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Introduction: Handwriting is a complex skill that requires coordination between
human motor system, sensory perception, cognitive processing, memory
retrieval, and linguistic proficiency. Various aspects of hand and stylus kinematics
can affect the legibility of a handwritten text. Assessing handwriting legibility is
challenging due to variations in experts’ cultural and academic backgrounds,
which introduce subjectivity biases in evaluations.

Methods: In this paper, we utilize a deep-learning model to analyze
kinematic features influencing the legibility of handwriting based on temporal
convolutional networks (TCN). Fifty subjects are recruited to complete a 26-word
paragraph handwriting task, designed to include all possible orthographic
combinations of Arabic characters, duringwhich the hand and stylusmovements
are recorded. A total of 117 different spatiotemporal features are recorded, and
the data collected are used to train the model. Shapley values are used to
determine the important hand and stylus kinematics features toward evaluating
legibility. Three experts are recruited to label the produced text into different
legibility scores. Statistical analysis of the top 6 features is conducted to
investigate the differences between features associated with high and low
legibility scores.

Results: Although the model trained on stylus kinematics features demonstrates
relatively high accuracy (around 76%), where the number of legibility classes
can vary between 7 and 8 depending on the expert, the addition of hand
kinematics features significantly increases the model accuracy by approximately
10%. Explainability analysis revealed that pressure variability, pen slant (altitude,
azimuth), and hand speed components are the most prominent for evaluating
legibility across the three experts.

Discussion: The model learns meaningful stylus and hand kinematics features
associated with the legibility of handwriting. The hand kinematics features
are important for accurate assessment of handwriting legibility. The proposed
approach can be used in handwriting learning tools for personalized handwriting
skill acquisition as well as for pathology detection and rehabilitation.

KEYWORDS

handwriting, deep learning, temporal convolutional networks, sensorimotor learning,
machine learning

1 Introduction

Handwriting is a complex sensorimotor skill that requires simultaneous coordination
between human visual-perceptual, cognitive, and motor systems (Bonney, 1992). Writers
process visual and haptic feedback to coordinate the hand, arm and ĕnger movement
in order to produce legible handwriting. Developing legible handwriting is crucial for

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1426455
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1426455&domain=pdf&date_stamp=2025-03-26
mailto:mohamad.eid@nyu.edu
https://doi.org/10.3389/frai.2025.1426455
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1426455/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Babushkin et al. 10.3389/frai.2025.1426455

children development, and can affect the educational process,
academic success, and self-conĕdence (Chang and Yu, 2013).
Furthermore, understanding the factors that inĘuence handwriting
legibility is essential for various practical applications.ese include
designing personalized learning programs to cater to individual
needs (Jenkins et al., 2016), identifying and addressing handwriting
difficulties to support students’ learning (Drotár and Dobeš, 2020;
Fancher et al., 2018), and verifying individuals identities through
handwriting analysis in security and forensic contexts (Galbally
et al., 2007). us, it can be observed that the study of handwriting
legibility can inform both educational strategies and technological
applications, highlighting its broader signiĕcance.

Handwriting legibility is a characteristic of the handwritten
text that contributes to its readability (Rosenblum et al., 2004).
Handwriting legibility oen relies on expert evaluation of the
produced handwritten sample (van Drempt et al., 2011). Several
global scales are used to evaluate the legibility of healthy adults’
handwriting, particularly of medical personnel. For instance, a
4-points scale is utilized to classify the legibility of handwritten
medical documents as “illegible”, “mostly illegible”, “mostly legible”,
and “legible” (Rodríguez-Vera et al., 2002). Expert evaluation is
based on analyzing visual features of the handwritten sample such as
size, spacing, alignment, slant, and formation (Amundson andWeil,
1996; Feder andMajnemer, 2007; Fancher et al., 2018). Early studies
identiĕed ĕve factors characterizing the legibility of handwriting,
namely letter formation, spacing, alignment slant and quality of
line (Freeman, 1915). Subsequent studies also suggest that letter
formation, size, text alignment and spacing signiĕcantly inĘuence
the legibility of children’s handwriting (Ziviani and Elkins, 1984;
Graham et al., 2006). In a recent study, different machine learning
approaches were utilized to evaluate the legibility and aesthetics of
handwritten text from images of Bengali handwritten documents,
reporting 85.74% and 86.69% F-score, for legibility and aesthetics
evaluation, respectively (Adak et al., 2017).

Given handwriting is a dynamic process including kinematic,
spatial, and temporal components; more objective and quantitative
methods are developed based on these dynamic features
(Rosenblum et al., 2003). A few studies used the stylus kinematics
data and machine learning to evaluate the legibility of individual’s
signature. For instance, occidental signatures, that incorporate
letters and signs into concatenated text with some Ęourishing
elements, are considered (Galbally et al., 2007). To determine if the
individual’s name can be inferred from the signature, i.e., if signature
is legible or illegible, ĕve stylus kinematics features are recorded,
including pen-tip coordinates, pressure, and slant, and utilized to
engineer 20 global features characterizing the individual’s signature.
ese features are used to train a Multilayer Perceptron (MLP)
classiĕer, achieving 84.56 % accuracy for binary classiĕcation
(Galbally et al., 2007). Other temporal features are also considered
to evaluate the legibility of handwriting, including handwriting
speed (Graham et al., 1998a), handwriting style (Graham et al.,
1998b), the applied pressure (Harris and Rarick, 1959), and the
grasping style (Schwellnus et al., 2012). e potential of these
features to detect pathologies such as Alzheimer’s disease (AD)
from handwriting is explored in Wang et al. (2019), demonstrating
that AD patients produce lower pen pressure and variations in the
vertical direction, in comparison to healthy subjects.

While hand motion parameters such as ĕngers/palm
position/orientation, acceleration/deceleration, and overall
hand speed may inĘuence legibility, they have yet to be explored.
is study builds on the methods and ĕndings outlined in
PhD dissertation (Babushkin, 2024), and aims to examine
correlates between hand/stylus kinematics and handwriting
legibility. An experimental setup is developed to complete a
handwriting task using a handwriting tablet while recording
the stylus and the hand movement in 3D. A deep learning
model, inspired by temporal convolutional networks (TCN),
is constructed to evaluate the legibility of handwriting based
on the time series kinematic data. We hypothesize that hand
kinematic features play a prominent role in evaluating handwriting
legibility. e interpretable machine learning approach (Shapley
values) is used to identify prominent sensorimotor features
derived from hand and stylus kinematics in evaluating the
handwriting legibility.

2 Methodology

2.1 Experimental setup

e experimental setup (Figure 1) and protocol are based on
a previously established methodology (Babushkin et al., 2024,
2023), with modiĕcations to speciĕcally investigate handwriting
legibility. e experimental setup (Figure 1A) includes a HUION
GT-116 tablet paired with a pen-like stylus and an Ultraleap
Stereo IR 170 hand motion tracker. e hand tracking device,
as shown in Figure 1A is attached to a rigid stand in a way
that allows it to accurately track the writer’s hand movements.
e system can be easily moved, allowing for data collection in
different locations.

2.2 Experimental task and protocol

Similarly to Babushkin et al. (2024), participants were
instructed to write a text consisting of 26 Arabic words (Figure 1B),
as this number was optimal for ĕtting within the dimensions
of the recording tablet screen. e text was meticulously
designed to cover all 28 letters of the Arabic alphabet and to
include all key connectivity positions in Arabic orthography.
Despite the unique glyphs (e.g., (ك were included in both
their connected and unconnected forms, homoglyphs were not
individually represented in all their connected/unconnected
variations, but rather as a group (for example the ,ب ,ت ث
homoglyphs).

e choice of Arabic script is justiĕed by its cursive nature,
context sensitivity, and multiple writing styles, which makes it more
complex in comparison to the Latin script (Naz et al., 2013, 2014;
Kacem et al., 2012). All these features of Arabic orthography allow
to address a wider variety of handwriting skills.

e subject listened to the entire text sample at a speed
of 20 words per minute before the start of the experiment.
e experiment started when the participant pressed the “Start”
button on the tablet screen to start recording of data (hand
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FIGURE 1

(A) Experimental setup, (B) sample text dictated to subjects, (C) the user interface, displaying a sample of Arabic handwriting recorded from a single
subject (Babushkin et al., 2024).

tracking and stylus), which turned red indicating recording was
in progress and changed its label to “Stop”. e experimenter
played the sample text to the subject from an audio recording,
adjusting dictation speed according to the pace of the subject’s
handwriting. As soon as the dictation ended, the subject pressed
the “Stop” button to submit the recording. e collected data
contained tablet screenshots (Figure 1C), seven stylus-kinematic
features recorded from the tablet, and 110 hand-kinematic features
recorded by the hand tracking device. e handwriting task was
repeated 6 times for each subject with the same text being dictated
each time.

2.3 Participants

In total, 50 participants were recruited for this study. All
participants were native Arabic speakers, above 18 years,
who attended school with Arabic instruction language from
grade 1 and with no previous history of neuromuscular or
orthopedic dysfunction or dysgraphia. Additional inclusion
criteria required participants to be available for in-person
sessions to record handwriting tasks and to predominantly
use their right hand for writing. e study was conducted
in compliance with the Declaration of Helsinki, following its
norms and regulations, and with an authorized protocol by the
New York University Abu Dhabi Institutional Review Board
(IRB: #HRPP-2023-93).

2.4 Expert evaluation and measures

ree Arabic teaching experts (all females, aged 35–55
years) were recruited to evaluate the legibility of the handwriting
samples (image-based) using the eligibility evaluation form (see
Supplementary Figure S1). To accommodate for the diversity
in style of education systems, the experts represented three
different educational and cultural backgrounds (Arabic gulf
countries, North Africa, and Middle East). Furthermore,
experts were recruited based on the following inclusion
criteria: (1) having more than 10 years of experience in
teaching Arabic handwriting, and (2) currently working
in official (statutory work) or extra-official settings
(non-statutory work).

e non-language dependent Handwriting Legibility Scale
(HLS) (Barnett et al., 2018) was adapted to incorporate features
speciĕc to Arabic handwriting, such as aesthetics. e three Arabic
teaching experts were tasked with evaluating the handwriting
samples in terms of readability (how easy/difficult is it to
read this person’s handwriting?), space management (was this
person able to ĕt their writing in the space available?), style
consistency (how consistent was this person in following speciĕc
style?), and aesthetics (how beautiful was the handwriting?).
Each of these questions was rated on a 3-point Likert scale,
and a cumulative legibility score was calculated by summing
the responses to these four questions, yielding a total score
between 4 and 12 points. Furthermore, based on the experts’
observations of high similarity among samples written by the
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FIGURE 2

Cumulative score distributions by experts (A) expert 1, (B) expert 2, (C) expert 3.

same individual, the cumulative scores of all six samples from
each subject were averaged within each subject. e resulting
average score was then rounded to the nearest integer and
assigned as the legibility score for all samples written by that
subject. e cumulative legibility scores assigned by the three
experts (see Figure 2) were nearly normally distributed, meaning
that the handwriting legibility was well-represented within the
recruited subjects.

In total 117 kinematic features were recorded from two different
sources: seven stylus features from the tablet and 110 hand
kinematics features from the hand tracking device (see Table 1).e
data were collected at a sampling rate of 25 Hz and synchronized to
a uniĕed timestamp (Babushkin et al., 2024, 2023).

2.5 Model architecture

eproposedmodel is motivated by the temporal convolutional
network (TCN) (Lea et al., 2016) design that uses 1D convolutions to
extract features encoded across time (Dai et al., 2019). Due to their
ability to update layers’ weights at every time step simultaneously,
TCNs demonstrate better performance than Long-Short Term
Memory networks while dealing with long time series (Zhang et al.,
2017; Dai et al., 2019); they can take sequences of any lengths
and ensure the absence of information leakage from future to past
events (Yan et al., 2020). However, TCNs still face difficulties with
inferring dependencies between long-range patterns due to the
limited receptive ĕeld of the convolutional kernels (Dai et al., 2019).
e addition of a self-attention layer to TCN enhances its ability
to capture these long-range dependencies (Vaswani et al., 2017).
Furthermore, the self-attention mechanism allows to infer hidden
associations in features, enabling the network to learn irregular and
complex patterns (Bu and Cho, 2020). Additionally, self-attention
can also lead to more interpretable models (Vaswani et al., 2017).

e proposed model, illustrated in Figure 3, consists of two
TCN layers represented by one-dimensional convolutional layers
(1DCNN).ese are followed by a self-attention layer that processes
the hidden representation and extracts a global temporal attention
mask. Learning takes place within the subsequent four fully-
connected layers. Both the number of fully-connected layers and

TABLE 1 The recorded 117 hand and stylus kinematics features
(Babushkin et al., 2024, 2023).

Modality Features

Stylus kinematics features Stylus tip coordinates
(
x, y, z

)
(z = const),

Pressure (applied force),
Azimuth (angle of the stylus projection onto the
tablet surface, counted clockwise),
Altitude (angle between the tablet screen and the
stylus),
Proximity to the writing surface.

Hand kinematics features
(
x, y, z

)
coordinates of following Index, Middle,

Ring and Pinky ĕngers’ bones:
• Distal,
• Intermediate,
• Proximal,
• Metacarpal,
• Proximal end of the metacarpal bone.(
x, y, z

)
coordinates of following umb bones:

• Distal,
• Intermediate,
• Proximal,
• Metacarpal.
Palm center

(
x, y, z

)
coordinates,

Hand pinch position
(
x, y, z

)
coordinates (thumb

and index if they are pinched),
Hand predicted pinch position

(
x, y, z

)
coordinates,

Hand wrist position
(
x, y, z

)
coordinates,

Elbow position
(
x, y, z

)
coordinates (estimated if

not in view),
Hand arm center

(
x, y, z

)
coordinates (midpoint of

the bone),
Palm speed

(
vx , vy , vz

)
components,

Hand palm normal
(
nx , ny , nz

)
coordinates,

Hand rotational components
(
rx , ry , rz , rw

)
,

Palm width,
Palm pitch,
Palm yaw,
Palm roll,
Hand pinch strength,
Hand pinch distance,
Hand grab angle,
Hand arm length (length of the bone),
Hand arm width (average width of Ęesh around
the bone).

the number of neurons in each layer were determined empirically,
starting with the simplest possible architecture.
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e number of TCN layers used in the model is based on the
assumption that the ĕrst layer captures temporal dependencies,
while the second layer focuses on inferring spatial dependencies
from the feature maps produced by the ĕrst layer. Visualization of
feature maps aer the ĕrst and second 1D CNN layers conĕrmed
this assumption. Adding more than two 1D CNN layers leads to
incremental improvements in the model’s performance.

e input layer takes a matrix of 117 features and t time points
and feeds it to the ĕrst convolution layer with number of channels
C1 = 128. e original sample of length T = (w− s)× n+ s, where
s is overlap, is split into n windows of length w. e convolution
is performed by sliding a kernel of size K1 = 20 along the time
dimension of each window. e resulting (w− K1)+ 1×C1 matrix
is passed to the input of the second 1D convolution layer of 32
channels with a kernel of size K2 = 20 sliding along the time
dimension. e w − (K1 + K2) + 2 × C2 feature map matrix from
the second 1D convolution layer is processed by self-attention layer
of 32 units, then Ęattened and passed to the fully connected layers
with 256, 128, 64, 32 and ĕnallyN neurons, whereN is the number of
classes. To stabilize the learning process and to prevent overĕtting,
the batch normalization and dropout of 25% were applied aer
convolutional and fully connected layers. e Rectiĕed Linear Unit
(ReLU) activation was used in all layers except the last one (output
layer), which uses Somax as an activation function. e model was
trained on 200 epochs using categorical crossentropy loss function
and Adaptive Moment Estimation (Adam) optimizer (Kingma and
Ba, 2015). Due to the limited sample size, adjusting the learning rate
using callbacks was not feasible – the optimal learning rate of 10−3

was found empirically and remained constant during the training.
To combat the class imbalance, the oversampling method is applied
to the training data, before using it to train the network.

2.6 Feature selection: Shapley values

Shapley values, initially introduced within game theory
(Shapley, 1953), are used for assessing the inĘuence of each feature
on the prediction of themodel (Lundberg and Lee, 2017; Fryer et al.,
2021). e core concept behind Shapley values involves assessing
the impact of each feature on the model’s outcome by sequentially
substituting each feature with uniformly-distributed random values
and retraining the model on this new dataset. Shapley values are
computed by comparing the model’s predictions on the dataset
with the random feature against the ones on the dataset with the
original feature, for all instances in the validation set. ese values
are then averaged across the validation set to determine the overall
inĘuence of each feature. Ultimately, the distribution of averaged
Shapley values is obtained, allowing to test the importance of the
replaced feature compared to the substituted random feature.

e Shapley value of a feature of index f ∈ F = {1, . . . , d}
from the set of all feature indices F, is a weighted average of all
marginal contributionsMf(S), each of them represents the difference
in evaluation aer introducing feature of index f to a sub-model
S ⊂ F, i.e. Mf(S) = C

(
S ∪ {

f
}) − C (S) (C is evaluation function).

In this case, the Shapley value, ϕf, of feature, f, is:

ϕf =
∑

S∈2F\{f}
ω(S)Mf(S), (1)

where ω(S) = |S|!(|F|−|S|−1)!
|F| ! are the weights (Fryer et al., 2021;

Babushkin et al., 2024, 2023).

2.7 Statistical analysis

Statistical analysis was conducted to understand how the most
prominent features, extracted through Shapley values analysis,
differed for samples with high and low legibility. e low and high
legibility classes were selected for each expert following the legibility
score distributions shown in Figure 2, i.e. for expert 1 the lowest
legibility score was 4, highest was 11, for expert 2 lowest was 6,
highest was 12, for expert 3 lowest was 5, highest was 12. e
top 6 features, consistent across experts, namely pressure, azimuth,
altitude and hand speed x, y and z components, were averaged over
time for both the lowest and highest legibility classes. To ensure
the independence of time-averaged features, the samples evaluated
as high or low by more than one expert, were considered once
only, i.e. there were no repetitions. e sample size for low legibility
group for each feature was 619, and 1,384 for high legibility group.
For each feature, the D’Agostino-Pearson omnibus normality test
(recommended for large sample sizes D’Agostino and Stephens,
1986) was used to determine if the data follows normal distribution.
e results demonstrated that the distributions for low and high
legibility groups for all the 6 features were not normal and thus
non-parametric Mann-Whitney U test was applied to evaluate
statistical difference.

3 Results

3.1 Optimal parameter search

Legible handwriting is commonly evaluated based on the whole
handwriting sample rather than a letter or a word (vanDrempt et al.,
2011). However, due to the limited sample size (303 paragraphs
produced by 50 participants) and imbalanced distribution of the
samples across the legibility classes, the sliding window method
is adopted to enhance the sample size for model training and
evaluation. Assuming the legibility of handwriting can vary within
the text, the window should be large enough to contain sufficient
number of words to ensure sufficient representation of the overall
legibility score of the sample.

To determine the optimal length of the time window, the grid-
search technique was conducted for 27 different window lengths.
Initially, the optimal overlap size was determined by training the
model using three different ĕxed-length windows. Since the length
of the window corresponding to the shortest sample was 1,774, the
length of largest of these 3 ĕxed windows was selected as 1,728—a
multiple of 64 which was close to 1,774. e smallest window length
was set to 64 and the median window length was selected as 896.
e overlaps were ranging from 0% to 90% with 10% step. While
the number of words per given window of length w varied from
subject to subject, the choice of step 64was dictated by theminimum
possible word length. e average accuracy was calculated over 5
folds and 5 runs for each expert and window length. e results
indicated a linear increase in accuracywith the percentage of overlap
(see Figure 4), leading to the adoption of a 90% overlap.
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FIGURE 3

The model architecture with two temporal convolution layers. T, is the length of entire paragraph (can vary depending on the writing speed of the
subject); n, number of windows; w, length of the window; s, overlap; K1, K2 , kernel sizes of first/second 1D CNN layers; C1, C2 , number of channels in
first/second 1D CNN layers; N, number of classes.

FIGURE 4

Parameters search—optimal overlap. For each expert, the model with optimal hyperparameters was evaluated for three different window sizes using
5-fold cross-validation across 10 evenly spaced overlap percentages values. The process was repeated five times, each with a different random seed.
The accuracy values, averaged across five folds and five runs, for (A) expert 1, (B) expert 2, (C) expert 3.

e parameter search was conducted to select a window
containing sufficient number of words to justify the assignment
of legibility score of the text sample to this window. e optimal
window length was estimated by iterating over windows of lengths
from 64 to 1728 with the step of 64 and overlap of 90%. For
each iteration, the model was trained and validated for 5 folds.
e process was repeated 5 times for each expert, each time with
different random seed and the accuracy was averaged over all
folds for each run. e results, presented in Figure 5, indicated
that the model accuracy for each expert increased steadily from
a window length of 64 to 576, plateauing around a window size
of 1,408, and then declined slowly for larger windows. At window

size of 704 all three experts were close to each other reporting an
accuracy of around 84%. erefore, a window size of 704 offered
an optimal balance, achieving high accuracy while maintaining
a minimized window length, which allowed for a larger number
of samples.

3.2 Model performance evaluation

eproposedmodel was evaluated using 5-fold cross-validation
in terms of accuracy, precision, recall and F1-score both with stylus
alone and stylus andhand kinematics features. To avoid data leakage,

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1426455
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Babushkin et al. 10.3389/frai.2025.1426455

FIGURE 5

Parameters search—optimal window size. For each expert, the
model with optimal hyperparameters was evaluated with 5-fold
cross-validation across different window sizes, using 90% overlap.
The evaluation was repeated five times, each with a different
random seed. The accuracy values were averaged across five folds
and five runs.

the folds were formed at the paragraph level, before splitting a
paragraph with sliding window of length 704 and 90% overlap. us
all windows from the same paragraph were found only either in 4
folds for training or in the 5-th fold for testing, but not both in the
training and testing folds simultaneously. e average performance
of the model for each expert was summarized in Table 2. e
confusion matrices are demonstrated in Supplementary Figure S2.

Table 2 clearly demonstrates that the proposed model
performed consistently well across all experts, with accuracy
exceeding 85%. However, the model trained on expert 1 labels
achieved the highest F1 score. It might be attributed to the
distribution of expert 1 labels across classes being more uniformly
distributed. On the other hand, expert 2 and expert 3 distributions
were biased toward the high legibility scores, which suggests some
leniency in evaluation. is leniency might be attributed to the
educational system and cultural background of the last two experts.

3.3 Feature analysis

Shapley values were used to estimate the contribution of each
feature in determining the legibility of handwriting. e three
models, each trained for one expert’s scores with optimal parameters
were cross-validated for 5 folds. e Shapley values were evaluated
for each fold with 500 samples from the testing set of the given
fold. It was recommended to use the testing set to calculate Shapley
values to better inspect the ML model and understand the model’s
decision-making process. However, Shapley values for the testing set
allowed evaluating the features impact on themodel’s generalization
performance. For each sample, Shapley values were calculated solely
for the class corresponding to the true label of that sample. e
obtained Shapley absolute values were averaged across 704 time-
points and 500 test instances, and then aggregated for all 5 folds.e
12 most prominent features for predicting the handwriting legibility
score by each expert are shown in Figure 6. It is clear that the

pressure, hand speed components, and pen slant (altitude, azimuth)
are consistently the top features across the three experts.

Figure 7 shows the results of the time-average of the top
4 features for low and high legibility. e average altitude is
signiĕcantly higher for low legibility than high legibility (p <

0.01, Mann-Whitney U Test). On the contrary, azimuth, and hand
absolute velocity v =

√
v2x + v2y + v2z , where vx, vy and vz are

hand speed components, are signiĕcantly higher for high legibility
as compared to low legibility (p < 0.01, Mann-Whitney U Test).
According to Harris and Rarick (1959), the pressure itself does
not necessarily correlate with legibility for healthy adults, but the
pressure variability does.e pressure variability was also calculated
as the standard deviation of pressure over time for each timewindow
for high and low legibility classes. e Mann-Whitney U Test
conĕrms that the pressure variability is signiĕcantly higher for low
legibility (p < 0.01), which ĕnds echo in previous literature (Harris
and Rarick, 1959). Apparently, the good performance of the model
is due to its ability to capture the differences between features from
samples coming from different legibility groups.

Finally the correlation between stylus and hand kinematics
features such as pressure variability and the absolute speed of
handwriting was considered for writers whose handwriting samples
(paragraphs) were evaluated as either highly legible or low legible.
e paragraphs, produced by each one of those writers were
unanimously evaluated either as highly legible or low legible by
at least one expert. Highly legible paragraphs corresponded to
the highest cumulative legibility scores assigned by the experts
(11 for expert 1, 12 for experts 2 and 3; see Figure 2), while
low legibility paragraphs corresponded to the lowest scores (4 for
expert 1, 6 for expert 2, and 5 for expert 3; see Figure 2). e
absolute velocities and pressure values were aggregated across all
paragraphs for each subject.emean absolute velocity andpressure
variability were calculated from the aggregated data, resulting
in 50 mean absolute velocity—pressure variability pairs, one for
each subject. Both features were normalized to [0, 1] interval. e
correlation coefficient between mean absolute velocity and pressure
variability was 0.19, indicating a very weak relationship between
these two features.

4 Discussion

e comparison of model performances with and without hand
kinematics features (shown in Table 2) revealed the importance
of including hand kinematics for more accurate evaluation of
handwriting legibility. While the stylus kinematics features such
as applied force, azimuth, and altitude might be sufficient for
general legibility assessment, the inclusion of hand kinematicsmight
detect subtle changes in legibility that can be used for diagnosing
or predicting handwriting difficulties. Hand kinematics features,
measured directly fromhand tracking, capture hand dynamicsmore
accurately than tablet features. While handwriting speed can be
approximated from stylus kinematics features, it does not explicitly
measure the hand speed, which is captured by a hand tracking
device. us, the inclusion of the hand kinematics features provides
the model with a more accurate analysis of the hand dynamics.

e increase in model performance with window overlap for
each expert (Figure 4) can be viewed as a formof data augmentation.
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TABLE 2 Results of five-fold cross-validation for models using inputs from seven stylus kinematics features and 117 stylus and hand kinematics features
for each expert.

Accuracy, % Precision, % Recall, % F1-score, %

Stylus Stylus and hand Stylus Stylus and hand Stylus Stylus and hand Stylus Stylus and hand

Expert 1 76.0 86.3 78.8 88.4 74.8 89.3 75.8 88.6

Expert 2 76.5 87.2 76.4 86.9 73.2 87.0 73.7 86.4

Expert 3 75.3 85.4 75.8 88.4 73.8 84.5 73.4 85.8

e performance metrics were averaged over ĕve folds.

FIGURE 6

Aggregated Shapley values for each expert: (A) expert 1, (B) expert 2, (C) expert 3.

FIGURE 7

Top influential factors for low and high legibility, (A) pressure variability, (B) azimuth, (C) altitude, (D) hand absolute velocity. The scales were
normalized to [0, 1] interval.

Given the limited number of samples, increasing the overlap
percentage between consecutive windows boosts the training
dataset size, thereby enhancing accuracy. Moreover, hand and
stylus kinematics data are highly temporal, requiring consecutive
samples for effective learning. Training with higher overlap enables
the model to learn temporal dependencies. Additionally, the data
augmentation helps mitigate overĕtting by exposing the model
to samples with slight variations in hand and stylus kinematics,
ensuring better generalization across subjects.

e search for optimal window length revealed another
interesting behavior of the model. Despite the fact that shorter
windows provide larger number of samples, extremely shortwindow
lengths, that contain few to a fragment of a word, are not sufficient
to make inference about handwriting legibility (see Figure 5) as
smaller textual contentwithin eachwindowmaynot provide enough
information for the model to accurately assess legibility. Consistent
force patterns, which are crucial for assessing legibility, are observed
at the sentence level rather than the word level (Harris and
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Rarick, 1957). Furthermore, since there is an established correlation
between the variability of pressure andhandwriting legibility (Harris
and Rarick, 1959), the model apparently infers the variability of
pressure from a longer time interval, equivalent to more than a
few words. Similarly, for a human expert it might be hard to
provide an accurate evaluation of the legibility of handwriting just
by observing a few words. e slight drop in accuracy for larger
windows can be explained by the decrease in training samples
with the increase of window length as well as the drop in the
ability of model to generalize given the increased information
per window.

ere are signiĕcant differences in hand and stylus kinematics
features between low and high legibility. Speciĕcally, the pressure
variability (Figure 7A) is signiĕcantly higher for low legibility than
for high legibility, which is also established in previous studies,
despite the different approaches tomeasure the applied force (Harris
and Rarick, 1959). Lower overall hand speed (Figure 7D) appears
to be associated with low legibility. While previous studies only
hinted that subjects who write faster receive lower legibility scores
(Harris and Rarick, 1959), our analysis revealed the opposite effect.
is ĕnding can be inĘuenced by the differences in how the hand
speed is measured—in our study the whole hand is tracked, while
in Harris and Rarick (1957) and Harris and Rarick (1959), the
hand speed was inferred from the oscillographic records. Other
factors that may have inĘuenced this result include the use of
electronic tablet (rather than a physical paper) and the lack of
friction feedback on the tablet. Interestingly, our study found a
very weak correlation between pressure variability and absolute
handwriting velocity. is may be due to the fact that pen pressure
and writing speed are governed by distinct motor control processes.
In adults, pen pressure has been shown to positively correlate
with activity in the wrist extensor and Ęexor muscles, whereas
increased writing speed is associated with decreased activation
of these distal muscle groups (Gerth and Festman, 2023; Naider-
Steinhart andKatz-Leurer, 2007). Additionally, the weak correlation
could be inĘuenced by factors such as the non-linear relationship
between velocity and pressure variability, as well as individual
differences in writing styles among participants. Beyond speed and
pressure variability, pen slant (altitude, azimuth) is also a signiĕcant
factor inĘuencing evaluation of handwriting legibility. Speciĕcally, a
smaller azimuth angle and larger altitude features are associatedwith
low legibility. is ĕnds echo in literature where a previous study
found that the pen slant is associated with handwriting difficulty
(Asselborn et al., 2020).

Despite the differences in experts’ cultural and academic
backgrounds, the explainability analysis conducted with Shapley
values (Figure 6) suggests that the pressure variability, hand speed
components, and stylus slant (altitude, azimuth) features are
consistently important across experts. is means that in general,
experts implicitly rely on these features to evaluate the handwriting
legibility. Other features that vary across the experts, are expert-
speciĕc and signify the assessment style of each expert. e
model explainability analysis can be used to identify features
that are correlated with low legibility and suggest handwriting
practices/interventions to target these features and improve more
effectively the legibility of handwriting.

A few limitations should be acknowledged. First, the sample
size of 50 subjects is considered relatively low. e majority of

subjects (30) were aged between 18 and 25 years with males
constituting only half of the female population. e analysis
of kinematic features inĘuencing the legibility of handwriting
should be performed on a larger and more diverse sample size.
Furthermore, the effect of some demographic parameters, such as
age and gender, shall be investigated. In future studies more experts
will be recruited to evaluate legibility of the handwriting samples
for understanding how the cultural and educational background
inĘuences the human-based evaluation and using this knowledge to
mitigate possible expert-related biases in cumulative legibility score.
Another technology related limitation involves the intermittent
hand tracking for some subjects, particularly for female participants
mostly due to the hand shape and in some cases the use of sunscreen
cream that caused difficulties for tracking with infrared camera.
Future research should consider using other data acquisition
systems that allow writing on a physical paper (e.g., Wacom
Bamboo) or emulating a paper interaction (e.g., reMarkable).
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