
TYPE Review

PUBLISHED 25 February 2025

DOI 10.3389/frai.2025.1441250

OPEN ACCESS

EDITED BY

Nebojsa Bacanin,

Singidunum University, Serbia

REVIEWED BY

Muzafer Saracevic,

University of Novi Pazar, Serbia

Miodrag Zivkovic,

Singidunum University, Serbia

*CORRESPONDENCE

Keshav Krishna

keshaviitropar@gmail.com

RECEIVED 30 May 2024

ACCEPTED 10 February 2025

PUBLISHED 25 February 2025

CITATION

Krishna K (2025) Advancements in cache

management: a review of machine learning

innovations for enhanced performance and

security. Front. Artif. Intell. 8:1441250.

doi: 10.3389/frai.2025.1441250

COPYRIGHT

© 2025 Krishna. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Advancements in cache
management: a review of
machine learning innovations for
enhanced performance and
security

Keshav Krishna*

Department of Computer Science & Engineering, Indian Institute of Technology Ropar, Rupnagar, India

Machine learning techniques have emerged as a promising tool for e�cient

cache management, helping optimize cache performance and fortify against

security threats. The range of machine learning is vast, from reinforcement

learning-based cache replacement policies to Long Short-Term Memory

(LSTM) models predicting content characteristics for caching decisions. Diverse

techniques such as imitation learning, reinforcement learning, and neural

networks are extensively useful in cache-based attack detection, dynamic

cache management, and content caching in edge networks. The versatility of

machine learning techniques enables them to tackle various cachemanagement

challenges, from adapting to workload characteristics to improving cache hit

rates in content delivery networks. A comprehensive review of various machine

learning approaches for cache management is presented, which helps the

community learn how machine learning is used to solve practical challenges

in cache management. It includes reinforcement learning, deep learning, and

imitation learning-driven cache replacement in hardware caches. Information

on content caching strategies and dynamic cache management using various

machine learning techniques in cloud and edge computing environments is

also presented. Machine learning-driven methods to mitigate security threats in

cache management have also been discussed.

KEYWORDS

cache management, cache security, cache replacement, edge networks, hardware,

machine learning, reinforcement learning, deep learning

1 Introduction

Caching is a crucial technology in computer systems, enhancing performance by

storing frequently accessed data to reduce latency. Efficient cache management involves

strategic data storage, reallocation, and eviction, especially in environments like cloud

computing where resources are shared among multiple tenants with varying quality of

service requirements, to improve system performance (Choi et al., 2020; Sethumurugan

et al., 2021). Implementing machine learning into cache management has revolutionized

traditional approaches, providing dynamic, adaptive solutions that address complex,

variable workloads and security concerns in modern computing environments.

Despite the pivotal role of caching in system performance and resource utilization,

existing cache management policies face significant challenges. These include adapting

to dynamic content popularity, efficiently utilizing limited cache spaces, and ensuring

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1441250
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1441250&domain=pdf&date_stamp=2025-02-25
mailto:keshaviitropar@gmail.com
https://doi.org/10.3389/frai.2025.1441250
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1441250/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

security against sophisticated attacks such as like cache side-

channel exploits with low overhead, high accuracy, and adaptability

(Sethumurugan et al., 2021; Vietri et al., 2018; Narayanan et al.,

2018; Liu et al., 2020; Li et al., 2019; Ma et al., 2018; Tong et al.,

2020). Machine learning offers innovative solutions to these issues,

with techniques ranging from deep learning for predictive caching

to reinforcement learning for policy optimization, presenting a

transformative potential for cache management strategies.

In recent years, there has been substantial progress in

both traditional and machine learning-based cache management

techniques. However, most existing research has focused primarily

on performance improvements without adequately addressing

the dual need for enhanced security in cache management

systems. Moreover, there is a lack of comprehensive studies

reviewing the integration of machine learning innovations

specifically aimed at optimizing both cache performance and

security. This study aims to fill this gap by providing a detailed

review of recent advancements in machine learning applications

for cache management, emphasizing both performance and

security enhancements.

This review aims to explore the breadth of recent research

in machine learning-driven cache management, focusing

on examining the effectiveness of various machine learning

techniques, including reinforcement learning, deep learning, and

imitation learning, in developing cache replacement policies,

analyzing machine learning’s role in enhancing cache-related

security measures against evolving threats, and investigating the

application of machine learning in different caching environments

from edge devices to large-scale cloud systems. To the knowledge

of the author, no similar review exists in the current literature

covering the breadth of machine learning in cache management.

The scope of this review is confined to the study of machine

learning applications in cache management. It assesses the

performance enhancements these techniques offer over

conventional strategies and explores their effectiveness in

improving system performance and mitigating security risks in

diverse computing environments.

The major contributions of the study are

• Explore the breadth of recent research in machine learning-

driven cache management.

• Examine the effectiveness of various machine learning

techniques in developing cache management policies:

reinforcement learning, deep learning, and imitation learning.

• Analyze machine learning’s role in enhancing cache-related

security measures against evolving threats.

• Investigate the application of machine learning in different

caching environments: hardware, edge devices and large-scale

cloud systems.

The structure of this review is organized as follows: Section 1

provides an introduction to the study; Section 2 outlines a detailed

examination of machine learning applications in cache replacement

policies, highlighting the transition from traditional heuristic

approaches to machine learning-based adaptive strategies; Section

3 explores machine learning techniques in predicting and adapting

to the content popularity changes in edge networks, Section 4

discusses the role of machine learning in securing caching strategies

against a variety of threats including side-channel attacks, Section 5

compares machine learning approaches to traditional approaches,

and Section 6 concludes by summarizing the insights gained from

the review and identifying directions for future research.

2 Cache replacement

Program execution speed critically depends on increasing cache

hits as cache hits are orders of magnitude faster than misses since

misses necessitate accessing a lower level in the memory hierarchy

(Figure 1). So, cache replacement policies, which affect data kept

in the cache, can critically impact performance and latency. Cache

replacement policies come into play when the cache is full, and a

new data block needs to be added to the cache, which necessitates

the removal of a data block from memory (Figure 2). Current

replacement policies typically resort to heuristics designed for

specific common access patterns, which fail on more diverse and

complex access patterns (Liu et al., 2020). These static policies

do not have good all-around performance while having many

drawbacks, like working well for some workloads but not for others

(Vietri et al., 2018; Rodriguez et al., 2021).

Most commonly used policies such as least recently used (LRU)

and least frequently used (LFU) suffer these drawbacks. LRU

selects the least recently used to evict, while LFU chooses the least

frequently used one. LRU adapts well to changing working sets but

poorly handles looping patterns, whereas LFU is effective against

looping patterns but struggles with changing working sets (Choi

and Park, 2022).

2.1 E�cient cache replacement

In recent times, efficient cache management has become

essential as Moore’s Law has slowed down and Dennard scaling has

ended (Sethumurugan et al., 2021). An efficient cache management

policy is one that effectively reduces off-chip bandwidth utilization,

improves overall system performance and reduces user access

times while also being able to generalize to unseen code paths

(i.e., sequences of accesses) from the same program as there are

exponentially many code paths and encountering them all during

training is infeasible (Sethumurugan et al., 2021; Liu et al., 2020;

Ma et al., 2018). The following subsections discuss efficient cache

management strategies.

2.2 Machine learning in cache replacement

Machine learning can be used in cache for a variety of things

such as improving branch predictors, memory controllers, reuse

prediction, prefetchers, dynamic voltage, and frequency scaling

management for network-on-chip (NoC) and NoC arbitration

policy (Sethumurugan et al., 2021; Shi et al., 2019).

Neural networks are a popular type of machine learning and

can be of many types (Figure 3). However, neural networks cannot

be directly implemented in hardware due to various concerns such

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

FIGURE 1

Memory block diagram for hardware caches.

FIGURE 2

Cache replacement. At t = 0, line D is accessed, causing a cache miss. The replacement policy chooses between lines A, B, and C in the cache and, in

this case, evicts C. At t = 1, line A is accessed and is already in the cache, causing a cache hit. No action from the replacement policy is needed. At t =

2, line C is accessed, causing another cache miss. The replacement policy could have avoided this miss by evicting a di�erent line at t = 0.

as the power required and area and timing constraints. They require

a lot of training resources and are very large and slow (in order

of milliseconds) to be implemented to make predictions within

nanoseconds (Sethumurugan et al., 2021; Shi et al., 2019).

So, machine learning can be used to design an offline model

and analyze the neural network for insights to derive a feasible

replacement algorithm to implement in hardware (Figure 4).

Reinforcement learned replacement (RLR) (Sethumurugan

et al., 2021) is one such attempt. In RLR, reinforcement learning

(RL) is used to learn offline cache replacement policy. Insights

such as reuse distance can be approximated by preuse distance,

the chance of cache receiving a hit can be predicted by the

type of previous access, heavily accessed cache lines are likely

to be reaccessed in future, and recently inserted cache lines are

prioritized for eviction to allow older cache lines to be reused, are

drawn from analysis of the offline model. These insights are then

used to design a replacement algorithm for online replacement.

RLR improves both single-core and four-core system performance

by 3.25 and 4.86% when compared to LRU.

A lot of existing cache replacement policies use PC information

such as PC-based Re-reference Interval Prediction (PC-RRIP),

PC-based Dynamic Insertion Policy (PC-DIP), and PC-based Set

Dueling (PC-SD). These policies have high hardware overhead,

face difficulty capturing the temporal locality, and are too sensitive

to workload characteristics. RLR is exempt from these limitations

while having better performance. In addition, the design of RLR is

such that it can be easily integrated with existing single/multi-core

systems (Sethumurugan et al., 2021).

Another such attempt is demonstrated in the study by Shi et al.

(2019), in which offline training is done on an unconstrained and

powerful RNN for individual programs and insights are drawn

from this model to design a much simpler policy that can be

easily implemented in hardware with order of magnitude lower

cost and similar accuracy. It consists of three steps: (1) offline

caching model using an LSTM with a scaled attention layer, (2)

offline analysis for insights, and (3) an online model using IVSM.

The major insight drawn was that optimal caching decisions

can be predicted with a long history of past load instructions.

Still, instead of depending on the full ordered sequence, it only

depends on the presence of a few PCs. This insight helps Glider

triumph over other machine learning approaches as it uses an

unordered list of unique PCs, thereby increasing the control-

flow history for the same hardware budget and training speed.

An IVSM is used for online inference as it is much easier to

implement in hardware. Because of its simplicity, it converges faster

than an LSTM while also achieving good accuracy. The Glider

cache replacement policy was evaluated on 33 memory-intensive

programs from the SPEC 2006, SPEC 2017, and GAP benchmark

suites. In single-core settings, Glider reduced the miss rate by

8.9% compared to LRU, outperforming other leading algorithms

such as Hawkeye (7.1%), MPPPB (6.5%), and SHiP++ (7.5%). In a

four-core system, Glider improved instructions per cycle (IPC) by

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

FIGURE 3

Summary of artificial neural networks (Chen et al., 2019).

FIGURE 4

Flow of machine learning in cache replacement.

14.7%, surpassing Hawkeye (13.6%), MPPPB (13.2%), and SHiP++

(11.4%) (Shi et al., 2019).

Machine learning can also learn from and improve existing

cache replacement strategies. Machine learning-based LeCaR

(Learning Cache Replacement) (Vietri et al., 2018) is an attempt

to improve Adaptive Replacement Cache (ARC), which has better

performance than LRU. The Adaptive Replacement Cache (ARC)

is an advanced caching algorithm designed to improve cache

performance by dynamically adjusting to access patterns. It divides

the cache into two main segments: one for recently accessed items

and one for frequently accessed items.

LeCaR solves ARC’s performance loss when a “stable” working

set does not fit in the cache. It is a scalable solution as it scales well

when workloads get larger relative to cache sizes. LeCaR assumes

that at every instant, the workload is best handled by a judicious

“mix” (i.e., a probability distribution) of only two fundamental

policies: recency-based and frequency-based evictions and the

weight associated with the two policies is not a function of their

current hit rate but of the current associated regret. During cache

miss, either LRU or LFU is chosen randomly using the probabilities

derived from their associated cumulative regret values due to the

misses they “caused.” The LeCaR framework outperforms ARC by

over 18 times when using only two basic eviction policies, LRU

and LFU, particularly when the cache size is small compared to the

working set size.

CACHEUS (Rodriguez et al., 2021) is similar to LeCaR but has

an advantage over LeCaR by being completely adaptive, with having

no statically chosen hyper parameters such as learning rate and

discount rate (fixed values of these parameters are used in LeCaR),

which increases its flexibility.

Like the above, Zhou et al. (2022) proposes a framework to learn

the relationship between workload characteristics and probability

distribution of replacement policies. The proposed replacement

algorithm, Catcher, uses deep reinforcement learning (DRL) to

learn to choose LRU or LFU for replacement.

Another approach, PARROT (Liu et al., 2020), cast cache

replacement as learning a policy on an episodic Markov decision

process to leverage techniques from imitation learning. It tries

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

to learn from Belady’s optimal policy, which computes the

theoretically optimal caching decision using knowledge of future

cache access. PARROT maintains high cache hit rates even on

complex programs, showing that it can generalize to new code paths

not seen during training.

Apart from these frameworks, Choi and Park (2022) leverages

machine learning, specifically Seq2Seq modeling based on LSTM

networks, to predict future data block requests, aiming to avoid

incorrect cache replacement decisions. It stores the predicted

blocks in a prediction buffer while using a re-prediction process

that increases the accuracy of the prediction buffer. Also, a non-

access buffer is kept to determine the eviction target using the future

block sequence in O(1) time complexity. It outperforms the LRU

by 77%, the LFU by 65%, and the ARC by 77%. Future works

can include improving predictionmethods, enhancing the heuristic

replacement policy, and exploring feasibility. Table 1 summarizes

some of the above-mentioned approaches.

2.2.1 Comparison of reinforcement learning and
supervised learning

As is evident from the above discussion, supervised learning

(SL) and reinforcement learning (RL) are two of the most powerful

tools for cache replacement. While SL models are trained on

historical cache access data, RL models interact with the system

environment and learn optimal policies over time. In terms of

accuracy, since SL predicts cache replacement based on previous

cache accesses, they work well when access patterns are stable.

In real-world scenarios, though, workloads are dynamic, and

access patterns evolve over time, leading to the problem of

“concept drift.” As noted in Sethumurugan et al. (2021), SL

models struggle to maintain accuracy without frequent retraining.

RL models can adapt to dynamic workloads and do not require

labeled training data as in SL models. It learns optimal cache

replacement policies through exploration and reward feedback.

Li et al. (2019) demonstrates that RL models take dynamic

characteristics of workloads into consideration and work especially

well in environments where access patterns change frequently. RL’s

ability to learn from ongoing interactions allows it to provide better

cache hit rates in non-stationary workloads.

However, in terms of resource requirements, RL models,

especially deep reinforcement learning (DRL), are much more

resource-intensive than their SL counterparts. They require

significant computational resources during training to explore

and update policies. Zhou et al. (2022) noted that RL models

must balance exploration and exploitation, which demands higher

memory and computational power compared to SL models.

In summary, machine learning methods enhance cache hit

rates by leveraging historical data to predict future requests

more accurately than traditional caching algorithms. Techniques

such as reinforcement learning, for instance, learn from past

cache hits and misses to make better caching decisions over

time. Similarly, deep learning models, such as like convolutional

neural networks (CNNs), can identify complex patterns in

access sequences, improving the prediction of which content

to cache. Compared to traditional algorithms such as least

recently used (LRU) or Least Frequently Used (LFU), which

rely on simplistic heuristics, machine learning models adapt to

changing access patterns, thereby optimizing cache efficiency and

reducing latency.

3 Content caching in edge networks

Due to a rapid increase in streaming rich multimedia content

like YouTube, a major challenge has emerged to maintain users’

Quality of Experience (QoE) in terms of perceived latency. Caching

at network edges like routers becomes essential to handle this

explosive growth while maintaining the network performance and

user’s QoE (Narayanan et al., 2018; Tanzil et al., 2017; Shuja et al.,

2021; Berger, 2018).

Information-centric networks (ICN) have been developed as

an architecture for content delivery to tackle this growth and

related issues. It introduces new features like in-network caching,

where routers can cache objects and serve user requests directly.

This caching approach reduces network load and perceived

latency because it minimizes the need to fetch every request

from the origin server (Narayanan et al., 2018). In-network

content caching meets the demands while also helping to reduce

network traffic.

By storing data close to end-users, Edge Caching increases

user engagement and content provider revenue while reducing

latency and network congestion by minimizing redundant data

traffic (Chang et al., 2018; Shuja et al., 2021; Cheng et al., 2018). Due

to limited cache capacity, cache admission and eviction strategies

are paramount. Limited resources and bursty requests distinguish

edge caching from traditional content delivery networks (CDNs),

making existing caching algorithms ineffective in handling the

dynamic nature of edge network requests, necessitating the

development of new caching algorithms (Fan et al., 2021). Figure 5

illustrates a typical CDN with edge caching.

3.1 Feature engineering

Feature engineering is a critical step in developing machine

learning models for cache management, involving the selection,

creation, and transformation of relevant features from raw

data. Research has shown that proper feature engineering

can significantly enhance model performance in cache

management systems.

Transforming raw access logs into features that capture the

recency and frequency of content requests is essential for predicting

future cache hits. The work by Savanović et al. (2023) emphasizes

the importance of recency and frequency features in identifying

frequently accessed content in healthcare IoT systems. This

approach allows machine learning models to prioritize the caching

of content that is likely to be accessed again in the near future,

improving cache hit rates and reducing latency.

Creating features that represent daily or weekly access patterns

can help models anticipate recurring spikes in demand. Temporal

features enable models to adjust cache policies based on known

periods of high demand, such as during peak usage hours in content

delivery networks.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

TABLE 1 Summary of cache replacement techniques in hardware caches.

Algorithm Machine learning technique
used

Key problem with earlier
approaches

Evaluation metric
used

Reinforcement Learned

Replacement (RLR)

- Uses reinforcement learning (RL) to learn a

cache replacement policy offline

- Analyze the learned model to derive a new

policy called Reinforcement Learned

Replacement (RLR)

- Heavy Hardware Overhead with PC-based

Policies

- Limited Applicability of PC-based Policies

due to hardware complexity and design

verification overhead

System performance,

Hardware overhead, Hit rate

improvement

Glider cache replacement policy - Offline, unconstrained deep RNNmodel

- Interpret it for insights

- Use insights to design a simple online

model with similar accuracy to an offline

model but significantly lesser cost

- Heuristic-based are customized for a

limited class of known cache access patterns

Performance, Accuracy, miss

rate, IPC

Machine learning-based LeCaR

(Learning Cache Replacement)

- Online learning with variants of MAB

- Online reinforcement learning with regret

minimization

- Improves ARC: For small cache sizes, when

a “stable” working set does not fit in the

cache, ARC suffers a loss in performance

Hit rate, Scalability

PARROT - Imitation learning to learn cache access

patterns by leveraging Belady’s

- Heuristics perform well on the specific

simple access patterns but poorly on

programs with more diverse and complex

access patterns

Cache hit rate

Seq2Seq - LSTM-based Seq2Seq network that can

predict the next sequence of the I/O stream

- Different heuristic cache replacement

algorithms suffer from different problems:

LRU- poorly handles looping patterns, LFU-

struggles with changing sets, combined

policies lack predictive capability, resulting in

suboptimal performance and potential cache

pollution

Hit rate, predicting future

sequences

FIGURE 5

Typical content delivery network (CDN).

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

3.1.1 User segmentation
Engineering features based on user profiles or segments allow

models to personalize caching strategies for different user groups.

3.1.2 Content aging
Introducing features that account for the aging of content

popularity over time helps models decide when to evict stale

content from the cache. By tracking how long content has been

in the cache without being accessed, models can make informed

decisions about when to remove or replace cached data, optimizing

resource use.

3.2 Training data for machine learning

Training machine learning models for cache management

requires diverse data to accurately reflect usage patterns and predict

future requests. Various researchers have outlined the key types of

data that are essential for these models.

3.2.1 Request frequency
How often specific content is requested is crucial for identifying

popular content. Studies such as Alkanhel et al. (2023) highlight the

importance of request frequency as a feature in network security

applications, where frequently accessed content requires faster

response times and optimal caching decisions. Similarly, Salb et al.

(2023) emphasizes that request frequency is a key feature in models

for improving cache performance in IoT networks.

3.2.2 Temporal patterns
Time-based data, such as the time of day or week, can

indicate periodic spikes in content requests. Temporal features are

important for predicting peak access times and adapting caching

policies accordingly. These patterns are especially useful in systems

such as edge caching, where user activity can fluctuate significantly

throughout the day.

3.2.3 Content type
Differentiating between content types (e.g., video, text,

and image) is critical for applying caching strategies suited

to each content type. For example, Narayanan et al. (2018)

demonstrates how models trained on content type can prioritize

caching of multimedia content to minimize latency in content

delivery networks. Content-specific caching ensures that high-

bandwidth data, such as video, are given priority in cache

management decisions.

3.2.4 User behavior
Data on user navigation paths, session durations, and

engagement metrics can indicate the likelihood of repeated access

to certain content. Research such as Saheed et al. (2024) shows

how user behavior data are used to predict content popularity in

healthcare systems, which are prone to recurring access patterns

based on user profiles. These data help cache systems to pre-load

frequently accessed content, thereby improving cache hit rates.

3.2.5 Network conditions
Information on network bandwidth, latency, and congestion

is essential for optimizing caching strategies based on current

network performance. Studies such as Savanović et al. (2023)

and Salb et al. (2023) discuss how dynamic network conditions

can affect cache management, with machine learning models

adjusting cache policies to account for real-time network metrics.

By integrating network condition data, caching systems can

dynamically allocate resources to maintain optimal performance

even under varying loads.

3.3 Content popularity prediction

Past caching algorithms can be classified as reactive and

proactive but have limitations. Reactive caching, such as LRU,

and LFU, due to no information of future content popularity,

leads to caching non-popular objects and evicting them before

they are accessed. Proactive caching, conversely, cannot deal with

non-stationary object access patterns such as sudden changes in

content popularity (Narayanan et al., 2018). Some methods rely on

Zipf distribution assumption or require intrusive user information,

limiting applicability (Tanzil et al., 2017).

Many machine learning models have been developed utilizing

techniques such as clustering, classification, regression, and

reinforcement learning to learn content demand based on user

behavior, content characteristics, and temporal dynamics (Chang

et al., 2018).

DeepCache (Narayanan et al., 2018) is one of the attempts

to resolve these issues. DeepCache uses a deep LSTM Encoder-

Decoder model to predict object characteristics. It learns the

changes in request traffic patterns to predict content popularity,

then, using a caching policy component, decides to cache objects

or not to maximize cache hits (Figure 6).

Another approach (Tanzil et al., 2017) to calculate content

popularity utilizes extreme learning machine based on users’

behavior, content features, and requests statistics from users as

they become available. The Mixed-Integer Linear Program (MILP)

utilizes popularity estimates for cache initialization and determines

what content has to be cached initially. Later, the Segmented

Least Recently Used with three segments (S3LRU) using content

requests decides whether to cache the content or not at a later

time. Real-world YouTube data and an NS-3 simulator are used to

demonstrate the effectiveness of the caching scheme.

Apart from these, Popularity Aware (PA) Cache (Fan

et al., 2021) is another such framework. It learns time-

varying content popularity adaptively using multilayer RNN and

hedge backpropagation strategy. Unlike conventional deep neural

networks (DNNs), which learn a fine-tuned but possibly outdated

or biased prediction model using the entire training dataset

with high computational complexity, PA-Cache weighs a large

set of content features and trains the multilayer recurrent neural

network from shallow to deeper when more requests arrive

over time. This significantly reduces the computational cost.

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

FIGURE 6

Application of DeepCache to a time series of object requests aims to predict object popularity and increase cache hit e�ciency (Narayanan et al.,

2018).

It consists of two phases: offline content popularity prediction

and online replacement decision. Offline prediction involves

forecasting content popularity within defined time intervals.

Online replacement decisions utilize these predictions to make

real-time cache replacement decisions.

Thar et al. (2019) proposes a caching scheme for virtualized

networks to increase cache hit rates and access latency of mobile

virtual network operators (MVNOs) video content, which helps

reduce capital and operation costs. Using reinforcement learning,

the best hyperparameters are chosen for the deep learning model,

which predicts future cache demand and request count. Thar et al.

(2018) uses deep learning to predict the future popularity scores of

content based on their predicted class label and then caching the

contents with high popularity scores.

3.4 Other approaches

While many approaches are based on predicting content

popularity, many others use different methods. One of them

(Zhong et al., 2018) uses Deep Reinforcement Learning (DRL)

for content caching at edge nodes. It aims to maximize the

long-term cache hit rate without requiring knowledge of content

popularity distribution. It defines state and action spaces and a

reward function for the DRL agent to maximize the cache hit rate

while using Wolpertinger architecture within the DRL framework.

Compared with such as LRU, LFU, and FIFO, this results in

better short-term and stable long-term cache hit rates for DRL.

It also offers comparative cache hit rates with Deep Q-learning

with reduced runtime. Future research can explore DRL agents for

scenarios involving multiple base stations (currently, only a single

base station is considered), consider content size variations and

user preferences, and extend the framework to address caching

problems in device-to-device communications.

Another approach, RL-Cache (Kirilin et al., 2019), uses model-

free reinforcement learning (RL) for cache admission decisions.

It utilizes Direct Policy Search (DPS) type model-free machine

learning, using MC sampling to search for a better policy directly

in the policy space. On being evaluated on Akamai’s production

traces across web, image, and video traffic classes, it outperforms

state-of-the-art algorithms in cache hit rate. Also, it demonstrates

robustness by being trained in one location and executed in another

within the same geographic region. Future work can focus on

adding cache eviction to the RL-Cache algorithm.

One of the characteristics of an efficient caching algorithm is

to utilize the inter-relationships between sequenced requests as

there is often some correlation among them (Im et al., 2018).

SNN-Cache (Im et al., 2018) is an attempt in that direction. SNN-

Cache is based on stimulable neural network (SNN). This machine

learning-based relation analysis system analyzes the relationship

among sequenced data in real-time and with low computational

complexity. SNN-cache differs from previous caching policies since

earlier ones are usually based on recency, frequency, or cost. In

contrast, SNN-Cache analyzes the relationships among data to

make caching decisions. Real-valued matrix filters are used in SNN

to capture the inter-relationships among data items. As new data

enter the cache, the data names are used to pinpoint regions within

the filters for updates. With each incoming request, filter values

are updated, enabling consideration of structural similarities and

temporal relationships among different data items. Its architecture

consists of Data Reception, Data Preprocessing, Correlation Filters,

and Impulse Calculation modules (Figure 7). SNN can also be

used on problems such as market basket analysis and online

recommendation systems, which can be taken as future work.

Caching techniques can impact energy consumption as well. Li

et al. (2019) focus on energy consumption in cache-aided ultra-

dense networks (CUDN) and propose a novel caching strategy. It

utilizes the DRL-based Deep Q-learning network while optimizing

the parameters and structure of the deepQ neural network based on

the latest findings. Google TensorFlow is used for implementation

with Adam Optimizer to optimize the loss function. It considers

scenarios with dynamic and unknown content popularity, making

estimation of popularity difficult. Simulation results show better

energy efficiency and performance with existing methods. Table 2

summarizes some of the above-mentioned approaches.

4 Cache security

Caches are used extensively in modern processors to have low

latency by skipping access to themainmemory. Cache side-channel

attacks (CSA) target shared hardware resources to retrieve sensitive

information from victims sharing the resource (Tong et al., 2020).

Cache side-channel attacks can be Flush + Reload, Flush + Flush,

Prime + Probe, or Specter Attack (Sayadi et al., 2020; Depoix and

Altmeyer, 2018; Tong et al., 2020).

Figure 8 illustrates various cache side-channel attacks. In Flush-

Reload, the attacker flushes the data from the cache, and waits for

the victim to execute, and then data are reloaded by the attacker by

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

FIGURE 7

SNN architecture comprises four main modules: data reception, data preprocessing, correlation filters, and impulse calculation (Im et al., 2018).

accessing it. If the time for reload is shorter, the attacker knows that

the victim accessed the data. Flush-Flush is similar to Flush-Reload,

except the attacker flushes instead of reloading the shared memory

blocks. Longer time taken for flushing indicates data access by the

victim. Prime + Probe attacks target L1/L3 caches and have two

stages: Prime, in which the attacker creates an eviction set and

fills the cache with it, and a probe stage, in which the attacker re-

accesses the eviction set after victim execution. A longer access

time indicates victim data access. Specter attacks exploit speculative

execution by the CPU by tricking it into executing instruction

sequences that leak information (Sayadi et al., 2020).

To counter the inefficiency of traditional software-based

detection methods, most processors, such as Intel, ARM,

and AMD, come built with hardware performance counters

(HPCs) to track low-level hardware events for security risk

detection and vulnerability checks. HPCs are registers built-in

processors to capture and monitor hardware events such as cache

memory accesses and misses, TLB hits and misses, and branch

mispredictions (Tong et al., 2020; Depoix and Altmeyer, 2018;

Sayadi et al., 2020; Mushtaq et al., 2018a,b).

4.1 Machine learning in cache security

Machine learning algorithms have the advantage over

traditional approaches in that they have decreased latency in attack

detection and reduced hardware/resource utilization overheads

(Sayadi et al., 2020). Furthermore, traditional approaches cannot

detect complex unknown attacks as they depend on static signature

analysis of applications executed (Sayadi et al., 2020). Unlike

traditional heuristics-based policies, previous research proves

that a lot fewer false positives are created by neural networks,

which helps reduce unnecessary killings of processes (Depoix and

Altmeyer, 2018).

Previous works on CSA detection are highly specialized for

an individual attack type with high detection overhead. To

handle this limitation, Tong et al. (2020) attempts to establish

a unified detection model for Flush + Reload, Prime + Probe,

and Flush + Flush attacks using minimal hardware events while

maintaining high accuracy in detecting CSAs based on the AES

algorithm. It uses Hardware performance counters to gather

hardware counter features under different attacks and then uses

a random forest algorithm to filter those features into only four

features. SVM is later used to model the system. The machine

learning algorithm mainly consists of five steps: data extraction,

data division, model training, model testing, and classification

results (Figure 9). On being evaluated using SPEC benchmark

tests, the model exhibits high accuracy rates of 99.92%, 99.85%,

and 96.58% for attacks under no load, average load, and full

load conditions, respectively. Future work can focus on the actual

implementation of the model in hardware, and more analysis can

be done during actual use, as well as on the overhead of adding it to

the system.

Another method (Depoix and Altmeyer, 2018) focuses on real-

time detection of Specter attacks. While existing approaches tend

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

TABLE 2 Summary of machine learning approaches for content caching in cloud and edge computing environments.

Algorithm Key benefits/findings Machine learning approach Evaluation metrics

DeepCache - Enhanced network performance

- Utilization of request traffic for content

popularity prediction

LSTM-based content popularity prediction Cache hit rate, Network

performance

Learning-based dynamic cache

management in a cloud

- Improved cache hit rate while maintaining

QoS

- Dynamic cache allocation in the cloud

leveraging learning techniques

Learning-based regression techniques

[Support Vector Regression (SVR), Gaussian

Process Regression (GPR), and Fully

Connected Neural Network (FCN)]

Cache hit rate, QoS

maintenance, Cache space

optimization

SNN-Cache

(Stimulable Neural Network)

- Reduced traffic load over the network

- Utilization of inter-relationships for caching

decisions

Relation analysis by using a set of real-valued

matrix filters

Content server load

reduction, Cache utilization

Adaptive Scheme for Caching - Enhanced user QoE and network

performance

- Adaptive caching based on predicted

content popularity

User behavior analysis using extreme

learning machine (ELM)

User QoE improvement,

Network performance

enhancement

Deep RL-Based Content Caching - Improved cache hit rates compared to

traditional algorithms

- Competitive performance with deep

Q-network, with reduced runtime

Deep Reinforcement learning with

Wolpertinger architecture

Cache hit rate, Runtime

efficiency

Cache Strategy for Cache-Aided

Ultra-Dense Network

- Enhanced Content retrieval efficiency and

network throughput through decreased

duplicate content transmissions

- Improved energy efficiency in Cache-Aided

Ultra-Dense Networks

Online learning algorithm for content

placement based on DRL using deep Q

neural network

Content retrieval efficiency,

Network throughput, Energy

efficiency

RL-Cache - Improved hit rates compared to

state-of-the-art methods - Modest resource

overhead on CDN servers

- Robust and portable training across

different locations within the same

geographic region

- Easier to implement as a front end for

existing CDN caches.

Model-free RL—Direct Policy Search (DPS)

algorithm used

Hit rates, Resource overhead,

Portability

PA-cache - Significantly reduces computational cost

compared to conventional deep neural

networks based approaches

- Outperforms existing caching algorithms in

real-world scenarios

Evolving multi layer recurrent neural

network (RNN) architecture using hedge

backpropagation strategy

Hit rates, Computational cost,

Real-world performance

FIGURE 8

Illustrations of (A) Prime + Probe, (B) Flush + Reload, and (C) Flush + Flush attacks. Here, T is target data, H is a cache hit, M is a cache miss, and A is

attacker’s data (Shen et al., 2021).

to prevent speculative execution to mitigate this attack, it can

lead to serious performance issues. Depoix and Altmeyer (2018)

overcomes this limitation by not limiting speculative execution but

training a neural network on a dataset of HPC data for malicious

and benign processes to detect malicious activities. Three processor

events (L3 cache misses, L3 cache accesses, and total instructions)

are selected to characterize Specter attacks. The neural network

architecture consists of three input neurons for the HPC data

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

FIGURE 9

Step-by-step process for detecting cache-based side-channel attacks using machine learning algorithms (Tong et al., 2020).

for the events and sigmoid output for classification. The neural

network achieves over 99% accuracy in detecting Specter attacks

in the test environment.

Mushtaq et al. (2018b) uses three machine learning models,

namely, linear discriminant analysis (LDA), logistic regression

(LR), and support vector machine (SVM), for run time detection of

cache-based SCAs on RSA and AES crypto-systems (Figure 10). On

being evaluated under different load conditions, for Flush + Reload

attacks, accuracies of 99.51%, 99.50%, and 99.44% in the case of NL,

AL, and FL conditions and for Flush + Flush, accuracies of 99.97%,

98.74% and 95.20% for NL, AL, and FL conditions were obtained.

Future works could focus on integrating more machine learning

models and applying the detection module to more CSAs.

Mushtaq et al. (2018a) provides quantitative and qualitative

analysis of 12 machine learning models, six linear and six non-

linear, in detecting cache side-channel attacks. It compares them on

classification accuracy, implementation feasibility, and overhead.

Gulmezoglu et al. (2017) proposes a machine learning-based

technique to detect and classify applications based on their cache

access profiles in a cloud environment. It uses feature vectors to

train models using support vector machines, which can classify the

applications with a high degree of success. This classification can

be used to discover a vulnerable application, thus protecting cloud

infrastructures from cross-VM attacks.

In another study, Salb et al. (2023) explored the use of a hybrid

CNN and XGBoost model, optimized via the Modified Reptile

Search Algorithm, to enhance the security of IoT networks. This

model improved detection accuracy by learning complex patterns

in the data, which can also be applied to secure cache management

systems by identifying anomalies in cache access patterns.

Similarly, Alkanhel et al. (2023) proposed a network intrusion

detection system based on feature selection combined with hybrid

metaheuristic optimization. This method effectively reduced false

positive rates and improved detection accuracy, indicating that

similar approaches could be adapted for cache security, where

identifying malicious access patterns is crucial.

Savanović et al. (2023) introduced a metaheuristic-optimized

machine learning framework for intrusion detection in Healthcare

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

FIGURE 10

Low-level hardware events are recorded in HPCs and used to train the three models, linear discriminant analysis (LDA), logistic regression (LR), and

support vector machine (SVM), which are used for the classification of events as attacks or not.

4.0 IoT systems. The use of optimization techniques enhanced

the model’s ability to detect complex, evolving threats. Integrating

such frameworks into cache management systems could bolster

their resilience against sophisticated side-channel attacks and other

security vulnerabilities.

In another study, Saheed et al. (2024) developed a hybrid fusion

model using the Bat Algorithm and Residue Number System for

feature selection in intrusion detection systems. This innovative

approach reduced the computational burden while maintaining

high detection accuracy, which is essential for real-time cache

security in environments where both performance and security

are critical.

However, a major limitation of these machine learning-based

anomaly detection systems that work by identifying unusual access

patterns is the presence of false positives. Anomaly detection

models treat any deviation from the norm as suspicious, leading

to the misclassification of legitimate access events. Tong et al.

(2020) and Mushtaq et al. (2018b) demonstrate that while

machine learning methods such as LDA and logistic regression-

based methods achieve high detection rates, they often mistake

legitimate accesses as attacks under full load (FL) conditions.

This results in system inefficiencies, since important processes

are killed, and unnecessary alerts. But various approaches are

aware of this problem and use different means to handle

them, such as combining many different methods (for example,

Chiappetta et al., 2016) or checking if suspicious behavior persists

over some continuous intervals (Wang et al., 2020), which are

discussed later.

Concept drift causes the handling of false positives to get tricky.

Concept drift refers to the changes in cache access patterns over

time. Models trained on historical data may not generalize to future

patterns, reducing their detection accuracy. Tong et al. (2020)

proposed adaptivemachine learningmodels thatmonitor hardware

performance counters (HPCs) and update models to handle

concept drift. Without such updates, models may misclassify

legitimate accesses as anomalies.

Chiappetta et al. (2016) does detection of cache-based side-

channel attacks using three primary methods: correlation-based,

anomaly detection, and supervised learning. The correlation-based

approach identifies similarities in L3 cache access patterns between

a spy and a victim since, essentially, they are similar as they perform

operations in a loop while accessing fixed memory addresses. The

confidence of correlation was obtained between spy and victim

ranging from 0.095 to 5.4 for AES benchmark spy and victim and

0.0016–1.66 for ECDSA benchmark spy and victim. In contrast,

benign processes such as Apache webserver exhibit maximum

confidence values below 0.000566, minimizing false positives. The

latter two approaches usemachine learning techniques since a small

number of false positives may come up with the correlation-based

approach. Anomaly detection treats known spy behavior as normal

and flags deviations as anomalies. Using features such as L3 cache

misses, total CPU cycles, and L3 accesses, it achieved an F-score of

0.51 for AES and 1.0 for ECDSA, with prediction times of 0.2 ms

for 100 samples.

Supervised learning, specifically using neural networks,

classifies cache processes as benign or malicious. It achieved

F-scores of 0.93 for AES and 1.0 for ECDSA, with predictions

taking 0.64 ms for 100 samples. This approach offers high accuracy

but requires computational overhead for training. The combined

use of these methods ensures comprehensive detection, balancing

detection speed, computational overhead, and false positive

rates, making them robust against side-channel attacks like

FLUSH + RELOAD.

Some approaches offer a hybrid detection and mitigation

structure. Hybrid-Shield (Wang et al., 2020) is one such framework

for runtime defense against cache-based side-channel attacks

(SCAs) such as Flush + Reload and Prime + Probe. The

detection system utilizes hardware performance counters (HPCs)

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

and machine learning classifiers to identify SCAs in real-time.

Key features from HPCs, such as L1 hits, L3 misses, and

branch mispredictions, are transformed into feature vectors, and

dimensionality reduction techniques select the most impactful

HPCs. Classification models, including OneR, J48, BayesNet, and

Multilayer Perceptron (MLP), achieve high detection accuracy with

low false alarm rates. To overcome the limitations of previous

approaches of high false alarm rates, the False AlarmMinimization

(FAM) technique is employed, where the “under attack” decision

is delayed until some continuous intervals (delayed number, DN)

report attack-like situations. This caused the false alarm rate of J48

dropped from 13.6 to 1.7% with a delayed interval (DN) of 4. The

detection process is both accurate and fast, with 100% of attacks

detected within 20 intervals (10 ms) for OneR and Decision Tree

(DT) models.

To mitigate SCAs, Hybrid-Shield employs a cross-layer strategy

that dynamically adjusts CPU frequency (1,600–3,200 MHz) and

prefetcher settings. Randomization disrupts the cache access

patterns used by attackers to infer victim data. Six randomization

scenarios are analyzed, where the hybrid approach (both frequency

and prefetcher adjustments) offers superior protection. For

mitigation evaluation, protection levels are measured by the

number of bits leaked in Flush + Reload and Prime + Probe

attacks. When using the Hybrid-Shield strategy, the error rates for

Flush + Reload and Prime + Probe are 35% and 38%, respectively,

with performance overheads of 17% and 15%, highlighting the

effectiveness of cross-layer randomization in balancing protection

and performance.

These studies underscore the growing role of machine learning

in securing cache systems. Techniques such as hybrid models,

metaheuristic optimization, and feature selection have proven

effective in intrusion detection, and their application in cache

security offers promising avenues for enhancing the robustness of

cache management systems.

5 Comparison with traditional
approaches

Machine learning-based cache management methods differ

significantly from traditional approaches such as LRU and LFU

in several key ways. Traditional methods such as LRU and LFU

operate on fixed rules that do not adapt to changing access

patterns in real-time. For example, LRU evicts the least recently

used item, while LFU evicts the least frequently used item, both

based on predefined heuristics. These methods often perform

suboptimally when access patterns change abruptly or involve

complex workloads. On the other hand, machine learning models

such as Learning Cache Replacement (LeCaR) (Vietri et al., 2018)

and Reinforcement Learned Replacement (RLR) (Sethumurugan

et al., 2021) learn from historical data and can dynamically

adjust to evolving workloads. By predicting future access patterns,

these models improve cache hit rates over time, offering better

adaptability than static approaches.

While traditional algorithms such as LRU and LFU are

simple, requiring minimal computational resources, they lack the

complexity needed to handle dynamic, real-world cache access

patterns effectively. In contrast, machine learning-based models,

such as Glider (Shi et al., 2019), use advanced techniques such

as recurrent neural networks (RNNs) to model complex access

patterns but require significantly more computational resources

for training and implementation. This added complexity leads

to higher system overheads, particularly in systems with limited

processing capabilities.

Machine learning approaches, such as the Seq2Seqmodel (Choi

and Park, 2022), significantly outperform traditional methods by

predicting future cache accesses based on long-term historical

trends. Unlike LRU and LFU, which react to past cache accesses,

machine learning models proactively cache content by forecasting

future requests. This predictive capability is particularly beneficial

in environments with highly variable or bursty access patterns,

such as content delivery networks (CDNs) and edge computing

(Narayanan et al., 2018).

Traditional caching algorithms such as LRU and LFU are not

designed to handle security challenges, such as cache side-channel

attacks. Machine learning-based methods offer a unique advantage

by integrating security considerations into caching decisions. For

instance, models such as the hybrid CNN and XGBoost used in

IoT security (Savanović et al., 2023) provide both performance and

security benefits by detecting potential threats while optimizing

caching. This dual capability is absent in traditional caching

algorithms, making machine learning methods more suitable for

modern systems where security is a concern.

6 Conclusion and discussion

This study explores machine learning techniques for cache

replacement, which is a rising and promising avenue to improve

system performance while reducing latency in modern computing

environments. The study also discusses recent approaches

leveraging machine learning for content caching in edge networks,

which has become essential due to the exponential growth of online

multimedia content and user demand for high-quality experiences.

Finally, cache security is discussed, particularly cache side-channel

attack (CSA) detection, and how machine learning techniques

detect complex and unknown attacks with lesser latency and

overhead than traditional software-based approaches.

Current research on integrating machine learning in

cache management demonstrated that machine learning-

based approaches such as Reinforcement Learned Replacement

(RLR), Glider, LeCaR, CACHEUS, PARROT, and others for

cache replacement in computer hardware and models such as

DeepCache, PA-Cache, RL-Cache, and others for content caching

in distributed networks are viable alternatives to traditional static

caching policies such as LRU and LFU. The major advantage of

these machine learning algorithms is their ability to learn and adapt

to diverse and complex access patterns by leveraging real-time

data and user behavior patterns. Machine learning algorithms for

cache security utilize hardware performance counters to monitor

low-level hardware events and offer significantly lower false

positives, which reduces disruptions to legitimate processes.

However, several challenges still prevent these algorithms

from being deployed practically. Some algorithms suffer from

scalability and generalizability concerns as they are ineffective

across all workloads, content distributions, and diverse system

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

configurations. Integrating ML-based policies in real-world

hardware environments requires careful consideration of

resource constraints, power efficiency, and implementation

complexity, especially in resource-constrained edge devices.

Challenges include

• Computational overhead: machine learning models often

require significant computational resources, which can be a

barrier for systems with limited processing power or energy

constraints.

• Compatibility: existing cache systems are usually optimized

for traditional algorithms; integrating machine learning

models requires ensuring compatibility and often

re-engineering the infrastructure.

• Real-time processing: cache management requires real-time

decision-making, and machine learning models must be

optimized for low-latency processing to avoid becoming a

bottleneck.

• Data availability and quality: machine learning models depend

on high-quality, representative data. In many cases, sufficient

historical data might not be available, or data may be biased,

affecting model performance.

Other limitations include:

• Overfitting: machine learning models, especially those with

high complexity such as deep learning, can overfit to training

data, failing to generalize to unseen scenarios.

• Data dependency: these models require large amounts of

data for training. In cases where data are scarce or not

representative, model performance can degrade significantly.

• Bias and fairness: machine learning models can inadvertently

learn biases present in the training data, leading to unfair

caching decisions that might prioritize certain content or users

over others.

• Interpretability: many machine learning models, particularly

deep learning ones, act as black boxes, making it difficult

to understand the decision-making process, which can be a

drawback when debugging or optimizing cache performance.

Future research could focus on enhancing prediction

(caching) and detection (security) accuracy and real-time

adaptability of caching and security systems, exploring

new architectures that would easily integrate with cache

management hardware and investigating the feasibility of

deploying these techniques at scale. In edge and distributed

networks, diverse machine learning algorithms can be explored

to handle dynamic content sizes, user behavior, and various

network topologies. The energy efficiency of these machine

learning algorithms is also an area that can be explored in

future research.

All in all, by addressing the challenges of scalability, hardware

implementation, adaptability, and efficiency, machine learning

canin provide substantial improvements in system performance

and latency and also significantly increase the resilience of modern

computing systems against cache side-channel attacks and ensure

security in complex computing environments, all while being

efficient in energy and resources.

Author contributions

KK: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Resources,

Software, Supervision, Validation, Visualization, Writing – original

draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Acknowledgments

I am extremely thankful to Raj A. Dandekar and Team Videsh

for their unwavering support and constant guidance throughout

the process. Their expertise, encouragement, and valuable insights

have been monumental in shaping and refining this study.

Conflict of interest

The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Alkanhel, R., El-kenawy, E.-S. M., Abdelhamid, A. A., Ibrahim, A., Alohali, M. A.,
Abotaleb, M., et al. (2023). Network intrusion detection based on feature selection
and hybrid metaheuristic optimization. Comput. Mater. Contin. 74, 2677–2693.
doi: 10.32604/cmc.2023.033273

Berger, D. S. (2018). “Towards lightweight and robust machine learning
for CDN caching,” in Proceedings of the 17th ACM Workshop on Hot
Topics in Networks (New York, NY: ACM), 134–140. doi: 10.1145/3286062.
3286082

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://doi.org/10.32604/cmc.2023.033273
https://doi.org/10.1145/3286062.3286082
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Krishna 10.3389/frai.2025.1441250

Chang, Z., Lei, L., Zhou, Z., Mao, S., and Ristaniemi, T. (2018). Learn to cache:
machine learning for network edge caching in the big data era. IEEE Wirel. Commun.
25, 28–35. doi: 10.1109/MWC.2018.1700317

Chen, M., Challita, U., Saad, W., Yin, C., and Debbah, M. (2019). Artificial
neural networks-based machine learning for wireless networks: a tutorial.
IEEE Commun. Surv. Tutor 21, 3039–3071. doi: 10.1109/COMST.2019.
2926625

Cheng, P., Ma, C., Ding, M., Hu, Y., Lin, Z., Li, Y., et al. (2018). Localized small cell
caching: A machine learning approach based on rating data. IEEE Trans. Commun. 67,
1663–1676. doi: 10.1109/TCOMM.2018.2878231

Chiappetta, M., Savas, E., and Yilmaz, C. (2016). Real time detection of cache-based
side-channel attacks using hardware performance counters. Appl. Soft Comput. 49,
1162–1174. doi: 10.1016/j.asoc.2016.09.014

Choi, H., and Park, S. (2022). Learning future reference patterns
for efficient cache replacement decisions. IEEE Access 10, 25922–25934.
doi: 10.1109/ACCESS.2022.3156692

Choi, J., Gu, Y., and Kim, J. (2020). Learning-based dynamic cache management in
a cloud. J. Parallel Distrib. Comput. 145, 98–110. doi: 10.1016/j.jpdc.2020.06.013

Depoix, J., and Altmeyer, P. (2018). Detecting spectre attacks by identifying cache
side-channel attacks using machine learning. Adv. Microkernel Oper. Syst. 75:48.

Fan, Q., Li, X., Li, J., He, Q., Wang, K., Wen, J., et al. (2021). Pa-cache: evolving
learning-based popularity-aware content caching in edge networks. IEEE Trans. Netw.
Serv. Manag. 18, 1746–1757. doi: 10.1109/TNSM.2021.3053645

Gulmezoglu, B., Eisenbarth, T., and Sunar, B. (2017). “Cache-based application
detection in the cloud using machine learning,” in Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security (New York, NY: IEEE),
288–300. doi: 10.1145/3052973.3053036

Im, Y., Prahladan, P., Kim, T. H., Hong, Y. G., and Ha, S. (2018). “SNN-cache: a
practical machine learning-based caching system utilizing the inter-relationships of
requests,” in 2018 52nd Annual Conference on Information Sciences and Systems (CISS)
(Princeton, NJ: IEEE), 1–6. doi: 10.1109/CISS.2018.8362281

Kirilin, V., Sundarrajan, A., Gorinsky, S., and Sitaraman, R. K. (2019). “Rl-
cache: learning-based cache admission for content delivery,” in Proceedings of the
2019 Workshop on Network Meets AI & ML (New York, NY: ACM), 57–63.
doi: 10.1145/3341216.3342214

Li, W., Wang, J., Zhang, G., Li, L., Dang, Z., Li, S., et al. (2019). A reinforcement
learning based smart cache strategy for cache-aided ultra-dense network. IEEE Access
7, 39390–39401. doi: 10.1109/ACCESS.2019.2905589

Liu, E., Hashemi, M., Swersky, K., Ranganathan, P., and Ahn, J. (2020). “An
imitation learning approach for cache replacement,” in International Conference on
Machine Learning (PMLR), 6237–6247.

Ma, T., Hao, Y., Shen, W., Tian, Y., and Al-Rodhaan, M. (2018). An improved web
cache replacement algorithm based onweighting and cost. IEEE Access 6, 27010–27017.
doi: 10.1109/ACCESS.2018.2829142

Mushtaq, M., Akram, A., Bhatti, M. K., Chaudhry, M., Yousaf, M., Farooq, U.,
et al. (2018a). “Machine learning for security: the case of side-channel attack detection
at run-time,” in 2018 25th IEEE International Conference on Electronics, Circuits and
Systems (ICECS) (Bordeaux: IEEE), 485–488. doi: 10.1109/ICECS.2018.8617994

Mushtaq, M., Akram, A., Bhatti, M. K., Lapotre, V., and Gogniat, G. (2018b).
“Cache-based side-channel intrusion detection using hardware performance counters,”
in CryptArchi 2018-16th International Workshops on Cryptographic architectures
embedded in logic devices.

Narayanan, A., Verma, S., Ramadan, E., Babaie, P., and Zhang, Z.-L. (2018).
“Deepcache: a deep learning based framework for content caching,” in Proceedings
of the 2018 Workshop on Network Meets AI & ML (New York, NY: ACM), 48–53.
doi: 10.1145/3229543.3229555

Rodriguez, L. V., Yusuf, F., Lyons, S., Paz, E., Rangaswami, R., Liu, J., et al. (2021).
“Learning cache replacement with {CACHEUS},” in 19th USENIX Conference on File
and Storage Technologies (FAST 21), 341–354.

Saheed, Y. K., Kehinde, T. O., Ayobami Raji, M., and Baba, U. A. (2024).
Feature selection in intrusion detection systems: a new hybrid fusion of
bat algorithm and residue number system. J. Inf. Telecommun. 8, 189–207.
doi: 10.1080/24751839.2023.2272484

Salb, M., Jovanovic, L., Bacanin, N., Antonijevic, M., Zivkovic, M., Budimirovic,
N., et al. (2023). Enhancing internet of things network security using hybrid CNN
and xgboost model tuned via modified reptile search algorithm. Appl. Sci. 13:12687.
doi: 10.3390/app132312687

Savanović, N., Toskovic, A., Petrovic, A., Zivkovic, M., Damaševičius, R.,
Jovanovic, L., et al. (2023). Intrusion detection in healthcare 4.0 internet of things
systems via metaheuristics optimized machine learning. Sustainability 15:12563.
doi: 10.3390/su151612563

Sayadi, H., Wang, H., Miari, T., Makrani, H. M., Aliasgari, M., Rafatirad,
S., et al. (2020). “Recent advancements in microarchitectural security: review of
machine learning countermeasures,” in 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS) (Springfield, MA: IEEE), 949–952.
doi: 10.1109/MWSCAS48704.2020.9184539

Sethumurugan, S., Yin, J., and Sartori, J. (2021). “Designing a cost-effective
cache replacement policy using machine learning,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA) (Seoul: IEEE),
291–303. doi: 10.1109/HPCA51647.2021.00033

Shen, C., Chen, C., and Zhang, J. (2021). “Micro-architectural cache side-
channel attacks and countermeasures,” in Proceedings of the 26th Asia and
South Pacific Design Automation Conference (New York, NY: ACM), 441–448.
doi: 10.1145/3394885.3431638

Shi, Z., Huang, X., Jain, A., and Lin, C. (2019). “Applying deep learning
to the cache replacement problem,” Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture (New York, NY: ACM), 413–425.
doi: 10.1145/3352460.3358319

Shuja, J., Bilal, K., Alasmary, W., Sinky, H., and Alanazi, E. (2021).
“Applying machine learning techniques for caching in next-generation edge
networks: a comprehensive survey. J. Netw. Comput. Appl. 181:103005.
doi: 10.1016/j.jnca.2021.103005

Tanzil, S. S., Hoiles, W., and Krishnamurthy, V. (2017). Adaptive scheme for
caching youtube content in a cellular network: machine learning approach. IEEE Access
5, 5870–5881. doi: 10.1109/ACCESS.2017.2678990

Thar, K., Oo, T. Z., Tun, Y. K., Kim, K. T., Hong, C. S., et al. (2019). A deep learning
model generation framework for virtualized multi-access edge cache management.
IEEE Access 7, 62734–62749. doi: 10.1109/ACCESS.2019.2916080

Thar, K., Tran, N. H., Oo, T. Z., and Hong, C. S. (2018). Deepmec:
mobile edge caching using deep learning. IEEE Access 6, 78260–78275.
doi: 10.1109/ACCESS.2018.2884913

Tong, Z., Zhu, Z., Wang, Z., Wang, L., Zhang, Y., Liu, Y., et al. (2020). “Cache side-
channel attacks detection based on machine learning,” in 2020 IEEE 19th International
Conference on Trust, Security and Privacy in Computing and Communications
(TrustCom) (Guangzhou: IEEE), 919–926. doi: 10.1109/TrustCom50675.2020.00123

Vietri, G., Rodriguez, L. V., Martinez, W. A., Lyons, S., Liu, J., Rangaswami, R.,
et al. (2018). “Driving cache replacement with {ML-based}{LeCaR},” in 10th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 18).

Wang, H., Sayadi, H., Sasan, A., Rafatirad, S., and Homayoun, H. (2020). “Hybrid-
shield: Accurate and efficient cross-layer countermeasure for run-time detection
and mitigation of cache-based side-channel attacks,” in Proceedings of the 39th
International Conference on Computer-Aided Design (New York, NY: ACM), 1–9.
doi: 10.1145/3400302.3418783

Zhong, C., Gursoy, M. C., and Velipasalar, S. (2018). “A deep reinforcement
learning-based framework for content caching,” in 2018 52nd Annual Conference on
Information Sciences and Systems (CISS) (IEEE), 1–6. doi: 10.1109/CISS.2018.8362276

Zhou, Y., Wang, F., Shi, Z., and Feng, D. (2022). An end-to-end automatic cache
replacement policy using deep reinforcement learning. Proc. Int. Conf. Autom. Plan.
Sched. 32, 537–545. doi: 10.1609/icaps.v32i1.19840

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2025.1441250
https://doi.org/10.1109/MWC.2018.1700317
https://doi.org/10.1109/COMST.2019.2926625
https://doi.org/10.1109/TCOMM.2018.2878231
https://doi.org/10.1016/j.asoc.2016.09.014
https://doi.org/10.1109/ACCESS.2022.3156692
https://doi.org/10.1016/j.jpdc.2020.06.013
https://doi.org/10.1109/TNSM.2021.3053645
https://doi.org/10.1145/3052973.3053036
https://doi.org/10.1109/CISS.2018.8362281
https://doi.org/10.1145/3341216.3342214
https://doi.org/10.1109/ACCESS.2019.2905589
https://doi.org/10.1109/ACCESS.2018.2829142
https://doi.org/10.1109/ICECS.2018.8617994
https://doi.org/10.1145/3229543.3229555
https://doi.org/10.1080/24751839.2023.2272484
https://doi.org/10.3390/app132312687
https://doi.org/10.3390/su151612563
https://doi.org/10.1109/MWSCAS48704.2020.9184539
https://doi.org/10.1109/HPCA51647.2021.00033
https://doi.org/10.1145/3394885.3431638
https://doi.org/10.1145/3352460.3358319
https://doi.org/10.1016/j.jnca.2021.103005
https://doi.org/10.1109/ACCESS.2017.2678990
https://doi.org/10.1109/ACCESS.2019.2916080
https://doi.org/10.1109/ACCESS.2018.2884913
https://doi.org/10.1109/TrustCom50675.2020.00123
https://doi.org/10.1145/3400302.3418783
https://doi.org/10.1109/CISS.2018.8362276
https://doi.org/10.1609/icaps.v32i1.19840
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Advancements in cache management: a review of machine learning innovations for enhanced performance and security
	1 Introduction
	2 Cache replacement
	2.1 Efficient cache replacement
	2.2 Machine learning in cache replacement
	2.2.1 Comparison of reinforcement learning and supervised learning


	3 Content caching in edge networks
	3.1 Feature engineering
	3.1.1 User segmentation
	3.1.2 Content aging

	3.2 Training data for machine learning
	3.2.1 Request frequency
	3.2.2 Temporal patterns
	3.2.3 Content type
	3.2.4 User behavior
	3.2.5 Network conditions

	3.3 Content popularity prediction
	3.4 Other approaches

	4 Cache security
	4.1 Machine learning in cache security

	5 Comparison with traditional approaches
	6 Conclusion and discussion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


