
Frontiers in Artificial Intelligence 01 frontiersin.org

Co-Learning: code learning for 
multi-agent reinforcement 
collaborative framework with 
conversational natural language 
interfaces
Jiapeng Yu , Yuqian Wu , Yajing Zhan , Wenhao Guo , Zhou Xu  
and Raymond Lee *

Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, 
Faculty of Science and Technology, Beijing Normal University-Hong Kong Baptist University United 
International College, Zhuhai, China

Online question-and-answer (Q&A) systems based on the Large Language Model 
(LLM) have progressively diverged from recreational to professional use. However, 
beginners in programming often struggle to correct code errors independently, 
limiting their learning efficiency. This paper proposed a Multi-Agent framework with 
environmentally reinforcement learning (E-RL) for code correction called Code 
Learning (Co-Learning) community, assisting beginners to correct code errors 
independently. It evaluates the performance of multiple LLMs from an original 
dataset with 702 error codes, uses it as a reward or punishment criterion for E-RL; 
Analyzes input error codes by the current agent; selects the appropriate LLM-
based agent to achieve optimal error correction accuracy and reduce correction 
time. Experiment results showed that 3% improvement in Precision score and 
15% improvement in time cost as compared with no E-RL method respectively. 
The results indicate that integrating E-RL with a multi-agent selection strategy 
can effectively enhance both the accuracy and efficiency of LLM-based code 
correction systems, making them more practical for educational and professional 
programming support scenarios.

KEYWORDS

multi-agent, large language model, reinforcement learning, prompting, education

1 Introduction

Large Language Model (LLM)-based conversational question-answering systems, such as 
Chat Generative Pre-trained Transformer (ChatGPT), have become prominent deep learning 
networks capable of addressing a wide range of tasks—everyday inquiries to professional task 
solutions (Nijkamp et al., 2022; Barrault et al., 2023). They can demonstrate reasoning and 
planning strengths to match an autonomous agent’s definition to perceive its surroundings, 
make decisions, operate, and even build multi-agents to solve complex problems (Xi et al., 
2023; Zhou et  al., 2023). The majority of multi-agent frameworks can usually complete 
stationary streaming tasks using fixed prompts but are unable to select the optimal agent 
according to specific task content (Wang et al., 2024).

Program coding involves time-consuming professional skills due to the specific task’s 
requirement. Beginners often strive for code understanding but may cede programming 
due to the lack of guidance to resolve unforeseen errors. This study proposes a Code-
Learning community based on an LLM multi-agent framework on code correction and 

OPEN ACCESS

EDITED BY

Mayank Singh,  
Indian Institute of Technology Gandhinagar, 
India

REVIEWED BY

Simona Frenda,  
University of Turin, Italy
Xiaohao Wen,  
Guangxi Normal University, China

*CORRESPONDENCE

Raymond Lee  
 raymondshtlee@uic.edu.cn

RECEIVED 11 May 2024
ACCEPTED 30 April 2025
PUBLISHED 15 May 2025

CITATION

Yu J, Wu Y, Zhan Y, Guo W, Xu Z and 
Lee R (2025) Co-Learning: code learning for 
multi-agent reinforcement collaborative 
framework with conversational natural 
language interfaces.
Front. Artif. Intell. 8:1431003.
doi: 10.3389/frai.2025.1431003

COPYRIGHT

© 2025 Yu, Wu, Zhan, Guo, Xu and Lee. This 
is an open-access article distributed under 
the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 15 May 2025
DOI 10.3389/frai.2025.1431003

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1431003&domain=pdf&date_stamp=2025-05-15
https://www.frontiersin.org/articles/10.3389/frai.2025.1431003/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1431003/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1431003/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1431003/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1431003/full
mailto:raymondshtlee@uic.edu.cn
https://doi.org/10.3389/frai.2025.1431003
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1431003


Yu et al. 10.3389/frai.2025.1431003

Frontiers in Artificial Intelligence 02 frontiersin.org

annotation for efficient learning in communication with users. It 
uses reinforcement learning to decide which agent is required for 
the next step based on the input problem or the output generated 
by the current agent, in contrast to previous multi-agent code 
generation, error-correction networks based on a defined single 
stream (Chen et al., 2023). There are five agents responsible for 
different tasks: (1) Main agent supervises and exchanges 
information with users, (2) Correction agent revises programming, 
(3) Interpretation agent explains the programming logic to 
subsequent agents to locate incorrect codes, (4) Test agent 
generates correct codes, and (5) Annotation agent adds comments 
to the revised code for user’s understanding. These five agents 
communicate through conversation interfaces. The multi-agent 
generated by the main one is a copy with E-RL to self-improve and 
provide feedback to both counterparts and human users. 
Co-Learning uses ERNIE (Sun et al., 2021), SparkDesk (iFLYTEK, 
2023), and LLaMa (Touvron et  al., 2023) as base models for 
different agents. Code error correction with E-RL performance is 
evaluated by passing probability tests, single loop computation 
time, and the number of loops required. The annotation results are 
evaluated by an expert reviewer through the location, accuracy, 
and comprehensibility of annotations.

The aims of this study are to:

 1 build a multi-agent framework based on multi-LLMs for code 
error correction.

 2 use original error code datasets to evaluate the performance of 
multiple LLMs.

 3 explore the possibility of reinforcement learning for a large 
language model-based multi-agent operating environment.

 4 compare benchmark frameworks to indicate significant 
accuracy and operating speed improvements.

2 Related studies

2.1 Prompting with feedback

Recent research on large language models has shown that effective 
use of prompt words can reduce adverse output (Ganguli et al., 2023) and 
induce LLM to generate crucial assessments (Fang et al., 2024). Prompt 
engineering is a specialized study with remarkable benefits for reasoning-
type tasks (Madaan et al., 2024). Reflexion (Shinn et al., 2023) pointed out 
that using linguistic feedback can reinforce LLM instead of weights to 
store the feedback text in memory and induce the large language model 
to make better decisions, allowing the language agent to learn by mistakes 
efficiently. Dialog-Enabled Resolving Agents (DEAR) (Nair et al., 2023) 
can improve LLM judgment in clinical medicine by simulating two agents 
converse with each other so that the researcher agent can process 
information and extract key points of the problem and the decision-
maker agent integrates them from the researcher agent to judge the final 
output accordingly. Self-debugging (Chen et al., 2023) interprets its self-
generated code, assisting LLM in identifying code errors without explicitly 
pointing out the errors and modifications by mimicking a rubber duck 
test performed by human programmers without extra instructions.

Co-Learning also includes the thinking of prompting with 
feedback. When the generated code fails to pass the test, Co-Learning 
interprets and modifies its self-generated code according to the 

memorized linguistic feedback. At the same time, reinforcement 
learning will automatically select the optimal agent for the next action 
based on the feedback from the current agent.

2.2 Multi-agent framework

Multi-agent frameworks emerged at the end of the 20th century 
(Bradshaw, 1997) when software engineers used Java to write multi-agents 
for computers to perform by splitting into small, separate tasks that allow 
agents to focus and cooperate with each other. At the beginning of the 21st 
century, Java Agent Development Framework (JADE) (Bellifemine et al., 
2001; Lee, 2005) standardized the multi-agent forms based on Java, which 
was used in finance, trading, and journalism (Lee and Liu, 2001).

Python Agent DEvelopment (PADE), a multi-agent framework 
based on Python (Melo et  al., 2019), can be  seen as a Python 
implementation of JADE, which re-implements JADE’s core 
functionalities using Python, making it more suitable for projects that 
rely on Python-based environments.

LLM, led by GPT (OpenAI, 2023), showed enormous potential, 
making it possible to employ LLM instead of programs to create 
agents (Li et al., 2023). LLM’s cognitive abilities in single agents have 
provided a multi-agent foundation (Sumers et  al., 2023). Many 
experiments have shown that complex, dynamic tasks can 
be completed by multiple large language model agents equipped with 
strategies and communications (Zhang et al., 2023).

Hence, Co-Learning uses a PADE framework to create agents with 
functions, whereas multiple LLMs are the core component of a multi-
agent framework and information transfer between individual agents 
to achieve a dynamic workflow.

2.3 Reinforcement learning

Reinforcement learning (RL) is a machine learning paradigm where 
agents interact with environments to maximize cumulative rewards 
(Kaelbling et al., 1996). While traditional RL approaches, such as deep 
deterministic policy gradients (Lillicrap et al., 2015), have shown success 
in domains ranging from game-playing (Silver et  al., 2016) to 
autonomous driving (Kiran et al., 2021), their adaptation to language 
models introduces unique challenges. Current RL for LLMs 
predominantly relies on reinforcement learning from human feedback 
(RLHF) that requires labor-intensive preference labeling (Schick and 
Schütze, 2020) or memory-augmented parameter updates (Nair et al., 
2023; Chen et al., 2023), incurring substantial human and computational 
costs. These methods still necessitate parameter fine-tuning and 
Graphics Processing Unit (GPU)-intensive computations, creating 
hardware bottlenecks for practical deployment, especially when 
integrating closed-source models such as Spark API, where fine-tuning 
is prohibitively expensive. Our framework advances this direction 
through three key innovations: (1) Full automation of the evaluation-
reward cycle using predefined test cases and performance metrics, 
eliminating human-in-the-loop requirements; (2) Parameter-free 
adaptation through dynamic agent selection rather than weight updates; 
and (3) Hardware-agnostic operation via API orchestration, enabling 
CPU-only execution. This differs fundamentally from prompt-based RL 
approaches that still require human-curated reward signals and 
establishes a new paradigm for lightweight RL integration with LLMs.

https://doi.org/10.3389/frai.2025.1431003
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yu et al. 10.3389/frai.2025.1431003

Frontiers in Artificial Intelligence 03 frontiersin.org

3 Methodology

3.1 Proposed multi-agent code correction 
framework (Co-Learning)

A Co-Learning multi-agent code correction framework is illustrated in 
Figure 1. It has a coexistent framework that relies on PADE (Melo et al., 
2019), and the entire workflow runs in the environment created by the main 
agent. To begin, a correction agent uses a default large language model to 
make an initial modification for the input error code, returns the generated 
sentence, and transmits it to the test agent. The test agent performs tests 
based on the test samples from the dataset mentioned in Section 4.1, which 
includes the error code and the test cases that should be passed for the code 
after correction. Specifically, the test agent dynamically executes the Python 
code generated by the correction agent and evaluates its correctness and 
score by running it through the basic and challenging test cases provided in 
the dataset. If the code passes all tests, meaning the generation is correct, the 
test agent will send the code to the annotation agent for annotation and 
output it as the correct code. If the code is unable to pass any test, the 
generated code will be  passed to the interpretation agent, and the 
interpretation is stored in memory as an environmental reinforcement 
learning prompt. Then, an error code will transfer to the correction agent 
selected by reinforcement learning to re-generate a code based on the 
memorized code and interpretation. A loop will be formed by passing the 
generated result back to the test agent. Error codes entered by outsiders 
during actual use are not included in the test cases in the test dataset; three 
forms of tests used by the test agent will be provided: test samples entered 
by the user, test samples generated by LLM based on user-typing-
requirement, and the code correctness determined directly by LLM.

For different agents, the main agent stores all hyper-parameters and 
historical information, using E-RL based on other agent feedback to update 
the state of the environment. The test agent creates namespaces to declare 
the generated code, uses test cases to check the generated code, and returns 
test results and error messages. The rest of the agents clarify their tasks 
according to the prompt words, combine them with historical information 
to generate input streams for the LLM, and return results to the main agent 
for storage. Co-Learning involves agents cooperating with each other, 
mimicking human rubber duck testing while using unit test feedback, and 
selecting the most appropriate large language model in a real-time manner 
based on E-RL to enhance the performance of code error correction.

3.2 Python agent development (PADE)

Python Agent DEvelopment (PADE) is a simple Python-based 
approach to create agents that can be accessed by different devices 
(Melo et  al., 2019). This enables the development and creation of 
communication networks among different agents in accordance with 
the Foundation for Intelligent Physical Agents (FIPA) standards. PADE 
is an architecture based on Twisted to develop a multi-agent application 
using its library resources (Library) and perform a Running 
Environment of a distributed system. PADE controls the platform by 
creating an agent (Agent Management System) responsible for platform 
operations, realize for internal platform functions, and migrate agents 
out of the platform to other platforms.

A PADE architecture is depicted in Figure 2. It consists of seven 
modules with the following functions:

 a Core: All agents will inherit this base agent kernel framework 
when created;

 b Behaviors: A behavioral template implemented by the agent 
can be inherited by the user to define a variety of personalized 
behaviors according to FIPA standards;

 c Agent Communication Language (ACL): A language model set 
up (?) for information interaction between agents according to 
FIPA standards;

 d WEB: A Web server with a graphical interface for interaction 
with registered sessions, agents, and message databases;

 e CLI: Functions interaction with the PADE platform;
 f Miscellaneous (Misc): General functions such as looping a 

standard form of agent initialization message on the screen;
 g Tests: Module testing.

The core of the PADE framework is agent execution. Figure 3 
illustrates an agent execution UML structure, which indicates the class 
agent and its interaction with other class agents.

All agents use the PADE framework (e.g., AgentFactory, 
AgentProtocol in Figure 3), inherit the agent template, and conform to 
the Twisted protocol. They are identified by their own Agent IDentifier 
(AID). An agent can be seen as a connected node in the server platform 
network that can initiate message exchanges or respond to requests from 
other network nodes via their AIDs.

FIGURE 1

Framework of multi-agent code correction (Co-Learning).

https://doi.org/10.3389/frai.2025.1431003
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yu et al. 10.3389/frai.2025.1431003

Frontiers in Artificial Intelligence 04 frontiersin.org

FIGURE 3

UML standard for classes in PADE framework.

An Agent Management System (AMS) in PADE implements key 
functions such as control and supervision through a table containing AIDs 
of all agents according to the FIPA 00023 standards. As an agent, it is the 
first one to activate, and the rest of the agents are required to register and 
activate. Each agent in the network is required to send a message to the 
AMS agent so that its AID can be saved as a text string by the AMS. Then, 
each agent in the platform can access to a table in AMS that stores the 
names and addresses of all agents to identify other agents. The AMS is 
updated and distributed whenever an agent enters or exits the network.

Figure 4 illustrates an example where the AMS is the first agent to 
be launched. It performs registration for agents 1, 2, and 3 as they 
enter, and informs the existing agents when a new agent joins the 
network. In this case, when agent 3 fails to register for the first time, 

its address cannot communicate with other agents. It can only send to 
the other agents after the second attempt is successful.

Therefore, if an agent requires communication with another agent, 
it will refer to the address of the target agent in its own table without 
asking the AMS agent. These agents can communicate even if the 
AMS agent is deactivated. The AMS agent can also record message 
interactions so that all agents in the network will send a copy of the 
message received to AMS each time.

AMS is the most significant network agent responsible for agent 
registration, monitoring, updating active agent tables, logging 
information exchanged among agents, sending orders to change, and 
deactivating agent’s behavior.

An agent creation has a well-defined pattern of behavioral classes 
defined by PADE, protocol classes, and information from the class agent 
provided by core. Therefore, it is common to have an example in PADE 
that represents a given agent, and many classes required behavior 
examples representation defined by each agent. Figure 5 illustrates the 
chat behavior in PADE. Here, the chat agent class inherits all necessary 
features to execute and identify the agent to communicate with other 
counterparts. The chat port inherits all necessary behaviors from the chat 
class according to FIPA standards. Moreover, the chat class has the base 
behavior class to implement the base startup with methods.

3.3 Environmentally reinforcement learning 
(E-RL)

The environmentally reinforcement learning (E-RL) aims to provide 
a structured environment for LLM-based agent, enhancing their ability 
to perform code error correction and testing effectively. Through E-RL, 

FIGURE 2

PADE architecture.

https://doi.org/10.3389/frai.2025.1431003
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yu et al. 10.3389/frai.2025.1431003

Frontiers in Artificial Intelligence 05 frontiersin.org

LLM-based agents select actions based on the current state currectS  and 
historical context historyH  to perform tasks such as code error correction 
and interpretation. The interaction begins with a user-supplied code task 
description taskT  and error code errorC , which together form the initial 
state initialS  of the system as shown in Equation 1:

 ( )=initial task error,S T C  (1)

The LLM-based agent first explains the reason for the code error, errorE
, based on the current state and historical context, as follows Equation 2:

 ( )=error explain initial history,E f S H  (2)

Next, the agent attempts to correct the erroneous code, correctC , based 
on the generated explanation errorE  and the current state as shown in 
Equation 3:

 ( )=correct correct error initial,C f E S  (3)

Once the corrected code is generated, it is executed and compared 
to two test cases with different levels of difficulty, denoted testS 1 and 

testS 2. The correctness of the generated code is evaluated as as shown 
in Equation 4:

 ( ) ( )= =test1 test correct test1 test 2 test correct test 2, , ,R f C S R f C S  
(4)

FIGURE 4

Registration and update of information in an example agent platform.

FIGURE 5

UML standard for a chat agent with FIPA chat behavior.

https://doi.org/10.3389/frai.2025.1431003
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yu et al. 10.3389/frai.2025.1431003

Frontiers in Artificial Intelligence 06 frontiersin.org

If both tests pass (i.e., testR 1 = 1 and testR 2  = 1), the interaction 
ends, and the final corrected code is returned as finalC  = correctC . If 
either of the tests fails, the generated code has errors and will be passed 
to the interpretation agent for re-evaluation, and the process continues. 
The process forms an iterative loop, where the code correction process 
continues until the generated code passes all tests or the maximum 
number of iterations maxN  is reached.

The discrete state space S in E-RL consists of historical dialogue 
records that encapsulate the interactions between the user and LLM-based 
agents, which include task descriptions, error hints, and code corrections 
as shown in Equation 5:

 { }= …initial currect final, , ,S S S S  (5)

The action space A consists of all possible actions that the agent 
can take, which are represented by natural language outputs generated 
by the agent based on the current state, such as code corrections 

correctC , error explanations errorE , or code annotations annotationA . 
We define two different reward mechanisms at the same time.

The first reward mechanism evaluates the LLM-based agent’s 
performance during interaction. Specifically, if the agent passes the basic 
test sample testS 1, it will be rewarded with 2 points, and if it passes the more 
difficult test testS 2 , it will be rewarded with 3 points. Conversely, if the 
agent fails the tests, it will be penalized with 0.5 and 0.2 points, respectively. 
The reward function can be expressed as shown in Equation 6:

 

( )
( )

 == 
=

test1
success

test 2

2,if fails basic test R 1
R

3,if passes difficult test R 1

 

( )
( )

 − == 
− =

test1
fail

test 2

0.5,if fails basic test R 0
R

0.2,if fails difficult test R 0
 

(6)

Obtaining the results in Figure 6 based on the first reward 
mechanism, ERNIE performs the best in terms of performance 
but runs the slowest, LLAMA is rated as medium in terms of 
performance and runs at average speed, and Spark shows the 
worst results although it runs the fastest. Based on these different 
performance characteristics, we  dynamically select the initial 
large model based on the length of the input code. Depending on 
the code length, we  assigned short codes to Spark, medium-
length codes to LLAMA, and longer codes to ERNIE, respectively.

The second reward mechanism aims to dynamically select the 
applicable language model based on the performance of the LLM-based 
agent under the code error correction dataset. We  first use softmax 
functions to obtain the weights of the three large language models on the 
metrics of time and reward, respectively as shown in Equation 7:

 

ω ω
= =

= =

= =

∑ ∑

i i

i i

T R
time rewardk 3 k 3

T R

i 1 i 1

e e,
e e

 

(7)

Where iT is the execution time of each language model (ERNIE, 
LLAMA2-8B, and Spark V3) and iR  represents the reward score for each 
model based on its performance in terms of code error correction tasks. 
The softmax function transforms the execution time and reward into 
normalized values, which are used as relative weights to adjust the 
performance of each LLM in the final decision-making process. The 
weights ωtime and ωreward can be interpreted as ratios that reflect the 
relative importance of execution time and reward, respectively.

The reward mechanism then calculates a composite score LLMS  for 
each language model based on code length lengthL , run time ωreward, 
reward value R , number of loops n (Table 1), and stability of the 
language model stabilityS .

These metrics reflect the performance and operational status of the 
LLM-based agent during the interaction. Then, based on the calculated 
composite score, the language model with the highest score is selected as the 

FIGURE 6

Reward scores and running time for different length of error code correction of three LLMs.

https://doi.org/10.3389/frai.2025.1431003
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yu et al. 10.3389/frai.2025.1431003

Frontiers in Artificial Intelligence 07 frontiersin.org

main language model in the current environment. In this way, the reward 
mechanism is able to automatically adjust the selected language model 
according to the actual performance of the LLM-based agent to improve the 
efficiency and accuracy of code error correction and interpretation. The 
algorithm used by E-RL to select LLM is showed in Algorithm 1.

4 Experiments

4.1 Data description

The dataset used in the experiments is based on the Mostly Basic 
Programming Problems (MBPP) test set compiled by Austin et al. (2021), 
which consists of Python programming problems paired with various 
prompting words for code generation and corresponding automated test 
cases. To generate an error code dataset for the Co-Learning approach, 
we used ERNIE-3.5-8K (Sun et al., 2021), an early model with relatively 
low performance compared to the models employed in Co-Learning. The 
ERNIE-3.5-8 K model was used to generate erroneous code based on the 
provided prompting words. Although the generated code is not 
executable, it contains correct function names and relevant comments 
about the code logic, making it useful for subsequent experiments. This 
process resulted in the creation of a new dataset consisting of 702 error 
codes, test samples, and challenging test cases, as detailed in Table 2.

Figure 7 presents histograms illustrating the distribution of error 
code lengths in the dataset. It is instrumental in selecting the best LLM 
for the environment at the first-time code correction. By categorizing the 

length of the input message, E-RL will lead Co-Learning to select more 
capable LLMs for the next agent when obtaining long sentences. An 
attempt is made to reduce the number of error correction loops while 
sacrificing a proportion of the generation time, thus reducing the total 
time consumption and avoiding unnecessary computational costs.

4.2 Baseline LLM

ERNIE-4.0-8 K-0329 (Sun et al., 2021), Spark Desk V3 (iFLYTEK, 
2023), and Meta-Llama-3-8b (Touvron et al., 2023) are selected as the 
open-source LLMs. Baseline LLMs are merged into the PADE multi-
agent environment. E-RL selects the optimal model for the Co-Learning 
framework from the three to provide high-quality responses.

4.3 Experimental environment

The experiments are conducted on a server with a Xeon(R) Gold 
5218 CPU @ 2.30GHz (16 cores). Models are implemented in PyTorch 
2.1.0 with CUDA 12.1.

4.4 Main results

This experiment uses the original error code dataset, sets the 
maximum number of cycles to 5 (exceeding the number of cycles will 

TABLE 1 Number of loops required for code error correction of three LLMs.

LLM 1 loop 2 loops 3 loops 4 loops 5 loops

ERNIE 4.0 337 60 26 14 265

Llama 3-8b 317 81 32 21 251

Spark V3 319 48 14 4 317

Input: code, error codes to be changed

run_time, number of executed loops

Output: LLM, selected LLM

Parameters: Recent_LLM, current use of LLM

LLM_performance, performance parameters LLMs

Parameter_weight, weight of parameters

1: /*Calculate the score for each LLM based on the current environmental state*/

2: for model, performance in LLM_performance.items() do
3:      Len_weight = code_length * Parameter_weight["length"] * LLM_performance["reward"]

4:      Reward_weight = Parameter_weight["reward"] * LLM_performance["reward"]

5:      time_weight =  Parameter_weight["time"] * LLM_performance["time"]

6:      run_time_weight = Parameter_weight["run_time"] * run * LLM_performance["reward"]
7:      /*Stability penalty if the selected LLM same as the current environmental LLM*/
8:      if model == Recent_LLM then
9:         scores[model] = (Len_weight + Reward_weight - time_weight - run_time_weight) * 

LLM_performance["stability"]

10:     else: 

11:       scores[model] = Len_weight + Reward_weight - time_weight - run_time_weight
12: end for
13: /*Update the LLM used by the environment*/

14: LLM = max(scores, key = scores.get)

ALGORITHM 1

LLM options update.

https://doi.org/10.3389/frai.2025.1431003
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yu et al. 10.3389/frai.2025.1431003

Frontiers in Artificial Intelligence 08 frontiersin.org

directly determine the operation failure), and limits the memory 
length to three dialogue pairs to avoid exceeding the LLM single input 
message length limit.

Table 3 shows the number of successfully corrected loops, average 
running time, and final accuracy in the code correction task using a single 
LLM or E-RL and a collaborative learning framework based on multiple 
LLMs. Co-Learning mimicked rubber-duck debugging operations can 
be observed to help the model retry generation when the first generation 
goes wrong, with Llama 3-8b being the biggest beneficiary of the single 
LLM model, with 134 successful re-generations of the correct code.

Through E-RL, the probability of success of Co-Learning based on 
rubber duck testing is greatly increased; even if some first-time success 
probability is lost, a total of 196 examples are correctly modified due to 
E-RL. E-RL’s contribution to the runtime is also undeniable, being only 
slower than the high-speed, low-enabled Spark V3, with an average test 
time of 99.8 s. Finally, Co-Learning with E-RL has the highest review 
success rate, reaching 67.80%.

4.5 Case study

Figure 8 depicts the actual situation of code error correction through 
Co-Learning. First, the master agent schedules the error correction task, 
and E-RL selects Llama as the initial LLM for joint learning based on the 
input message. The correct agent uses Llama to make initial modifications 
to error codes. Based on the results, it can be concluded that Llama 

generated the correct answer but secretly changed the function name. 
This phenomenon is obvious in the three LLMs. The LLM may choose 
more appropriate function names for the code based on the code content, 
while ignoring the user’s needs.

The test agent detects that the generated code fails the test and returns 
an error message to the main agent. The main agent assigns code 
interpretation tasks in the hope of simulating rubber duck testing. The 
interpretation agent interprets the generated code and stores the contents 
in the main agent memory. E-RL re-selects Spark as the next agent’s LLM, 
and the correct agent then re-corrects the code. Spark misinterprets the 
code as outputting multiples of the current number between 1 and 10, 
which may be related to the fact that the error returned by the test agent 
contains information about the first test sample, where the maximum 
number to be generated is 10.

The test agent detected the error, and the leading main agent 
decide to make another rubber duck debugging. Then, LLM was 
changed to the most powerful ERNIE, which eventually generated the 
correct code, and the annotation agent added comments to the output.

This case shows how Co-Learning can continuously correct, 
understand, and then correct erroneous code by imitating the error 
correction process of human programmers, and generate information-
intensive integrated code that only senior programmers can generate. 
With E-RL, Co-Learning attempts to balance model power and speed in 
the hope of generating the best response in the shortest possible time, 
creating code that is shorter and more refined than expected correct code, 
while using less time than a single model.

FIGURE 7

Distribution of error code length ranges.

TABLE 2 Subset of the dataset samples.

Error code Test list Challenge test list

def remove_Occ(string, character):

… …

['assert remove_Occ("hello","l") == "heo"',

'assert remove_Occ("abcda","a") == "bcd"',

'assert remove_Occ("PHP","P") == "H"']

['assert remove_Occ("hellolloll","l") == "helollol"',

'assert remove_Occ("","l") == ""']

def is_woodall(number):

… …

['assert is_woodall(383) == True',

'assert is_woodall(254) == False',

'assert is_woodall(200) == False']

['assert is_woodall(32212254719) == True',

'assert is_woodall(32212254718) == False',

'assert is_woodall(159) == True']

https://doi.org/10.3389/frai.2025.1431003
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yu et al. 10.3389/frai.2025.1431003

Frontiers in Artificial Intelligence 09 frontiersin.org

5 Conclusion and future works

This study focuses on developing a code learning community 
(aka Co-Learning) framework based on an LLM-based multi-agent 
framework that leverages ambient reinforcement learning (E-RL) for 
agent self-improvement. The community aims to interpret error 
codes and perform code correction tasks to provide users with a more 

intelligent and personalized programming learning experience. 
Experiments show that the Co-Learning framework can effectively 
improve the code error correction capabilities of current LLM. E-RL 
dynamically determines the state of the environment and changes the 
selection of the LLM, which can speed up the code correction process 
and achieve significant improvements in the quality of the 
generated output.

TABLE 3 Co-Learning with different LLM performance comparison.

Method 1 loop 2 loops 3 loops 4 loops 5 loops Average running 
time (s)

Accuracy (%)

Co-Learning (ERNIE 4.0) 337 60 31 29 245 137.5 65.09

Co-Learning (Llama 3-8b) 317 81 32 21 251 112.8 64.24

Co-Learning (Spark V3) 319 48 14 4 317 57.7 54.84

Co-Learning (E-RL) 280 104 65 27 226 99.8 67.80

For 1-5 loops bold values represent the method that achieves the most correct results after n loops. For average running times and accuracy, bold values represent the method that achieves the best results.

FIGURE 8

Example of Co-Learning code correction.

https://doi.org/10.3389/frai.2025.1431003
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yu et al. 10.3389/frai.2025.1431003

Frontiers in Artificial Intelligence 10 frontiersin.org

In the future, Co-Learning will focus on further optimizing the E-RL 
algorithm to improve the agent’s learning efficiency and performance. At 
present, it seems too simplistic to select E-RL parameters based only on 
model capabilities. Making Co-Learning’s environmental reinforcement 
learning have dynamic self-updating weights by combining machine 
learning will be one of the main goals in the future; Expect to explore 
more complex tasks and scenarios, including error correction and code 
understanding in larger code bases, as well as code learning in different 
programming languages and domains.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

JY: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Writing – original draft. YW: 
Data curation, Software, Validation, Writing  – original draft. YZ: 
Investigation, Methodology, Visualization, Writing – original draft. 
WG: Investigation, Methodology, Visualization, Writing – original 
draft. ZX: Investigation, Methodology, Visualization, Writing  – 
original draft. RL: Funding acquisition, Project administration, 
Resources, Supervision, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Acknowledgments

The authors thank the Beijing Normal University-Hong Kong Baptist 
University United International College and the IRADS lab for the 
provision for computer facility for the conduct of this research.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., et al. (2021). 

Program synthesis with large language models. arXiv [Preprint]. arXiv:2108.07732.
Barrault, L., Chung, Y. A., Meglioli, M. C., Dale, D., Dong, N., Duquenne, P. A., et al. 

(2023). SeamlessM4T-massively multilingual & multimodal machine translation. arXiv 
[Preprint]. arXiv:2308.11596.

Bellifemine, F., Poggi, A., and Rimassa, G. (2001). Developing multi-agent systems 
with JADE. In Intelligent agents VII agent theories architectures and languages: 7th 
international workshop, ATAL 2000 Boston, MA, USA, July 7–9, 2000 proceedings 7 
(pp. 89–103). Springer, Berlin Heidelberg.

Bradshaw, J. M. (1997). An introduction to software agents. Software Agents 4, 3–46. 
Available at: https://scholar.google.com.hk/citations?user=M5fazi4AAAAJ&hl=zh-
CN&oi=sra

Chen, X., Lin, M., Schärli, N., and Zhou, D. (2023). Teaching large language models 
to self-debug. arXiv [Preprint]. arXiv:2304.05128.

Fang, R., Bindu, R., Gupta, A., and Kang, D. (2024). LLM agents can autonomously 
exploit one-day vulnerabilities. arXiv [Preprint]. arXiv:2404.08144.

Ganguli, D., Askell, A., Schiefer, N., Liao, T. I., Lukošiūtė, K., Chen, A., et al. (2023). 
The capacity for moral self-correction in large language models. arXiv [Preprint]. 
arXiv:2302.07459.

iFLYTEK. (2023). Spark Desk V3.0. Version 1.0. Available online at: https://console.
xfyun.cn/services/bm3 (Accessed November 9, 2023).

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: a 
survey. J. Artif. Intell. Res. 4, 237–285. doi: 10.1613/jair.301

Kiran, B. R., Sobh, I., Talpaert, V., Mannion, P., Al Sallab, A. A., Yogamani, S., et al. 
(2021). Deep reinforcement learning for autonomous driving: a survey. IEEE Trans. 
Intell. Transp. Syst. 23, 4909–4926. doi: 10.1109/TITS.2021.3054625

Lee, R. S. (2005). Fuzzy-neuro approach to agent applications: From the AI perspective 
to modern ontology. Berlin: Springer Science & Business Media.

Lee, R. S., and Liu, J. N. (2001). I Jade Stock predictor – an intelligent multi-agent 
based time series stock prediction system. In intelligent agent technology: Research and 
Development (pp. 495–499).

Li, H., Hao, Y., Zhai, Y., and Qian, Z. (2023). The Hitchhiker's guide to program 
analysis: a journey with large language models. arXiv [Preprint]. arXiv:2308.00245.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015). 
Continuous control with deep reinforcement learning. arXiv [Preprint]. 
arXiv:1509.02971.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L., Clark, P., et al. (2024). Self-
refine: Iterative refinement with self-feedback. Adv Neural Inf Process Syst. 36.

Melo, L. S., Sampaio, R. F., Leão, R. P. S., Barroso, G. C., and Bezerra, J. R. (2019). 
Python-based multi-agent platform for application on power grids. Int. Trans. Electr. 
Energy Syst. 29:e12012. doi: 10.1002/2050-7038.12012

Nair, V., Schumacher, E., Tso, G., and Kannan, A. (2023). DERA: enhancing large 
language model completions with dialog-enabled resolving agents. arXiv [Preprint]. 
arXiv:2303.17071.

Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., et al. (2022). Codegen: 
an open large language model for code with multi-turn program synthesis. arXiv 
[Preprint]. arXiv:2203.13474.

OpenAI (2023). Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5).
Schick, T., and Schütze, H. (2020). Exploiting cloze questions for few shot text 

classification and natural language inference. arXiv [Preprint]. arXiv:2001.07676.
Shinn, N., Labash, B., and Gopinath, A. (2023). Reflexion: an autonomous agent with 

dynamic memory and self-reflection. arXiv [Preprint]. arXiv:2303.11366.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. 

(2016). Mastering the game of go with deep neural networks and tree search. Nature 529, 
484–489. doi: 10.1038/nature16961

Sumers, T. R., Yao, S., Narasimhan, K., and Griffiths, T. L. (2023). Cognitive 
architectures for language agents. arXiv [Preprint]. arXiv:2309.02427.

Sun, Y., Wang, S., Feng, S., Ding, S., Pang, C., Shang, J., et al. (2021). Ernie 3.0: large-
scale knowledge enhanced pre-training for language understanding and generation. 
arXiv [Preprint]. arXiv:2107.02137.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., et al. (2023). Llama 
2: open foundation and fine-tuned chat models. arXiv [Preprint]. arXiv:2307.09288.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., et al. (2024). A survey on 
large language model based autonomous agents. Front. Comp. Sci. 18, 1–26. doi: 
10.1007/s11704-024-40231-1

Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., et al. (2023). The rise and potential of 
large language model based agents: a survey. arXiv [Preprint]. arXiv:2309.07864.

Zhang, H., Du, W., Shan, J., Zhou, Q., Du, Y., Tenenbaum, J. B., et al. (2023). Building 
cooperative embodied agents modularly with large language models. arXiv [Preprint]. 
arXiv:2307.02485.

Zhou, W., Jiang, Y. E., Li, L., Wu, J., Wang, T., Qiu, S., et al. (2023). Agents: an open-
source framework for autonomous language agents. arXiv [Preprint]. arXiv:2309.07870.

https://doi.org/10.3389/frai.2025.1431003
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://scholar.google.com.hk/citations?user=M5fazi4AAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com.hk/citations?user=M5fazi4AAAAJ&hl=zh-CN&oi=sra
https://console.xfyun.cn/services/bm3
https://console.xfyun.cn/services/bm3
https://doi.org/10.1613/jair.301
https://doi.org/10.1109/TITS.2021.3054625
https://doi.org/10.1002/2050-7038.12012
https://doi.org/10.1038/nature16961
https://doi.org/10.1007/s11704-024-40231-1

	Co-Learning: code learning for multi-agent reinforcement collaborative framework with conversational natural language interfaces
	1 Introduction
	2 Related studies
	2.1 Prompting with feedback
	2.2 Multi-agent framework
	2.3 Reinforcement learning

	3 Methodology
	3.1 Proposed multi-agent code correction framework (Co-Learning)
	3.2 Python agent development (PADE)
	3.3 Environmentally reinforcement learning (E-RL)

	4 Experiments
	4.1 Data description
	4.2 Baseline LLM
	4.3 Experimental environment
	4.4 Main results
	4.5 Case study

	5 Conclusion and future works

	References

