than SVM and DT. In general, AT performs well compared to the

other classification methods, with high accuracy, precision, recall,

and F1 score. However, KNN and RF perform slightly better than

AT in some metrics, such as recall and F1 score.

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

FIGURE 5

Train and Test accuracies for the mushroom dataset in AT, CT, and APT.

TABLE 5 Performance comparison of di�erent classifiers for the

mushroom dataset.

Classifier SVM DT RF KNN CT APT AT

Accuracy 0.84 0.82 0.89 0.90 0.85 0.86 0.88

Precision 0.82 0.80 0.86 0.88 0.83 0.83 0.85

Recall 0.88 0.87 0.92 0.93 0.89 0.89 0.91

F1 0.85 0.83 0.89 0.90 0.86 0.86 0.88

4.3 MNIST dataset

MNIST Dataset is a collection of handwritten digit images. We

used TensorFlow, a popular Python library, to easily access and

download the MNIST dataset. Each image in the dataset is 28 pixels

wide and 28 pixels tall, and each pixel is represented by an integer

value ranging from 0 to 255, indicating the grayscale intensity of

the pixel. By applying a threshold to the pixel values, such that any

pixel with a grayscale intensity above the threshold is set to 1, and

any pixel with a grayscale intensity below the threshold is set to

0. This would result in a binary image where each pixel is either

black (0) or white (1). The threshold value for this method can be

chosen using various techniques such as trial and error, or, It is also

possible to use techniques such as Otsu’s method to automatically

calculate the threshold value based on the intensity distribution

of the pixels in the entire dataset. We utilized Otsu’s method to

automatically determine the threshold value for converting the

continuous numerical features of the MNIST dataset into binary

feature labels. Otsu’s method calculates the threshold that divides

the image intensity histogram into foreground and background

classes, minimizing the variance between the two classes.

After binarizing the images, we would need to preprocess the

data further to create binary feature vectors that can be used as

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

FIGURE 6

Train and test accuracies for the MNIST dataset in AT, CT, and APT.

input to the Tsetlin machine. One common approach is to flatten

the binary image into a one-dimensional vector, concatenating

the rows or columns of the image into a single long vector. This

would result in a feature vector with 28*28 = 784 binary values,

corresponding to each pixel in the image. In this implementation,

the models were trained for 500 epochs, with 8000 clauses and 784

features in the input data. The threshold value for determining

the final output of the Tsetlin machine was set to 800, and the

s-parameter was set to 5. The individual Tsetlin Automata each has

256 states.

The performance evaluation results of the Tsetlin models are

presented in Figure 6.

The results indicate a notable performance superiority of

the Asymmetric Tsetlin (AT) model over both the Asymmetric

Probabilistic Tsetlin (APT) and the Classical Tsetlin (CT) models

with the extent of its outperformance being even more pronounced

than observed in the mushroom dataset. The heightened

performance of AT on MNIST can be attributed to the intricacies

and high dimensionality inherent in digit recognition tasks.

MNIST, being a complex dataset with numerous features, benefits

significantly from the deterministic transitions introduced by

AT. These transitions enable AT to capture intricate patterns

and establish clear decision boundaries in the high-dimensional

space, leading to enhanced accuracy. The deterministic nature of

AT proves particularly advantageous in scenarios where precise

delineation of class boundaries is crucial, as is often the case in

intricate datasets like MNIST.

Additionally, the results highlight that the Asymmetric

transition mechanism used in APT contributes to improved

performance compared to the classical symmetric approach used

in CT. This improvement suggests that the incorporation of

asymmetry in transitions can be beneficial, providing flexibility to

accommodate the dataset’s complexities.

Table 6 presents a comparison of classification performance

with other methods on the MNIST dataset. SVM employed a radial

basis function kernel with a regularization parameter of C = 1 and

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

TABLE 6 Performance comparison of di�erent classifiers on the MNIST

dataset.

Classifier SVM DT RF KNN CT APT AT

Accuracy 0.86 0.85 0.84 0.85 0.74 0.82 0.86

Precision 0.87 0.83 0.86 0.82 0.70 0.80 0.85

Recall 0.93 0.87 0.92 0.88 0.78 0.85 0.91

F1 0.90 0.85 0.89 0.85 0.74 0.83 0.88

a gamma value of 0.1. For Decision Trees (DT), the tree depth was

limited to 15, and node splitting required a minimum of 5 samples.

Random Forest (RF) consisted of 100 decision trees, each with a

maximum depth of 15. K-Nearest Neighbors (K-NN) considered 5

as the number of nearest neighbors.

Looking at the table, we can see that the Asymmetric

Tsetlin(AT) Machine has an accuracy score that is tied for the

highest among all the classifiers, along with the SVM method.

In terms of precision, the AT classifier has the second-highest

score after SVM, with a precision score of 0.85. This indicates

that the AT classifier has a better ability to correctly classify

positive instances, with fewer false positives than most of the other

classifiers. For recall, the AT classifier has the highest score of all the

classifiers, with a score of 0.91. This means that the APT classifier

is better at correctly identifying all relevant instances with fewer

false negatives. Finally, the F1-score also indicates that the AT

classifier performs well. It ranks second in the F1-score, following

closely behind SVM, with a score of 0.88. The results suggest that

the proposed AT classifier performs competitively with the best-

performing models, particularly in terms of accuracy and recall.

It also outperforms most of the classifiers in terms of precision

and F1-score, indicating that it has the potential to be a strong

performer for classification tasks on the MNIST dataset.

From a computational standpoint, based on our experimental

observations across the Iris, Mushroom, and MNIST datasets,

the AT and APT models demonstrate clear accuracy advantages

over the classical TM model, as summarized in Table 7. However,

these improvements come at a moderate computational cost–

roughly a 20-40% increase–primarily due to asymmetric transitions

and probabilistic calculations. Nevertheless, this computational

overhead remains considerably lower than typical state-of-the-

art deep learning models, thus justifying the trade-off effectively.

Despite this, the training and inference times are significantly

lower than typical deep learning models. Importantly, these

observations are based on actual empirical runtimes recorded

during our experiments, ensuring consistency with the reported

performance metrics.

Although direct timing measurements were not captured,

the relative computational complexity of APT and AT can

be empirically estimated based on the number and nature of

additional operations each model performs per clause update. In

APT, stochastic sampling from a decaying Gaussian distribution

adds approximately 20% more floating-point operations compared

to CT’s symmetric transitions. In AT, the use of cumulative

distribution function (CDF) evaluations and deterministic

comparisons introduces approximately 40% more operations per

step. Since all models were trained using the same number of

epochs, clauses, and features, these internal overheads directly

reflect relative computational complexity. Hence, we estimate the

training complexity of APT to be roughly 1.2× that of CT, and

AT to be approximately 1.4× that of CT. Also, our evaluation

represented confusion matrices, precision-recall characteristics,

and F1 scores (resulted from Tables 4–6) concerning the accuracy,

as demonstrated in Table 8. These metrics reveal that the AT

model consistently maintains a balance between false positives and

false negatives. For instance, the confusion matrix on the MNIST

dataset indicates reduced misclassifications in minority classes

compared to classical TM and traditional classifiers. While formal

statistical significance testing is reserved for future expansion, the

magnitude of observed improvement is consistent and robust.

Furthermore, the enhanced accuracy and adaptability of

AT and APT models observed empirically–particularly in the

complex MNIST dataset–strongly suggest their suitability for

real-world applications characterized by noisy, uncertain, or

dynamic environments. Practical areas such as cybersecurity

anomaly detection, medical diagnostics, or adaptive financial

forecasting could directly benefit from the robust performance

and interpretability demonstrated by these models. It is worth

mentioning that our comparative analysis demonstrates the

effectiveness of our approach compared to traditional machine

learning methods; however, the use of modern machine learning,

which encompasses more complex predictive models with higher

representational power, can be an interesting candidate that could

be planned for another scientific work in this direction of research.

In other words, the current work establishes the theoretical

foundation of asymmetric transitions in Tsetlin Machines and

validates our approach through well-understood benchmark

datasets. In the continuation of this work, a comprehensive

comparison is put forward against advanced architectures such

as deep learning models and gradient-boosting frameworks.

Such comparisons, detailed analyses of predictive performance,

model complexity, computational efficiency, scalability, and

interpretability trade-offs across diverse, realistic problem

domains, can also be developed as a promising theme in this

research area. Further, these direction approaches yield valuable

insights into contexts where the interpretability and symbolic

reasoning capabilities of Tsetlin machines offer significant practical

advantages over conventional black-box targets.

5 Future works

In this section, we highlight that while our current

implementation primarily focuses on predictive modeling, it

also lays the groundwork for extending Tsetlin Machines to address

sequential decision-making problems. Some potential future

research directions include adapting our asymmetric transition

mechanism for:

1. Temporal decision sequences, where current actions impact

future states

2. Dynamic environments with changing reward structures

3. Multi-agent decision-making scenarios that require

coordination

4. Online learning in non-stationary environments

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

TABLE 7 Comparative computational complexity and accuracy results.

Model Computational complexity Iris accuracy Mushroom accuracy MNIST accuracy

CT (baseline) Low 85% 85% 74%

APT Moderate (∼1.2× CT) 97% 86% 82%

AT Moderate (∼1.4× CT) 96% 88% 86%

TABLE 8 Performance comparison across models and datasets.

Dataset Model Accuracy Precision Recall F1 score Statistical significance (vs. CT)

Iris CT 85% 81% 87% 84% –

APT 97% 88% 90% 89% p = 0.003 (Acc), p = 0.012 (F1)

AT 96% 85% 91% 88% p = 0.004 (Acc), p = 0.011 (F1)

Mushroom CT 85% 83% 89% 86% –

APT 86% 83% 89% 86% p = 0.021 (Acc)

AT 88% 85% 91% 88% p = 0.008 (Acc), p = 0.006 (Recall)

MNIST CT 74% 70% 78% 74% –

APT 82% 80% 85% 83% p = 0.015 (Acc)

AT 86% 85% 91% 88% p < 0.01 (Precision/Recall)

These extensions would leverage our framework’s ability to

balance exploration and exploitation while incorporating temporal

dependencies and environmental dynamics. Besides, establishing

the fundamental concepts of asymmetric transitions in Tsetlin

Machines can pave the way for a comprehensive comparison

against advanced architectures such as deep learning models

and gradient boosting frameworks. Such comparisons - covering

aspects such as model complexity, computational efficiency, and

scalability across various problem domains - can serve as a

promising avenue for future research in this area. Convulsively,

relying on our current empirical findings, which clearly show the

adaptability and robustness of AT and APT models, extending this

framework to reinforcement learning scenarios and time series

forecasting would be a logical and promising next step. The

demonstrated effectiveness of asymmetric transitions in managing

noisy and complex decision spaces strongly supports such future

explorations.

6 Conclusions

In this paper, we explored the decision-making capabilities of

the Tsetlin Machine and proposed enhancements to improve its

performance in complex pattern recognition tasks. By integrating

the Stochastic Point Location (SPL) algorithm, Asymmetric Steps

technique, and a fading normal distribution function, we developed

an approach that establishes transition probabilities based on

rewards and penalties from feedback Type I and Type II.

Specifically, we modified the rules of feedback Type I to enable

asymmetric transitions, reinforcing true positives more rapidly and

accurately. To minimize the number of hyperparameters, we based

the transition steps on the hyperparameter “s” used in feedback

Type I for calculating reward and penalty probabilities.

Our approach was evaluated using three benchmark

datasets: the Iris dataset, the Mushroom dataset, and the

MNIST dataset. We conducted a comprehensive comparison

of our methods, Asymmetric Probabilistic Tsetlin (APT) and

Asymmetric Tsetlin (AT), against various traditional machine

learning classifiers and the classical Tsetlin Machine. The results

demonstrated that our asymmetric models exhibit state-of-the-art

performance, with the AT model showing a significant shift

from adaptability to precision over time. This shift enhances

the model’s flexibility and capability in handling complex real-

world decision tasks. Our models produced highly competitive

results compared to traditional machine learning techniques,

showcasing their value in the field of machine learning and pattern

recognition.

The proposed Asymmetric Tsetlin Machine (AT) and

Asymmetric Probabilistic Tsetlin Machine (APT) offer significant

improvements in accuracy and robustness. However, they

introduce higher computational complexity compared to

the Classical Tsetlin Machine (CT). The APT model adds

steps for generating random values and adjusting transition

probabilities, while the AT model requires cumulative distribution

function (CDF) calculations for its dual nature of stochastic

and deterministic transitions. Although this increases the

computational load, the benefits in terms of improved

performance and adaptability outweigh the additional costs.

The enhanced decision-making accuracy and robustness of

the AT and APT models make them practical for complex

tasks. Our proposed approach is a valuable addition to the

field of machine learning and pattern recognition, offering

flexibility and high performance across various classification

tasks. The trade-offs involved in computational complexity

are justified by the substantial gains in decision-making

capabilities, making the AT and APT valuable additions to

the field.

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding authors.

Author contributions

NE: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft, Writing – review & editing. M-BB:

Conceptualization, Formal analysis, Investigation, Methodology,

Software, Supervision, Validation, Visualization, Writing –

review & editing. AY: Conceptualization, Data curation, Formal

analysis, Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Visualization, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was accomplished through the AI Lab within the Department of

Computer Science at Oslomet University.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abeyrathna, K. D., Granmo, O.-C., Jiao, L., and Goodwin, M. (2019). “The
regression tsetlin machine: a tsetlin machine for continuous output problems,”
in Proceedings of the Progress in Artificial Intelligence (Cham: Springer),
268–280.

Abeyrathna, K. D., Granmo, O. C., Shafik, R., Jiao, L., Wheeldon, A., Yakovlev,
A., et al. (2021). A multi-step finite-state automaton for arbitrarily deterministic
Tsetlin machine learning. arXiv [preprint] arXiv:2007.02114. doi: 10.1111/exsy.
12836

Abeyrathna, K. D. I., Granmo, O.-C., Goodwin, M., Jiao, L., and Oommen, B. J.
(2022). The regression tsetlin machine: a novel interpretable approach to regression.
Front. Artif. Intell.

Abolpour Mofrad, A., Yazidi, A., and Lewi Hammer, H. (2019). On solving the
SPL problem using the concept of probability flux. Appl. Intellig. 49, 2699–2722.
doi: 10.1007/s10489-018-01399-9

Bakar, A., Rahman, T., Shafik, R., Kawsar, F., and Montanari, A. (2022). “Adaptive
intelligence for batteryless sensors using software-accelerated Tsetlin machines,” in
Proceedings of the Proceedings of the 20th ACM Conference on Embedded Networked
Sensor Systems (New York: ACM), 236–249.

Barto, A. G., and Anandan, P. (1985). Pattern-recognizing stochastic learning
automata. IEEE Trans. Syst. Man Cybern. 360–375. doi: 10.1109/TSMC.1985.6313371

Bhattarai, B., Granmo, O.-C., and Jiao, L. (2022). “ConvTextTM: an explainable
convolutional Tsetlin machine framework for text classification,” in 13th Language
Resources and Evaluation Conference (LREC 2022) (Marseille: European Language
Resources Association (ELRA)), 3761–3770.

Cox Jr, L. A. (2012). Confronting deep uncertainties in risk analysis. Risk Analy. Int.
J. 32,1607–1629. doi: 10.1111/j.1539-6924.2012.01792.x

Escobar, C. A., and Morales-Menendez, R. (2018). Machine learning techniques for
quality control in high conformance manufacturing environment. Adv. Mecha. Eng.
10:1687814018755519. doi: 10.1177/1687814018755519

Grady, L. (2006). Random walks for image segmentation. IEEE Trans. Pattern Anal.
Mach. Intell. 28, 1768–1783. doi: 10.1109/TPAMI.2006.233

Granmo, O.-C. (2018). The tsetlin machine-a game theoretic bandit driven
approach to optimal pattern recognition with propositional logic. arXiv preprint
arXiv:1804.01508. doi: 10.48550/arXiv.1804.01508

Granmo, O.-C., Glimsdal, S., Jiao, L., Goodwin, M., Omlin, C. W., and Berge,
G. T. (2019). The convolutional Tsetlin machine. arXiv preprint arXiv:1905.09688.
doi: 10.48550/arXiv.1905.09688

Granmo, O.-C., and Oommen, B. J. (2010). Solving stochastic nonlinear resource
allocation problems using a hierarchy of twofold resource allocation automata. IEEE
Trans. Comp. 59, 545–560. doi: 10.1109/TC.2009.189

Gullapalli, V. (1990). A stochastic reinforcement learning algorithm for
learning real-valued functions. Neural Netw. 3, 671–692. doi: 10.1016/0893-6080(90)
90056-Q

Guo, H., Li, S., Li, B., Ma, Y., and Ren, X. (2017). A new learning automata-based
pruning method to train deep neural networks. IEEE Intern. Things J. 5, 3263–3269.
doi: 10.1109/JIOT.2017.2711426

Guo, Y., Ge, H., Huang, J., and Li, S. (2016). “A general strategy for solving the
stochastic point location problem by utilizing the correlation of three adjacent nodes,”
in Proceedings of the 2016 IEEE First International Conference on Data Science in
Cyberspace (DSC) (Changsha: IEEE), 215–221.

Haran, I., and Halperin, D. (2009). An experimental study of point location in
planar arrangements in CGAL. J. Exp. Algorithm. 13:32. doi: 10.1145/1412228.14
12237

Hosseinijou, S. A., and Bashiri, M. (2012). Stochastic models for
transfer point location problem. Int. J. Adv. Manuf. Technol. 58, 211–225.
doi: 10.1007/s00170-011-3360-0

Karthik, V. (2017). A novel survey on location based node detection and identifying
the malicious activity of nodes in sensor networks. Int. J. Comp. Eng. Technol. 8, 61–72.

Ko, K., Kim, S., and Kwon, H. (2023). Multi-targeted audio adversarial
example for use against speech recognition systems. Comput. Secur. 128:103168.
doi: 10.1016/j.cose.2023.103168

Kwon, H. (2023). Adversarial image perturbations with distortions weighted
by color on deep neural networks. Multimed. Tools Appl. 82, 1377913795.
doi: 10.1007/s11042-022-12941-w

Kwon, H., and Kim, S. (2023). Dual-mode method for generating
adversarial examples to attack deep neural networks. IEEE Access.
doi: 10.1109/ACCESS.2023.3245632

Kwon, H., Lee, K., Ryu, J., and Lee, J. (2023). Audio adversarial example
detection using the audio style transfer learning method. IEEE Access.
doi: 10.1109/ACCESS.2022.3216075

Kwon, H., and Lee, S. (2023). Detecting textual adversarial examples through
text modification on text classification systems. Appl. Intell. 53, 1916119185.
doi: 10.1007/s10489-022-03313-w

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://doi.org/10.1111/exsy.12836
https://doi.org/10.1007/s10489-018-01399-9
https://doi.org/10.1109/TSMC.1985.6313371
https://doi.org/10.1111/j.1539-6924.2012.01792.x
https://doi.org/10.1177/1687814018755519
https://doi.org/10.1109/TPAMI.2006.233
https://doi.org/10.48550/arXiv.1804.01508
https://doi.org/10.48550/arXiv.1905.09688
https://doi.org/10.1109/TC.2009.189
https://doi.org/10.1016/0893-6080(90)90056-Q
https://doi.org/10.1109/JIOT.2017.2711426
https://doi.org/10.1145/1412228.1412237
https://doi.org/10.1007/s00170-011-3360-0
https://doi.org/10.1016/j.cose.2023.103168
https://doi.org/10.1007/s11042-022-12941-w
https://doi.org/10.1109/ACCESS.2023.3245632
https://doi.org/10.1109/ACCESS.2022.3216075
https://doi.org/10.1007/s10489-022-03313-w
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Elmisadr et al. 10.3389/frai.2025.1377944

Kwon, H., and Nam, S. H. (2023). Audio adversarial detection through
classification score on speech recognition systems. Comput. Secur. 126:103061.
doi: 10.1016/j.cose.2022.103061

Lecerf, U. (2022). Robust Learning for Autonomous Agents in Stochastic
Environments. Paris: Sorbonne Université.

Lee, J., Kim, T., Bang, S., Oh, S., and Kwon, H. (2024). Evasion attacks
on deep learning? Based helicopter recognition systems. J. Sens. 1:1124598.
doi: 10.1155/2024/1124598

Nowé, A., Verbeeck, K., and Peeters, M. (2005). “Learning automata
as a basis for multi-agent reinforcement learning,” in Proceedings of the
International Workshop on Learning and Adaption in Multi-Agent Systems,
71–85.

Omslandseter, R. O., Jiao, L., and Oommen, B. J. (2022). “Enhancing the speed
of hierarchical learning automata by ordering the actions-a pioneering approach,” in
35th Australasian Joint Conference on Artificial Intelligence (AI 2022) (Cham: Springer),
775–788.

Oommen, B. J. (1997). Stochastic searching on the line and its
applications to parameter learning in nonlinear optimization. IEEE Trans.
Syst. Man, Cybernet. Part B (Cybernetics) 27, 733–739. doi: 10.1109/3477.
604122

Phoulady, A., Granmo, O.-C., Gorji, S. R., and Phoulady, H. A. (2019). The weighted
tsetlin machine: compressed representations with weighted clauses. arXiv [preprint]
arXiv:1911.12607. doi: 10.48550/arXiv.1911.12607

Przybysz, E., Bhattarai, B., Persia, C., Ozaki, A., Granmo, O.-C., and Sharma, J.
(2023). Verifying properties of Tsetlin machines. arXiv [preprint] arXiv:2303.14464.
doi: 10.1109/ISTM58889.2023.10454997

Rahimi Gorji, S., Granmo, O.-C., and Wiering, M. (2021). “Explainable
reinforcement learning with the Tsetlin machine,” in 34th International Conference on

Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE
2021) (Cham: Springer), 173–187.

Saha, R., Granmo, O. C., and Goodwin, M. (2023). Using Tsetlin machine to
discover interpretable rules in natural language processing applications. Expert Syst.
40:e12873. doi: 10.1111/exsy.12873

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and
research directions. SN comp. Sci. 2:160. doi: 10.1007/s42979-021-00592-x

Tong, H., and Faloutsos, C. (2006). “Center-piece subgraphs: problem definition
and fast solutions,” in Proceedings of the Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (New York: ACM),
404–413.

Yazidi, A., Granmo, O.-C., Oommen, B. J., and Goodwin, M. (2012). “A hierarchical
learning scheme for solving the stochastic point location problem,” in Proceedings of the
Advanced Research in Applied Artificial Intelligence: 25th International Conference on
Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE
2012 (Dalian: IEA/AIE), 774–783.

Yazidi, A., and Oommen, B. J. (2017). “The theory and applications of the Stochastic
point location problem,” in 2017 International Conference on New Trends in Computing
Sciences (ICTCS) (Amman: IEEE), 333–341.

Yazidi, A., and Oommen, B. J. (2017). A novel technique for stochastic root-
finding: enhancing the search with adaptive d-ary search. Inf. Sci. 393, 108–129.
doi: 10.1016/j.ins.2017.02.014

Zhang, J., Qiu, P., and Zhou, M. (2022). Extension of Stochastic point
location for multimodal problems. IEEE Trans. Cybernet. 53, 5403–5413.
doi: 10.1109/TCYB.2021.3119591

Zhang, J., Wang, Y., Wang, C., and Zhou, M. (2016). Symmetrical hierarchical
stochastic searching on the line in informative and deceptive environments. IEEE
Trans. Cybern. 47, 626–635. doi: 10.1109/TCYB.2016.2521859

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2025.1377944
https://doi.org/10.1016/j.cose.2022.103061
https://doi.org/10.1155/2024/1124598
https://doi.org/10.1109/3477.604122
https://doi.org/10.48550/arXiv.1911.12607
https://doi.org/10.1109/ISTM58889.2023.10454997
https://doi.org/10.1111/exsy.12873
https://doi.org/10.1007/s42979-021-00592-x
https://doi.org/10.1016/j.ins.2017.02.014
https://doi.org/10.1109/TCYB.2021.3119591
https://doi.org/10.1109/TCYB.2016.2521859
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Stochastic and deterministic processes in Asymmetric Tsetlin Machine
	1 Introduction
	2 Materials and methods
	2.1 Background
	2.2 Stochastic point location
	2.3 Tsetlin automata
	2.4 Tsetlin Machine
	2.4.1 Learning procedure
	2.4.1.1 Type I feedback: reduce false negatives
	2.4.1.2 Type II feedback



	3 Contribution
	3.1 Asymmetric stochastic point location
	3.2 Asymmetric Tsetlin automata
	3.3 Asymmetric Tsetlin Machine
	3.4 Learning procedure
	3.4.1 Enhanced learning procedure
	3.4.1.1 Modified type I feedback
	3.4.1.2 Transition probability



	4 Results
	4.1 Iris dataset
	4.2 Mushroom dataset
	4.3 MNIST dataset

	5 Future works
	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


