AUTHOR=Yu Jiapeng , Wu Yuqian , Zhan Yajing , Guo Wenhao , Xu Zhou , Lee Raymond TITLE=Co-Learning: code learning for multi-agent reinforcement collaborative framework with conversational natural language interfaces JOURNAL=Frontiers in Artificial Intelligence VOLUME=Volume 8 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1431003 DOI=10.3389/frai.2025.1431003 ISSN=2624-8212 ABSTRACT=Online question-and-answer (Q&A) systems based on the Large Language Model (LLM) have progressively diverged from recreational to professional use. However, beginners in programming often struggle to correct code errors independently, limiting their learning efficiency. This paper proposed a Multi-Agent framework with environmentally reinforcement learning (E-RL) for code correction called Code Learning (Co-Learning) community, assisting beginners to correct code errors independently. It evaluates the performance of multiple LLMs from an original dataset with 702 error codes, uses it as a reward or punishment criterion for E-RL; Analyzes input error codes by the current agent; selects the appropriate LLM-based agent to achieve optimal error correction accuracy and reduce correction time. Experiment results showed that 3% improvement in Precision score and 15% improvement in time cost as compared with no E-RL method respectively. The results indicate that integrating E-RL with a multi-agent selection strategy can effectively enhance both the accuracy and efficiency of LLM-based code correction systems, making them more practical for educational and professional programming support scenarios.