
Frontiers in Artificial Intelligence 01 frontiersin.org

Analysis and correcting 
pronunciation disorders based on 
artificial intelligence approach
Nataliia Melnykova *, Bohdan Pavlyk , Oleh Basystiuk  and 
Stepan Skopivskyi 

Department of Artificial Intelligence, Lviv Polytechnic National University, Lviv, Ukraine

The main aim of this study is to employ artificial intelligence and machine learning 
methods to assess and correct pronunciation disorders in post-traumatic military 
patients, acknowledging the critical need for effective communication rehabilitation 
in individuals who have experienced trauma, such as head injuries or war-related 
incidents. Tasks include reviewing existing research, selecting appropriate machine 
learning methods, generating relevant training data, and implementing a software 
architecture tailored to analyze and correct pronunciation defects in this specific 
population. The analysis of machine learning methods led to the selection of 
two experimental models: a Convolutional Neural Network (CNN) utilizing mel-
spectrograms for image-based sound representation and a Long Short-Term 
Memory (LSTM) network combined with mel-frequency cepstral coefficients, 
aiming to explore the effectiveness of sequential data processing in the context of 
pronunciation disorder classification in post-traumatic military patients. The results 
of the two models were compared based on the loss and accuracy functions of 
the training and validation data, error matrices, and such key metrics as precision, 
recall, and F1-score. Both models showed promising results in classifying dysarthria 
stages, but the CNN model performed slightly better in predicting all classes 
than the LSTM.
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1 Introduction

Technological evolution is relatively rapid, and now, many processes and duties performed 
by humans can be replaced by computers; in many professions, artificial intelligence can easily 
replace humans, including in medicine. In these difficult times, our country has faced many 
challenges that must be addressed immediately. One of the most critical tasks is to save the 
lives of every Ukrainian, for which the military suffers injuries on the battlefield that can last 
a lifetime. One of these problems can be a speech impediment. In such cases, automatic voice 
analysis could help the military rehabilitate faster. It will also be helpful for post-traumatic 
patients who have problems with speech for some reason.

The relevance of this topic is due to the problematic situation in the country, as 
pronunciation disorders can occur in military personnel who have suffered trauma, such as 
head injuries or war. This also supports the practical value, as research in this area can help 
military personnel who have suffered trauma to improve their pronunciation and make their 
speech more understandable to others.

This research aims to find practical solutions for developing a software module to provide 
analysis, selection of artificial intelligence tools, and verification of the effectiveness of machine 
learning methods in classifying stages of disease for post-traumatic patients.
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The object of study is the process of analysis and correction of 
pronunciation in post-traumatic patients, and the subject is the voice 
parameters of post-traumatic military patients for speech defects and 
the artificial intelligence method for analysis and correction of 
pronunciation in post-traumatic patients.

2 Current research analysis

Artificial intelligence in medicine is already commonplace today, 
and this trend will continue to grow. The relevance of this topic can 
also be  confirmed by the situation in our country, where every 
second counts.

The importance of this issue is associated with the following 
key factors:

 • Expansion of rehabilitation capabilities: Post-traumatic speech 
disorders are a significant problem that arises after various types 
of brain injuries (e.g., stroke or traumatic brain injury). Patients 
facing these problems often require long-term rehabilitation, and 
artificial intelligence can provide additional tools to support this 
process. AI-driven speech recognition systems can analyze 
patients’ speech patterns in real-time, identifying pronunciation 
errors and providing feedback (Abdulmajeed et al., 2022).

 • Accessibility and convenience: Artificial intelligence technologies 
can allow patients to engage in rehabilitation at a convenient time 
and place, improving their ability to recover (Lu et al., 2020).

 • Adaptability: Artificial intelligence can adapt to the individual 
needs of each patient, providing more personalized and 
effective interventions.

 • Monitoring and tracking progress: By using artificial intelligence 
methods, medical professionals can better track patients’ progress 
in real time, allowing them to adjust treatment plans as needed 
(Rastogi, 2020).

 • Resources: In a world with a constantly increasing number of 
patients and limited medical resources, artificial intelligence can 
be an effective means of maximizing the use of these resources.

 • Improvement of treatment outcomes: Artificial intelligence can 
help find new approaches to speech exercises that can accelerate 
recovery (Duda, 2025).

 • Classification of speech problems: Recognition and classification of 
different types of speech disorders are crucial elements in this field. 
Speech involves various aspects, including articulation, tempo, pitch, 
and rhythm. Artificial intelligence can assist in analyzing and 
classifying these complex speech characteristics. Such classification 
will enable medical professionals better to understand the specifics 
of the patient’s problem and tailor rehabilitation programs for 
maximum effectiveness (Deruty, 2025).

The PRISMA scheme was employed to systematically analyze the 
relevant literature, ensuring a comprehensive and transparent 
approach to source selection. This process provided a foundation for 
identifying key studies that address pathology detection through 
advanced analytical methods.

In article by Panek et  al. (2015), issues related to pathology 
detection are addressed by creating a feature vector consisting of 28 
different parameters obtained through voice signal analysis. Based on 
this, the accuracy and specificity of pathology detection using machine 

learning methods such as principal component analysis (PCA), kernel 
principal component analysis (kPCA), and auto-associative neural 
network are compared. The experimental results show that the PCA 
methodology effectively reduced the data, retaining 90% of the 
variance. However, PCA yielded slightly better results than PCA, 
albeit with a longer computation time due to the increased number 
of parameters.

In the subsequent article by Hossain and Muhammad (2016), a 
framework for big data in healthcare is proposed, utilizing voice 
pathology assessment (VPA) as an example. The VPA system employs 
two reliable functions, MPEG7 low-level audio and template derivative 
cepstral analysis, for processing voice or speech signals.

Combining Incremental Discriminant Analysis (IDP) functions 
and the Extreme Learning Machine (ELM) classifier yielded the most 
accurate (95%) and fastest (slightly over a second processing time) 
results. However, the limited training data and the narrow selection of 
voice samples are highlighted as drawbacks.

Verde et al.’s (2018) objective was to determine an algorithm that 
can differentiate between pathological and healthy voices with higher 
accuracy, which is necessary for implementing a practical and precise 
mobile healthcare system. Analyses were conducted on a large dataset 
of 1,370 voices selected from the Saarbrucken Voice database, with 
testing performed on both the entire dataset and three different 
subsets. Support Vector Machine (SVM) algorithm achieved the 
highest accuracy in detecting voice pathology (86%). However, the 
insufficient data processing speed (time from incoming data to 
decision received) is a drawback, which could be addressed using 
multiple machine learning methods.

Alhussein and Muhammad (2018) investigate a voice pathology 
detection system using deep learning on a mobile healthcare system. 
A mobile multimedia healthcare system was developed using smart 
mobile devices to record voices. In experiments with the SVD 
database, the system achieved 98.77% accuracy using the CaffeNet 
CNN model, followed by the SVM classifier. The lack of recognition 
speed indicator in the study is a drawback, as it is crucial for the 
system’s optimal performance.

Alhussein and Muhammad (2019) proposes using an intelligent 
healthcare system on a mobile platform utilizing deep learning. The 
smartphone records the client’s voice signal and sends it to a cloud 
server, which processes and classifies it as normal or pathological 
using a parallel convolutional neural network model. The decision on 
the signal is then transmitted to the doctor for a prescription. 
Experimental results on the SVD database showed that the proposed 
system achieved 95.5% accuracy, with over 95% accuracy in pathology 
classification. A 3-layer MLP fusion outperformed 2-layer MLP and 
ELM-based fusion. However, unlike the previous article, the absence 
of decision-finding speed is highlighted as another drawback.

In work by Al-Dhief et al. (2020), an extensive review of the latest 
methods and research frameworks of IoT and machine learning 
algorithms used in healthcare, particularly in voice pathology 
surveillance systems, is presented. This work outlines the latest 
strategies and research frameworks, discussing their applications in 
healthcare systems. It also identifies key challenges, such as data 
privacy concerns, system interoperability, and the computational 
limitations of IoT-enabled systems. The insights from this review are 
directly relevant to the current study, as they provide a foundational 
understanding of the broader context in which voice pathology 
detection frameworks operate. The authors also discuss the 
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applications, challenges, and key issues of IoT and machine learning 
algorithms in healthcare.

Tuncer et al. (2020) aim to present a multi-class pathological 
voice classification using a novel multilevel texture feature 
extraction with an iterative feature selector. This simple and 
effective voice algorithm utilizes a multi-center and multi-
threshold triple template (MCMTTP). A set of pathological voice 
data from SVD was used to create 8 cases, focusing on three 
disorders—cordectomy, frontal resection, and spastic dysphonia. 
This method achieved 100.0% classification accuracy and 
geometric mean (ideal classification) for the case of detecting 
frontal resection. The proposed MCMTTP and INCA-based 
methods demonstrated high efficiency. However, a limitation is 
identified as testing this solution only on three disorders, making 
it less universal and possibly compromising accuracy with 
increased data.

In article by Al-Dhief et al. (2021), a system for detecting and 
classifying voice pathology using the OSELM algorithm as a classifier 
and Mel-frequency cepstral coefficients (MFCC) as feature extraction 
is presented. Voice samples were taken from the Saarbrucken Voice 
database (SVD). This system comprises two parts of the database; the 
first part includes all voices in SVD with sentences and vowels /a/, /i/, 
and/u/ pronounced at high, low, and normal pitches. The second part 
uses voice samples of three common pathologies (cyst, polyp, and 
paralysis) based on the vowel /a/, produced with standard pitch. 
Experimental results demonstrate that the OSELM algorithm can 
distinguish healthy and pathological voices with a maximum accuracy 
of 91.17%.

Islam and Tarique (2022) introduces an algorithm for pathological 
voice detection based on a convolutional neural network (CNN) using 
a signal processing approach. The proposed algorithm extracts an 
acoustic characteristic called a chromatogram from voice samples and 
applies this feature to the CNN input for classification. Using 
chromatograms achieves higher accuracy than other unique 
characteristics (71% versus 85% accuracy). Different performance 
parameters, including precision, recall, and F1 score, also confirm the 
effectiveness of the proposed algorithm. A drawback could be the 
insufficient experimentation, specifically with chromatograms in 
combination with other machine learning methods, with only a 
convolutional neural network.

Nandi (n.d.) gathered recent research, voice pathology detection 
methods, machine learning, and deep learning methods (DL) used for 
data classification, presenting various applications, open challenges, 
and recommendations for future directions of IoT systems and 
artificial intelligence (AI) approaches in diagnosing voice pathology. 
Examples of machine learning methods such as Kay Pentax CSL 
Model, GMM, SVM, CNN, DPM, RNN, OSELM, ResNet50, Xception, 
and MobileNet are provided.

From the analysis of scientific sources and the relevance of the 
work, the topic of voice pathology detection is widespread and attracts 
considerable attention. The most effective methods for addressing this 
problem are convolutional neural networks (CNN) and Gaussian 
mixture models (GMM). However, there are several main drawbacks:

 • Insufficient sampling of voice data (for example, the existence of 
various accents can complicate program operation).

 • Slow training and recognition times.
 • Limited availability of universal datasets.

The above-mentioned drawbacks lie in finding a qualitative and 
comprehensive dataset for accurate model training and improving 
system performance times. Most articles do not provide comparative 
results of training and subsequent recognition speed by neural 
networks, so this factor needs to be considered for further selection of 
artificial intelligence tools.

3 Materials and methods

3.1 Machine learning models

Two neural models are being used in this paper. The first one is 
a convolutional neural network. The model is initialized as a 
sequential model. A sequential model is a linear stack of layers easily 
created by passing a list of layer instances to the constructor. The first 
layer is the 2D convolution layer (Conv2D). This layer creates a 
convolution kernel with the layer’s input data to generate the output 
tensor. The first argument, “32,” is the number of output filters in the 
convolution. The kernel size indicates the height and width of the 2D 
convolution window; here, it equals (3,3). The “real” activation 
function is applied to the original data. The next layer is the 
MaxPooling2D layer with a pool size of (2,2). This layer applies the 
maximum pooling operation to the input data, reducing its 
dimensionality. The Dropout layer with a dropout rate of 0.25 
randomly “switches off ” 25% of the neurons during each update 
during training, which helps prevent overtraining.

These layers (Conv2D, MaxPooling2D, Dropout) are repeated 
once more, but this time the Conv2D layer has 64 output filters. The 
Flatten layer converts the previous layer’s output into a 
one-dimensional array. This is necessary to enter the data into the fully 
connected layer (Dense). The Dense layer with 128 neurons performs 
a dot operation on the output data and layer weights and then adds 
the offset. This is a fully connected layer. Another Dropout layer with 
a rejection rate of 0.25 is added after the fully connected layer. The last 
layer, Dense with 4 neurons, uses the activation function “softmax,” 
which converts the output data into probabilities of 4 classes. The sum 
of these probabilities for all classes is 1 (see Figure 1).

The Long Short-Term Memory (LSTM) model selected for the 
experiments is a recurrent neural network (RNN) designed to handle 
sequential data efficiently. LSTM is particularly well-suited for tasks 
involving time-dependent patterns, such as speech recognition, due 
to its ability to retain long-term dependencies in data. A schematic 
representation of the LSTM model is shown in Figure 2.

This model includes seven layers:

 1 The first LSTM layer: This layer includes 128 LSTM units. 
LSTM (Long Short-Term Memory) is a type of recurrent 
neural network (RNN) that efficiently processes sequential data 
by retaining a “memory” of previous steps. In this model, the 
first LSTM layer returns the output for each time step, which is 
essential for the next LSTM layer.

 2 First Dropout layer: This layer applies a random dropout 
technique that helps reduce overtraining by randomly 
disconnecting a specified fraction (here, 30%) of the input 
neurons at each training step.

 3 The second LSTM layer: This layer contains 64 LSTM units. It 
receives sequential outputs from the previous LSTM layer. 
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Only the last production in the time sequence is returned in 
this layer.

 4 Second Dropout layer: Similar to the first, this layer turns off 
30% of the neurons to prevent overlearning.

 5 Dense layer: This layer contains 64 units and uses the ReLU 
(Rectified Linear Unit) activation function. The ReLU 
function is very popular in deep learning because it adds the 
necessary nonlinearity to the model without affecting the 
learning speed.

 6 The third Dropout layer: Another random dropout layer with 
a 30% level.

 7 Output dense layer: This layer has four units corresponding to 
the number of classes in the classification problem. The layer 
uses softmax’s activation function, which converts the output 
values into probable.

3.2 Audio feature representation

The Mel Frequency Cepstral Coefficients (MFCC) and Mel 
Spectrograms are characteristics derived from audio signals, and both 
are based on the Mel scale, a perceptual pitch scale closely related to 
human auditory perception. However, they represent an audio signal 
differently and are used for different purposes.

3.2.1 Data representation
A Mel spectrogram is a visual representation of an audio signal. It 

shows how the power spectrum of an audio signal is distributed at 
different frequencies over time. Each point on the Mel spectrogram 
corresponds to the power at a specific time and frequency.

MFCC is a numerical representation of an audio signal. It provides 
a compact representation of the power spectrum of an audio signal, 
focusing on the aspects most relevant to human perception. MFCC is 
typically represented as a sequence of feature vectors (one per time slot).

3.2.2 The process of feature extraction
Mel spectrogram: To compute the Mel spectrogram, the audio 

signal is segmented into short frames, the power spectrum for each 
frame is calculated, a group of Mel filters is applied to the power 
spectra, and then the logarithm of the filter group energies is taken.

MFCC: The process of calculating MFCC is similar to the process 
for Mel spectrograms, but there is one additional step. After 
logarithmizing the filter bank energies, a discrete cosine transform 
(DCT) is applied to decorelate the energies and reduce the 
dimensionality of the data.

3.2.3 Usage cases
Mel spectrograms are often used as input to convolutional neural 

networks (CNNs) for audio classification tasks because they provide 

FIGURE 1

Visual representation of a convolutional neural network (CNN).

FIGURE 2

Detailed diagram of the LSTM network.
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a two-dimensional representation of an audio signal that can 
be viewed like an image.

MFCC: used as features in a wide range of audio and speech 
processing tasks, including speech recognition, speaker identification, 
and music genre classification. They are often used as input to models 
that can process sequential data.

After analyzing everything, we decided to experiment with two 
machine-learning models:

 - CNN using the mel-spectrogram, since in this case, there will 
be a representation of sound in the form of images, which the 
convolutional network can perfectly cope with the 
classification of

 - LSTM in combination with fine-frequency cepstral coefficients 
to test the model’s performance with sequential data.

3.3 Dataset

In this study, the TORGO dataset, designed explicitly for 
dysarthria research, was used from Kaggle. The TORGO dataset 
collected data from seven individuals with different forms and 
severities of dysarthria. Each speaker was asked to complete several 
speaking tasks, which included:1

 • Saying a set of regular phrases is commonly used in everyday 
speech and indicates how people with dysarthria say 
typical statements.

 • Reading a phonetically balanced set of sentences: this task uses a 
standardized text often used in speech and language research. By 
asking speakers to read this passage, researchers can collect data 
on how people with dysarthria produce a wide range of phonemes 
in a controlled context.

 • Single-word pronunciation: This task provides insight into how 
speakers pronounce individual words, which can be particularly 
useful for examining specific aspects of dysarthria that may 
be less apparent in continuous speech.

The disease classification in this dataset is shown in Table 1.
The visualization of the disease classes is shown in Figure 3.

4 Results

A software module was developed and implemented in Python to 
obtain the research results, widely used for machine learning 
development. Python has a rich ecosystem of scientific libraries, 
including powerful libraries for machine learning and data analysis, 
such as TensorFlow, PyTorch, ScikitLearn, Pandas, NumPy, 
and Matplotlib.

The research on the selected dataset (see text footnote 1) was 
conducted using CNN with mel-spectrograms and LSTM with MFCC.

CNNs use images as input, but they have been trained and 
evaluated on large datasets with various classes for good results. 

1 https://www.kaggle.com/datasets/iamhungundji/dysarthria-detection/data

Examples of such sets are ImageNet (a database containing about 
14 million images), Open Images (9 million images), and others.

Sound signals contain valuable information that changes over 
time, requiring models to account for long-term dependencies. One 
way to solve this problem is to combine CNNs with recurrent neural 
networks (RNNs), such as long-short-term memory (LSTM) 
networks. By integrating CNN and LSTM layers, CNN-LSTM 
networks can take advantage of the strengths of both architectures: 
efficiently extracting spatial features from spectrograms while 
capturing temporal dynamics.

Long short-term memory (LSTM) networks are recurrent 
neural networks (RNNs) widely used in sequence modeling tasks 
due to their ability to capture long-term dependencies. LSTMs 
solve the vanishing gradient problem that traditional RNNs face, 
allowing them to learn and store information in long sequences 
efficiently. A key point in the LSTM architecture is the inclusion of 
memory cells and gate mechanisms that regulate the flow of 
information. These mechanisms consist of three main gates: input, 
forgetting, and output.

 • The input gate determines the new information added to the 
memory cell. It takes the current input signal and the previous 
hidden state as input and passes them through a sigmoid 
activation function.

 • The forgetting gate controls the amount of information removed 
from the memory cell.

 • The output gate regulates the amount of information output from 
the memory cell. Like a forget-me-not gate, it takes the current 
input and the previous hidden state as inputs and passes them 
through a sigmoid activation function. The resulting activation 
output vector is multiplied element by element with the state of 

TABLE 1 Disease classes in the dataset.

Degree of the disease Data

Healthy (or 1 degree of illness) FC03, FC04, MC03, FC01, MC05, 

MC01, MC02, MC04

2nd degree F03, F04, M03

3rd degree F01, M05

4th degree M01, M02, M04

FIGURE 3

Bar chart showing the number of audio recordings of each stage of 
the disease.
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the memory cell and passed through the hyperbolic tangential 
activation function (tanh) to obtain the output of the LSTM block.

So, Figure 4 shows a plot of the loss function of the training and 
test data versus the epoch before the model. The training loss function 

decreases with each epoch, starting from a value of about 44 in the 
first epoch and reaching about 0.16 in the last epoch, the 10th epoch. 
This indicates that the model learns and improves its predictions with 
each epoch.

The loss function for validation also decreases with each epoch, 
but not as uniformly. It first decreases from 1.24 to 0.70 from epoch 1 
to 2, then increases to 0.72 in epoch 3, and then decreases again to 
0.49 in epoch 7. It then increases again to 0.57 in the 9th epoch and 
decreases to 0.52 in the 10th.

Such fluctuations in the loss on the validation set may indicate 
that the model has some level of overfitting, as it shows a more 
significant error on the validation set than on the training set. It can 
also result from noise in the data or heterogeneity in the validation set.

Nevertheless, the model improves overall as training and 
validation losses are reduced. The accuracy of the training data 
constantly increases from epoch to epoch, with a final accuracy of 
0.946, while the accuracy of the validation data does not increase 
as smoothly.

Figure 5 shows the error matrix of the convolutional network. 
Based on it, the classifier made the most errors between the health and 
high classes, while the low class was the best predicted. Given the 
errors, the classifier showed promising results in classifying all classes.

All classes have high precision, recall, and F1-score metrics scores. 
However, there are some differences. The ‘Healthy’ and ‘Low’ classes 
have high values for both the precision and recall parameters, which 
indicates that the model can correctly identify and predict these 
classes. On the other hand, although the precision parameter is high 
for the ‘Medium’ and ‘High’ classes, the recall is slightly lower 
compared to the ‘Healthy’ and ‘Low’ classes. This may indicate that the 
model has more difficulty correctly predicting these classes.

FIGURE 4

Graph of the loss function of validation and training data versus 
epoch.

FIGURE 5

Error matrix of convolutional neural network.
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As for the LSTM model, the results of the experiments are 
presented below:

Figure 6 shows a graph of data loss. The model shows a decrease 
in the loss function with each epoch, both on the training and 
validation samples. This is a good indicator, showing that the model 
is learning and reducing prediction errors. The loss function on the 

training data decreases from 1.2001 in the first epoch to 0.2480 in the 
tenth epoch, and the loss function on the validation data gradually 
decreases, indicating that the model is also performing well on data it 
has not seen before.

The accuracy of the training data starts at 46.11% in the first epoch 
and gradually increases with each epoch. The final accuracy is 90.94%. 
This shows that the model learns and improves its performance on the 
training data over time. The same is true for the validation data. In 
general, the model shows a positive trend in accuracy on both training 
and validation data, which indicates that the model is learning 
effectively and progressing in its task (see Figure 7).

The classifier made the most errors between the health and high 
classes, while the medium class was the best predicted. Given the 
errors, the classifier performed exceptionally well in classifying 
all classes.

5 Discussion

As a result of the experiments, both models coped with the task 
quite well, showing promising results in model classification. Based 
on the training results of the LSTM and CNN models, we can make 
the following observations:

 - LSTM model accuracy:
On the training set: 0.9094.
On the validation set: 0.8652.
The LSTM model achieves reasonably high accuracy in the 

training and validation datasets. This indicates the model’s ability to 
learn and generalize dependencies in the data. However, it is worth 

FIGURE 6

Validation and training data loss graph.

FIGURE 7

Error matrix of the LSTM classifier.
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noting that the accuracy on the validation set is slightly lower than on 
the training set, which may indicate a slight overtraining of the model.

 - Accuracy of the CNN model:
On the training set: 0.9460
On the validation set: 0.8774.
The CNN model also achieves high accuracy on the training 

and validation datasets. The accuracy values on the training set are 
impressive, which may indicate that the model can learn well on the 
dataset. The accuracy of the validation set is also high, which shows 
the model’s ability to generalize the learned relationships to 
new data.

If compare the model data, it allows the following conclusions:

 - The LSTM model shows higher accuracy on the training set but 
lower accuracy on the validation set than the CNN model.

 - The CNN model has higher accuracy on the validation set, which 
may indicate a better ability to generalize to new data.

 - Both models achieve high accuracy values, which indicates their 
effectiveness in audio classification.

For analysis, the results of using two models are represented in 
Table 2.

Based on the test results in terms of metrics and error matrices, 
the following observations can be made:

 - The CNN classifier has higher precision, recall, and F1-score 
values for the Healthy, Low, and Medium classes than the 
LSTM classifier.

 - The LSTM classifier has higher precision, recall, and F1-score for 
the High class than the CNN classifier.

 - Both classifiers generally demonstrate acceptable accuracy and 
efficiency in classifying audio data. However, there may 
be differences in performance for individual classes.

 - The best results are achieved for the Healthy and Low classes in 
both models, with high precision, recall, and F1-score parameters.

 - Both models have lower recall and F1-score for the High class, 
which may indicate problems in recognizing this class.

 - The LSTM classifier has a higher precision for the Medium and 
High classes than the CNN classifier but a lower recall for the 
Medium class.

 - The CNN classifier has a more stable accuracy for all classes than 
the LSTM classifier.

 - The two classifiers made the most errors between the Health and 
High classes, which indicates that they are not sufficiently 
different for these representations

However, each model made the fewest errors differently: CNN 
made the fewest mistakes in determining the Low class, and LSTM 
made the fewest mistakes in classifying the Medium stage.

Lower precision in medium and high cases indicates that the 
model produces a higher number of false positives, potentially leading 
to unnecessary treatments or interventions. On the other hand, lower 
recall suggests a higher number of false negatives, meaning critical 
conditions could go undetected. A detailed error analysis should 
be conducted to determine the characteristics of misclassified samples. 
This includes:

 • Identifying specific patterns or features that the model struggles 
with in medium and high cases.

 • Analyzing whether these misclassifications are due to insufficient 
training data, feature representation, or model limitations.

 • Evaluating cases where misclassifications occur more frequently 
(e.g., borderline cases between categories).

Future efforts will improve feature extraction and data 
preprocessing to address lower precision and recall in medium and 
high cases. Applying ensemble or hybrid models will provide the 
ability to make models more stable to a broader range of possible 
cases. We also see potential in extending the datasets, focusing on 
additional medium and high pathology samples, and augmenting 
them using synthetic data generation techniques. One of the 
essential parts of conducting future research and preparing 
production solutions is ethical considerations and applying fail-safe 
mechanisms, which will guide the minimization of missed 
diagnoses and ensure safe deployment.

TABLE 2 Combined results of model testing.

Class Metric CNN LSTM

Healthy

Precision 0.86 0.82

Recall 0.95 0.91

F1-score 0.90 0.86

Low

Precision 0.91 0.85

Recall 0.95 0.85

F1-score 0.93 0.85

Medium

Precision 0.93 0.89

Recall 0.86 0.91

F1-score 0.89 0.90

High

Precision 0.90 0.86

Recall 0.82 0.76

F1-score 0.86 0.81
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6 Conclusion

This research aimed to address the critical issue of pronunciation 
disorders in post-traumatic military patients by applying artificial 
intelligence and machine learning. The study involved a comprehensive 
analysis of existing literature, selecting appropriate machine learning 
models, generating relevant training data, and implementing a 
specialized software architecture.

Two methods were used to transform the audio recordings: 
shallow spectrograms, which were used in conjunction with the CNN 
model, as this model works well with images, and shallow cepstral 
coefficients for the LSTM model, which works reasonably well with 
sequential numerical data.

The methods were evaluated and analyzed using loss and precision 
functions for training and validation data, error matrices, and 
precision, recall, and F1-score metrics. It can be concluded that both 
models coped quite well with the given task, showing overall 
accuracies of 94% (CNN) and 91% (LSTM).

Both classifiers generally demonstrate acceptable accuracy and 
efficiency in classifying audio data. However, there may be differences 
in performance for individual classes. The best results for both models’ 
Healthy and Low courses are achieved with high precision, recall, and 
F1-score parameters.

According to the results of the research and the indicators 
obtained from the selected metrics, it can be  claimed that these 
methods are effective for the analysis and detection of this disease, 
which will perfectly classify the disease for further 
pronunciation correction.

The models proposed and used in this study were limited by the 
quality of the audio data and the computational resources available. This 
leads to its good effectiveness on the existing datasets, but it is not 
appropriate to apply to a wide range of datasets. In particular, noisy or 
incomplete recordings may slightly impact the performance of models. 
Moreover, the capability of both CNN and LSTM models to generalize 
different speech disorders or new data may need further validation. More 
testing with out-of-sample data will be  essential to ensure robust 
performance across different patient groups.

The findings of this research underscore the potential of artificial 
intelligence and machine learning in addressing the rehabilitation 
needs of post-traumatic military patients with pronunciation 
disorders. Further research and refinement of the models could lead 
to enhanced practical applications and contribute significantly to the 
field of communication rehabilitation for individuals who have 

experienced trauma. The software module can be  integrated into 
applications dealing with speech disorders.
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