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Layer wise Scaled Gaussian Priors
for Markov Chain Monte Carlo
Sampled deep Bayesian neural
networks

Devesh Jawla1* and John Kelleher2

1School of Computer Science, Technological University Dublin, Dublin, Ireland, 2ADAPT Research

Centre, School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland

Previous work has demonstrated that initialization is very important for both

fitting a neural network by gradient descent methods, as well as for Variational

inference of Bayesian neural networks. In this work we investigate how Layer

wise Scaled Gaussian Priors perform with Markov Chain Monte Carlo trained

Bayesian neural networks. From our experiments on 8 classifications datasets of

various complexity, the results indicate that using Layer wise Scaled Gaussian

Priors makes the sampling process more e�cient as compared to using an

Isotropic Gaussian Prior, an Isotropic Cauchy Prior, or an Isotropic Laplace Prior.

We also show that the cold posterior e�ect does not arise when using a either

an Isotropic Gaussian or a layer wise Scaled Prior for small feed forward Bayesian

neural networks. Since Bayesian neural networks are becoming popular due to

their advantages such as uncertainty estimation, and prevention of over-fitting,

this work seeks to provide improvements in the e�ciency of Bayesian neural

networks learned using Markov Chain Monte Carlo methods.
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Bayesian neural network (BNN), Markov Chain Monte Carlo (MCMC), deep learning
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1 Introduction

Deep learning has seen a lot of progress in the recent years but lacks the uncertainty

quantification required for decision making, especially in safety critical scenarios (Wilson,

2020; Papamarkou et al., 2024). However, Deep Bayesian models are able to provide us

with both accurate solutions and uncertainty estimates. Deep Bayesian Learning can be

done using a number of Bayesian inference techniques such as Markov Chain Monte

Carlo (MCMC), Variational inference (Hinton and van Camp, 1993; Blundell et al., 2015),

and Laplace Approximation (Daxberger et al., 2021) methods. MCMC methods are the

most accurate and therefore are most useful in safety critical scenarios where accurate

solutions and calibrated uncertainty information is sought. There are several MCMC

algorithms available, such as No U-Turn Sampling (NUTS) (Hoffman and Gelman, 2011),

Hamiltonian Monte Carlo (HMC) (Neal et al., 2011), Metropolis-Hastings Algorithm

(Metropolis et al., 1953; Hastings, 1970) and the Particle Gibbs Algorithm (Andrieu et al.,

2010).
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One of the reasons why deep learning has been successful

is the use of He et al. (2015) and/or Glorot and Bengio (2010)

initialization.1 The majority of neural network training is done

using stochastic gradient descent to optimize weights and biases

and we call such neural networks as point neural networks because

after the training is completed with obtain a single neural network

as compared to an ensemble of neural networks in a Bayesian

Neural network. However, this process of calculating gradients

may suffer from instability during the training process due to the

problem of vanishing and exploding gradients (Kelleher, 2019).

These phenomena have been extensively studied for point neural

networks, whose neural network parameters are point estimates,

however, relatively little work has been done on studying these

phenomena in the context of MCMC methods for Bayesian neural

networks whose neural network parameters are distributions. In

the literature on Bayesian neural networks we do find the use of

He and/or Glorot priors (see for example Rossi et al., 2019; Wenzel

et al., 2020; Goulet et al., 2020; Noci et al., 2021a), none of these

works have studied the effect of these priors on the efficiency of

Markov Chain Monte Carlo Sampling. Furthermore, the use of

Isotropic Priors still persists in the literature (see Immer et al.,

2020; Vladimirova et al., 2018), which we attribute to the lack of

systematic empirical analysis of the effects of Isotropic and Layer

wise Scaled priors on learning efficiency.

Another interesting phenomenon discussed in the literature

on Bayesian neural networks is the Cold posterior effect (CPE)

(Aitchison, 2020; Adlam et al., 2020; Noci et al., 2021b) where

scaling the posterior of a network results in an improvement in

the classification performance of several vision tasks. In the context

of safety critical applications it is important that the probabilities

generated by the system are well calibrated, however due to CPE

the results obtained have an underconfident aleatoric uncertainty

representation (Kapoor et al., 2022). The effect of inference method

for a Bayesian neural network on the CPE has been examined by

Wenzel et al. (2020) who argue that the cold posterior effect is

observed regardless of the inference technique used. However, in a

subsequent study Izmailov et al. (2021) found that no cold posterior

effect is observed when reproducing the Wenzel et al. (2020) study

with an implementation of their own HMC, and they argue that

CPE is largely an artifact of data augmentation.

Prior mis-specification is another cause studied in the CPE

literature (Izmailov et al., 2021; Wenzel et al., 2020). Fortuin et al.

(2021) propose using heavy tailed priors instead of the Gaussian

priors to avoid the CPE. However Gaussian priors are convenient to

conceptualize (because if we consider our likelihood to be normally

distributed then the Gaussian Prior is a conjugate prior) and

therefore they are routinely used in the literature. In research on

Bayesian neural networks it is common practice (see e.g., Immer

et al., 2020; Vladimirova et al., 2018) to specify the weights of

the neural network as an isotropic Gaussian prior, which is a

multivariate Normal distribution of mean 0 and variance 1.

In this work we compare the efficiency of using Layer wise

Scaled Gaussian Priors with Isotropic Gaussian Prior, Laplace

Prior and the Cauchy Prior for the weights of a Dense layer

1 see Appendix A.1.5 for introduction to and definition of Glorot and He

Initialization methods.

TABLE 1 K-Fold splits, query sizes, train sizes and class imbalance of the

eight real data sets.

Data set %
Minority
class

Folds Train:test
per fold

Total
samples

Adult 0.22 10 1,000:1,000 48,720

Banknote 0.44 10 137:137 1,377

Credit fraud 0.17 10 1,000:1,000 284,767

Credit default 0.22 10 1,000:1,000 29,920

Coalmine 0.06 10 258:258 2,584

Stroke 0.05 10 490:490 4,916

Iris 0.3 5 30:30 150

Yeast 0.003 10 149:149 1,496

Bayesian Neural Network. We use the MCMC for collecting an

ensemble of trained neural networks because MCMC is a very

accurate sampling algorithm which samples directly from the

true posterior (for more therotical details about Bayesian neural

networks and Bayesian Inference techniques see Appendix A.1).

We check by comparing classification performance, efficiency in

time, and MCMC convergence statistics the suitability of the

Priors on neural network parameters. We provide experimental

results, and study the dynamics of bayesian neural networks of

placing different priors on the parameters. Lastly we study the CPE

when using Isotropic and Layer wise Scaled Gaussian Priors, and

we investigate class imbalance as the probable cause of the cold

posterior effect.

2 Experiment details

2.1 Datasets

For the experiments conducted in this study we choose

the following eight data sets: Adult (Becker and Kohavi, 1996),

Fake Banknote detection (Lohweg, 2013), Credit Fraud Detection

(Dal Pozzolo et al., 2017), Stroke detection (Kansadub et al., 2015),

Credit default detection (Yeh, 2016), Coalmine Coalmine bumps

detection (Sikora and Wrobel, 2010), Iris classification (Fisher,

1988), and Yeast classification (Nakai, 1996). We have selected

these tabular data sets considering the resource-intensive nature of

the Bayesian Inference methods. For all the datasets we split the

data into equal and independent train:test splits, see Table 1 for

more details, where for a ten fold train:test split each train split

is unique and each test is unique. Figure 1 shows the prescription

used to achieve this. We do this to keep the computation costs to a

minimum and to obtain independent and uncorrelated estimates.

2.2 Data pre-processing

We perform minimal data pre-processing,2 and only remove

redundant features, rows with missing values and NaN values. For

2 Source code is provided as a zip file in the supplementary materials.

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1444891
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Jawla and Kelleher 10.3389/frai.2025.1444891

FIGURE 1

Train test splits.

the continuous input features, we either perform MinMaxScaling

for features with known upper and lower boundaries from domain

knowledge, or we perform a MaxAbsScaling (division by the

maximum value of the feature) for sparse features, and we perform

Normalization (transform the feature values to have zero mean and

unit variance) for continuous features which belong to neither of

the two previous categories of continuous features and are normally

distributed. An example of a redundant feature is when it does

not offer any information, for example if all samples have the

same value. Lastly, we perform one hot encoding of the categorical

features.

2.3 Class weighted loss or likelihood

To account for the class imbalance we use a weighting scheme

which we call as the class weighted likelihood in the case of

Bayesian Inference, and the class weighted loss in the case of the

Stochastic gradient descent training. It can be implemented by

multiplying each term in the likelihood (see Equation 4 on page

13) for the corresponding sample of the ith class in the training data

set by the following coefficient:

Total number of Training samples

Samples of the class of ith sample× Classes
(1)

This has the effect that the class with the highest proportion in

the training set is weighted by a factor which is smallest, thereby

reducing the contribution of this sample in the loss function. The

cumulative effect of this weighted likelihood is that samples of each

class contribute equally to the loss function.

2.4 Models

We use Flux.jl (Innes, 2018) to design the neural networks and

we use Turing.jl (Ge et al., 2018) to define the BayesianModels with

the appropriate priors and the likelihood. We define the Prior on

all the model weights as a Multivariate Normal Distribution with

a mean and variance as hyper-parameter defined by the respective

experiments (for example Layer wise scaled, Isotropic, Identity etc).

The prior on the n neural network parameters (weights and biases)

is θn = N (µ, σ 2) where µ = [01 . . . 0n] and σ 2 = [σ 2
1 . . . σ 2

n ]. The

@modelmacro of the Turing package adds the log joint probability

internally for each sample, and the posterior (the product of the

likelihood and the Prior) is internally defined, in accordance with

the Bayes Theorem. Therefore, all the user needs to do is choose a

Markov Chain Monte Carlo sampler to sample from the posterior.

We choose the No U Turn Sampler (NUTS) (Hoffman and

Gelman, 2011) algorithmwhich is a state of the art.We run 8 chains

and we sample for 200 Monte Carlo steps after the burn-in period

of 1000 MC steps. We then use thinning, keeping only every fourth

sample in each chain. This gives us an ensemble of 400 independent

neural networks (estimators).

We use a neural network which contains two hidden layers with

12 neurons in each layer, where all the neurons in the hidden layer

have a ReLU activation function. Finally we omit using the bias

in the output layer neurons. Although relatively small, this neural

network is in line with the current literature (Immer et al., 2020;

Kessler et al., 2023; Izmailov et al., 2021; Gudur et al., 2019) and

provides classification accuracy comparable to the state of the art.

2.5 Evaluation metrics

To benchmark the classification performance we use Balanced

Accuracy for all the data sets,and MacroF1Score. And to

benchmark the efficiency of the models we measure the time

required to sample the total number of Monte Carlo (MC) samples.

To evaluate for convergence of the chains, we look at the

following metrics:

1. Gelmann diagnostic (Vehtari et al., 2019)—Convergence

statistic which tells us how well the chains have mixed, it

compares the between- and within-chain estimates for weights

and biases.

2. OOB (out of bounds) R̂—which tells us how many parameters

have R̂ values which are greater than 1.01 and less than 0.99. This

number should be zero for a well converged chain.

3. Average acceptance rate—The percentage of proposals which

are accepted on average during a sampling step, this should

be high or comparable to what is expected from the chosen

Sampler.

4. Total numerical error—The number of numerical errors

encountered during the sampling process

5. Avg ESS (effective sample size) (Geyer, 1992)—it is an indication

of the number of independent samples contained in a chain

6. Elapsed—It is the amount of time taken to sample a fixed length

of the Markov Chain.

3 Experiments

3.1 Layer wise Scaled Gaussian Priors vs.
Isotropic Priors

In this experiment we examine if using a Layer wise Scaled

Gaussian Prior (Gaussian Prior with mean 0 and variance specified

per layer using a Glorot or He Initialization) is more efficient than

Isotropic Priors (Gaussian Prior, Laplace Prior, and a Cauchy Prior

whose locations are 0 and scales 1) for Bayesian neural networks

trained using MCMC. We chose these Isotropic Priors as baseline

comparisons because together they cover a representative range

of tail heaviness for reasonable unimodal priors (see Figure 1 of
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the Appendix for a visual comparison of the distributions). The

specific form of Layer wise scaled prior used is dependent on the

activation function used in the layer, we use a He Prior for ReLU

activated layers or a Glorot Prior for Sigmoid/Tanh activated layers.

For example, with a Glorot Prior each weight in the layer is a

Normal distribution with mean 0 and a variance calculated using

Glorot-Initialization (Glorot and Bengio, 2010).

Each of the components of an Isotropic Gaussian Prior placed

on the neural network parameters are defined as N (µ = 0, σ 2 =

1). Similarly, each of the components of an Isotropic Laplace Prior

and the Isotropic Cauchy Prior placed on the neural network

parameters are defined as L(µ = 0, b = 1) and C(x0 = 0, γ = 1)

respectively. The components of the layer-wise scaled Gaussian

Prior are defined layer by layer for the n layers as N(µ = 0, σ 2
Glorot

)

where σ
2
Glorot

= [σ 2
1 . . . σ 2

n ] are the variances of the parameters in

the respective layers as follows

σ 2
Glorot = 16

2

nin + nout

where nin is the number of input connections and nout is the

number of output connections for a neuron in a given layer.

From the results of our experiments given in Table 2, we see

that the Layer wise Scaled Gaussian Prior is more efficient (with

statistically significant results highlighted in bold font) than all of

the Isotropic Priors, for all eight datasets and this gain in efficiency

does not come at a cost of classification performance and we

see comparable or better classification performance (with results

which are better but are not statistically significant, highlighted

in Italic font). The ± signify one standard deviation across five

measurements for each dataset respectively.

From the analysis of the convergence statistics (see Section 2.5

for more information) collected for a total of 100 Monte Carlo

Steps (Table 3) of the NUTS algorithm, we observe the following

results:

1. The Out of Bounds R̂ is the lowest for Layer wise scaled Gaussian

Prior signaling a better convergence (We note here however that

this number should be zero ideally and we can achieve this if we

let the Markov Chain run longer, for example for 1,000–5,000

Monte Carlo Steps)

2. There are no numerical errors when using an Isotropic Gaussian

Prior or an Layer wise scaled Gaussian Prior, however we do

get numerical errors when using heavy tailed priors such as

Isotropic Laplace and Isotropic Cauchy Prior

3. The ESS is highest (with statistically significant results in Bold)

for Layer wise scaled Gaussian Prior and signifies that the Prior

is more suitable than the Isotropic Priors

4. PSRF, Gelmann Diagnostic should be ideally 1.00 ± 0.01, and

we see that Layer wise scaled Gaussian Prior have values closest

to 1. As a control experiment, we let the Markov chain run

for 1000 Monte Carlo steps for the Iris and Yeast Datasets in

the case of Layer wise Scaled Gaussian Prior, and as expected

we observe the OOB R̂ to drop significantly, and the PSRF

Gelman diganostic to have become 1.01 and 1.02 respectively.

These twometrics signify that the chains have converged, as they

should, eventually.

3.2 E�ect of varying the variance of the
Isotropic Gaussian prior

The results of our first experiment indicate that using a Layer

wise Scaled Gaussian (LSG) Prior results in a more efficient MCMC

training process than the Isotropic Priors. Moreover since we

obtain poor convergence statistics for the Isotropic Laplace and the

Isotropic Cauchy distribution we limit our study in this experiment

to the two cases of the Gaussian Priors. In this experiment we

check how scaling the variance of the Isotropic Gaussian Prior

by a constant affects the efficiency, numerical errors, acceptance

rate, and the Balanced Accuracy. We experiment with the Iris and

the Stroke datasets, with the following set of Isotropic Variances:

0.01, 0.2, 1.0, 3.0, 5.0 and LSG.

From the results given in Tables 4, 5, we see that using a

larger variance leads to an inefficient convergence process and

results in an increased sampling time. For all of the variances we

test with a Isotropic Gaussian prior, the acceptance rate is low,

indicating inefficient sampling. When using a very small variance

such as 0.01, we end up with parameters which are too similar,

this affects the learning ability of the model and the classification

balanced accuracy drops significantly. Layer wise Scaled Gaussian

Prior provides us with a good variance of the neural network

weights as a default starting point, without us having to manually

find the suitable values of the variances for each of the neural

network parameters.

3.3 Understanding the internal dynamics of
Bayesian networks with di�erent priors

In this experiment we analyze the distributions of the neuron

activations and the weights of a Bayesian neural network layer

by layer for various sampling lengths (number of Monte Carlo

Steps). Observing the violin plots and the box plots of the values

of the activations and weights layer by layer helps us understand

the variance of the information flow across the network. From the

literature we know for point neural networks that gradient descent

methods encounter the problem of vanishing and exploding

gradients and therefore consistent variance of the activations and

weights and biases across the network are important for the training

process (Kelleher et al., 2020). Therefore in this experiment we

investigate the relationship between the variance of the activations

across the layers and the efficiency of the sampling process.

Firstly, we look at the distributions of the magnitude of

activations of the neurons in each hidden layer for a random

input on an untrained neural network. We do this for a 4 hidden

layer neural network with ReLU activated layers, where each

layer contains 100 neurons. However the for the distributions

we only take the activations into consideration without the

activation function applied to the logits. Figure 2 shows the

distributions of the magnitude of activations of the neurons in

each hidden layer of the network for an Isotropic Gaussian

prior and a Layer wise Scaled Gaussian Prior respectively. We

can clearly observe that the activations of the deeper layers

have a larger variance in the case of an Isotropic Gaussian

prior. Using Layer wise Scaled Gaussian Priors keeps the
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TABLE 2 Comparison of e�ciency and performance for di�erent priors.

Dataset Prior BalAcc MacroF1 Time

Adult Iso. Cauchy 0.71± 0.05 0.54± 0.02 106.66± 0.94

Iso. Laplace 0.74± 0.03 0.55± 0.01 31.99± 4.31

Iso. Gaussian 0.74± 0.03 0.56± 0.01 17.37± 0.58

L.S. Gaussian 0.76± 0.03 0.51± 0.03 5.79 ± 0.2

Banknote Iso. Cauchy 0.93± 0.04 0.92± 0.04 90.14± 0.63

Iso. Laplace 0.94± 0.04 0.94± 0.04 72.55± 7.8

Iso. Gaussian 0.95± 0.03 0.94± 0.03 32.81± 5.24

L.S. Gaussian 0.94± 0.05 0.94± 0.05 9.43 ± 0.26

Coalmine Iso. Cauchy 0.69± 0.09 0.16± 0.03 164.32± 1.86

Iso. Laplace 0.71± 0.07 0.17± 0.03 67.73± 18.28

Iso. Gaussian 0.74± 0.02 0.17± 0.02 31.56± 7.81

L.S. Gaussian 0.74± 0.03 0.15± 0.01 7.98 ± 0.23

Credit Default Iso. Cauchy 0.65± 0.05 0.43± 0.02 184.03± 1.16

Iso. Laplace 0.64± 0.07 0.43± 0.03 116.81± 23.34

Iso. Gaussian 0.64± 0.04 0.43± 0.02 56.14± 1.38

L.S. Gaussian 0.71± 0.08 0.45± 0.05 12.11 ± 4.71

Credit Fraud Iso. Cauchy 0.94± 0.03 0.07± 0.07 160.88± 3.1

Iso. Laplace 0.94± 0.05 0.17± 0.3 142.79± 8.49

Iso. Gaussian 0.94± 0.04 0.15± 0.24 107.08± 31.16

L.S. Gaussian 0.99 ± 0.01 0.23± 0.11 21.32 ± 5.33

Iris Iso. Cauchy 0.87± 0.12 0.85± 0.16 89.84± 1.07

Iso. Laplace 0.89 ± 0.13 0.88 ± 0.17 21.16± 3.7

Iso. Gaussian 0.86± 0.13 0.85± 0.17 12.32± 2.75

L.S. Gaussian 0.65± 0.19 0.6± 0.22 3.91 ± 0.68

(1000 MC steps) L.S. Gaussian 0.75± 0.08 0.7± 0.13 41.33± 13.82

Stroke Iso. Cauchy 0.75 ± 0.06 0.17± 0.03 109.43± 6.52

Iso. Laplace 0.74± 0.06 0.17± 0.03 32.89± 4.92

Iso. Gaussian 0.73± 0.07 0.17± 0.02 19.68± 5.55

L.S. Gaussian 0.58± 0.08 0.15± 0.02 7.76 ± 4.93

Yeast Iso. Cauchy 0.44± 0.07 2.09 ± 1.43 534.72± 8.76

Iso. Laplace 0.45 ± 0.07 1.87± 1.21 845.2± 743.58

Iso. Gaussian 0.45 ± 0.09 1.9± 1.22 492.84± 50.64

L.S. Gaussian 0.34± 0.11 1.39± 1.04 76.56 ± 3.21

(1000 MC Steps) L.S. Gaussian 0.4± 0.1 1.56± 1.07 752.21± 49.58

Values in Bold indicate the top one, two or three competing results obtained for a given dataset.

variances of the activations across the layers consistent (rather

than vanishing or exploding) and this results in an efficient

training process.

Secondly, we compare the case of using a Isotropic Gaussian

prior versus a Layer wise Scaled Gaussian Prior for sampling

lengths of 10, 200, 1,000, and 2,000 Monte Carlo steps. In the

figure we consider here the last sample of the MCMC, i.e. one

neural network. We repeat all the experiments on two sizes of

the neural network, one being our original two hidden layer

neural network with 12 neurons in each layers, the second is a

wider neural network with three hidden layers and 24 neurons

in each hidden layer. Figures 3, 4 show the violin and the box

plots of outputs of the neurons of each of the three layers of

the network for the Stroke Dataset.3 When using the Isotropic

Gaussian prior for a neural networks with ReLU activation

3 for box plots showing the distributions of the weights across the network

see Figures 2, 3 in the Appendix A.2
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TABLE 3 Comparison of e�ciency and performance for di�erent priors.

Dataset Experiment OOB R̂ Numerical Errors ESS PSRF

Adult Iso. Cauchy 189.8± 14.89 0.4± 0.22 0.17± 0.01 7.16± 2.02

Iso. Laplace 140.8± 8.04 0.0± 0.0 1.3± 0.09 1.22± 0.04

Iso. Gaussian 109.3± 5.04 0.0± 0.0 2.87± 0.46 1.1± 0.02

L.S. Gaussian 98.2 ± 3.33 0.0± 0.0 14.17 ± 1.65 1.1± 0.02

Banknote Iso. Cauchy 210.9± 4.35 0.8± 0.91 0.09± 0.01 8.2± 1.81

Iso. Laplace 143.1± 7.14 0.1± 0.22 0.54± 0.05 1.23± 0.04

Iso. Gaussian 121.7± 9.66 0.0± 0.0 1.03± 0.06 1.15± 0.05

L.S. Gaussian 102.7 ± 8.55 0.0± 0.0 6.17 ± 0.5 1.13± 0.04

Coalmine Iso. Cauchy 265.83± 1.04 1.0± 1.73 0.08± 0.01 8.74± 1.41

Iso. Laplace 185.5± 17.35 0.17± 0.29 0.6± 0.17 1.23± 0.05

Iso. Gaussian 161.67± 9.36 0.0± 0.0 1.19± 0.16 1.18± 0.03

L.S. Gaussian 132.83 ± 8.95 0.0± 0.0 9.09 ± 1.37 1.1 ± 0.03

CreditDefault Iso. Cauchy 401.9± 9.76 0.5± 1.12 0.04± 0.0 10.43± 2.17

Iso. Laplace 278.8± 17.56 0.0± 0.0 0.32± 0.06 1.28± 0.1

Iso. Gaussian 216.6± 21.93 0.0± 0.0 0.75± 0.14 1.19± 0.11

L.S. Gaussian 210.7± 19.36 0.0± 0.0 4.6 ± 1.08 1.16± 0.04

CreditFraud Iso. Cauchy 465.7± 12.69 4.0± 7.62 0.04± 0.01 9.99± 1.85

Iso. Laplace 346.4± 30.52 0.1± 0.22 0.21± 0.07 1.32± 0.16

Iso. Gaussian 258.4± 11.88 0.0± 0.0 0.42± 0.07 1.16± 0.04

L.S. Gaussian 232.8 ± 16.14 0.0± 0.0 4.02 ± 0.98 1.12± 0.02

Iris Iso. Cauchy 201.2± 6.69 2.2± 2.84 0.22± 0.02 9.21± 4.19

Iso. Laplace 149.2± 6.71 0.1± 0.22 2.27± 0.52 1.22± 0.04

Iso. Gaussian 110.2 ± 9.84 0.0± 0.0 5.02± 0.88 1.1± 0.01

L.S. Gaussian 110.8 ± 8.53 0.0± 0.0 15.85 ± 3.84 1.1± 0.01

(1000 steps) L.S. Gaussian 5.9 ± 1.85 0.0± 0.0 15.73 ± 4.75 1.01 ± 0.0

Stroke Iso. Cauchy 190.2± 7.06 0.3± 0.45 0.17± 0.02 6.98± 2.89

Iso. Laplace 140.2± 7.8 0.0± 0.0 1.4± 0.3 1.21± 0.04

Iso. Gaussian 102.4± 6.54 0.0± 0.0 3.12± 0.96 1.11± 0.05

L.S. Gaussian 99.9± 7.89 0.0± 0.0 12.88 ± 3.25 1.09± 0.01

Yeast Iso. Cauchy 337.4± 6.02 0.4± 0.42 0.02± 0.0 10.53± 3.09

Iso. Laplace 287.7± 8.07 0.0± 0.0 0.03± 0.02 2.19± 0.34

Iso. Gaussian 235.1± 11.82 0.0± 0.0 0.05± 0.0 1.58± 0.36

L.S. Gaussian 207.8 ± 14.11 0.0± 0.0 0.44 ± 0.06 1.31 ± 0.09

(1000 Steps) L.S. Gaussian 20.6 ± 4.56 0.0± 0.0 0.36 ± 0.1 1.02 ± 0.0

Values in Bold indicate the top one, two or three competing results obtained for a given dataset.

function across the hidden layers, from Figure 3 we see that

the variance of the activations increases as we go deeper, this

effect reduces when we use a layer wise scaled prior. We also

note that vertical axes showing the magnitude of the activations

are also very different for the two cases, for the Isotropic case

being very large almost ten times larger than the Layerwise

scaled case.

For a TanH activated neural network, from Figure 4 we

see that the activations tend to saturate on the extreme

values of −1 and 1, thereby giving us a bimodal type of

distribution. We observe that using the Layer wise Scaled

Gaussian Prior with TanH activated layers makes the

distributions of the activations more Gaussian-like i.e the

mass of the distributions concentrates in the center instead

of the two extremes at -1 and 1. This is remedied when we

use a layer wise scaled prior and we obtain Gaussian-like

unimodal distributions for the activation values across all

the layers.
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TABLE 4 Experiment on the e�ect of scaling the variance of the prior : iris

dataset.

Variance Acceptance
rate

Numerical
error

Balanced
accuracy

Elapsed
(sec)

0.01 0.72± 0.03 0.00 0.35± 0.02 65± 66

0.2 0.74± 0.03 0.00 0.39± 0.14 9± 7

1.0 0.80± 0.03 0.9± 0.9 0.96 ± 0.02 38± 2

3.0 0.62± 0.04 85.8± 39.0 0.95± 0.02 117± 21

5.0 0.57± 0.05 97.8± 22.1 0.95± 0.02 177± 29

LSG 0.87 ± 0.03 0.00 0.95 ± 0.01 20 ± 5

Values in Bold indicate the top one, two or three competing results obtained for a given

dataset.

TABLE 5 Experiment on the e�ect of scaling the variance of the prior :

stroke dataset.

Variance Acceptance
rate

Numerical
error

Balanced
accuracy

Elapsed
(sec)

0.01 0.70± 0.02 0.00 0.59± 0.51 15± 2

0.2 0.75± 0.01 0.00 0.54± 0.39 12± 2

1.0 0.80± 0.03 0.6± 0.7 0.71 ± 0.03 107± 9

3.0 0.72± 0.09 9.1± 5.7 0.69± 0.02 421± 8

5.0 0.76± 0.07 3.5± 2.3 0.70± 0.03 426± 5

LSG 0.83 ± 0.02 0.00 0.71 ± 0.03 60 ± 8

Values in Bold indicate the top one, two or three competing results obtained for a given

dataset.

3.4 Cold posterior e�ect

In this experiment we continue with the Isotropic and layer-

wise scaled Bayesian neural networks but cool the posterior by

tempering the likelihood by a factor of 10, and 100 respectively.

We are then able to compare in one place all the six different

cases, Isotropic Gaussian prior with temperatures 1.0, 0.1, 0.01, and

Layer wise Scaled Gaussian Prior with temperature 1.0, 0.1, 0.01

respectively to check if the cold posterior effect is observed.

From the results of our experiments, given in Table 6, when

using an Isotropic Gaussian prior we observe no cold posterior

effect in any of the eight classification datasets. In fact both the

classification performance and efficiency degrade as we cool the

posteriors, and our results agree with that of Izmailov et al. (2021).

In the case of Layer wise Scaled Gaussian Priors, we observe the

cold posterior effect only in the case of the Iris dataset and the

Yeast dataset. We suspect class imbalance to be the cause for this

because for the binary tasks we have used a balanced dataset by

undersampling the majority class and we observe no cold posterior

effect for either Isotropic or Layer wise Scaled Gaussian Prior,

however in the case of themulti-label datasets, the Iris and the Yeast

datasets, we do no such curation (undersampling) and it maybe that

the scaled posterior fits to the majority classes. In Table 6, we show

the results of our experiments using a class weighted likelihood

(CWL) without cooling the posterior (i.e., Temperature= 1.0) and

we observe that for the two multi-label classification datasets Iris

and Yeast, the classification performance improves significantly

and performs better than the cooled posteriors of the un-weighted

likelihood.

4 Discussion

During the inference of a Bayesian Neural network using NUTS

we encounter the problem of infinite gradients and NaNs which

firstly affects the adaptation process, often taking a very long time to

find the correct step size. Secondly the convergence process can be

very inefficient as well, if during the proposal step at each iteration

the algorithm has to reject proposals θ ′ or the derivatives of the

Hamiltonian with respect to it become undefined.

During the Monte Carlo sampling, if the predicted label during

the training process is exactly 0 or 1 then it would produce a log(0)

term in the log likelihood thereby producing a numerical error (see

Equation 4 in the Appendix). This can happen, for example, during

the initial iterations of the MCMC algorithm when the neural

network has not learned anything, so for a given classification yi =

0, it is entirely possible that the neural network outputs ŷθ ,i = 1,

producing a numerical error. Or for example, the sigmoid activation

of a very small or a very large number (absolute value larger than 6)

could output a 0 or 1 respectively for example sigmoid(z = 10) = 1.

We note that this is because the implementation of the sigmoid

function in most of the standard libraries clips the output to either

0 or 1 after a certain point and when this zero is inside the log, this

quanity becomes undefined and this produces a NaN. It’s important

to note that in Bayesian inference, there is no back-propagation

step, and weight updates only occur when specific acceptance

criteria are satisfied and therefore only the samples which do not

have a NaN ever stand a chance of being accepted, and therefore

the presence of NaNs brings down the efficiency. Both NUTS and

HMCmay suffer from this problem when we try to sample from an

Isotropic Gaussian prior, but a Layer wise Scaled Gaussian Prior can

helps to keep the variance of the weighted sums across the layers

within stable bounds at each sampling step θ ′. This is illustrated

by the violin plot of the activations across the layers of the neural

network used in the experiments (see Figures 3, 4). We observe

that using a Layer wise Scaled Gaussian Prior reduces the variance

of the activations and leads to Gaussian like unimodal distributed

values across the layers for both the ReLU and the TanH activation

functions. Thereby making our sampling process efficient, without

the need to tune the variance.

In our study we have found the cold posterior effect to be

absent in MCMC Bayesian neural networks on all the six binary

classification dataset. On the twomulti classification datasets where

the training dataset is not balanced, we observe the cold posterior

effect. The class weighted likelihood regains the better performance

without cooling the posterior. This provides with an advantage in

the cases where it may not be feasible to balance the datasets, such

as the Yeast dataset, where out of 10 classes one class has only 5

samples, and we need some at-least 2 samples of it in the test data

set. Using a class weighted likelihood and a Gaussian Prior does not

suffer from the cold posterior effect and therefore, unlike Fortuin

et al. (2021), we see no reason to discontinue using the Multivariate

Gaussian priors if we assume that our likelihood i.e. the neural

networks parameters follow a Normal distribution. In fact, using

layer-wise scaled multivariate Normal Prior can facilitate a very
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FIGURE 2

Distribution of layer activations.

FIGURE 3

Layer-wise distribution of ReLU activations after 2,000 Monte Carlo steps.

FIGURE 4

Layer-wise distributions of TanH activations after 2,000 Monte Carlo steps.
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TABLE 6 Experiment on the cold posterior e�ect for the Isotropic Gaussian prior and Layer wise Scaled Gaussian prior.

Prior Isotropic Layer-wise Scaled

Temp. Bal. Acc. Time (sec) Bal. Acc. Time (sec)

Adult 1.0 0.75 ± 0.02 116± 3 0.74 ± 0.01 16 ± 1

0.1 0.68± 0.01 382± 34 0.74± 0.02 58± 3

0.01 0.70± 0.02 382± 10 0.68± 0.02 335± 27

Banknote 1.0 0.98± 0.01 75± 19 0.98± 0.01 8.7 ± 0.2

0.1 0.98± 0.01 79± 19 0.98± 0.01 15.1± 0.3

0.01 0.98± 0.01 41± 20 0.98± 0.01 18± 4

Credit fraud 1.0 0.97± 0.02 1120± 13 0.97± 0.01 341 ± 277

0.1 0.97± 0.02 916± 108 0.97± 0.02 52± 14

0.01 0.96± 0.02 308± 171 0.96± 0.03 81± 11

Stroke 1.0 0.71± 0.03 85± 8 0.67± 0.04 17 ± 6

0.1 0.66± 0.03 285± 13 0.71± 0.02 44± 4

0.01 0.68± 0.01 278± 8 0.68± 0.03 199± 27

Credit default 1.0 0.69± 0.04 149± 40 0.74 ± 0.05 19 ± 14

0.1 0.66± 0.03 345± 66 0.64± 0.04 82± 24

0.01 0.66± 0.02 280± 20 0.61± 0.03 144± 33

Coalmine 1.0 0.65 ± 0.05 128± 23 0.73 ± 0.08 19 ± 1

0.1 0.59± 0.01 515± 28 0.66± 0.01 93± 4

0.01 0.61± 0.01 443± 64 0.57± 0.02 293± 13

Iris 1.0 0.8± 0.09 14.68± 2.93 0.44± 0.14 6.62± 4.92

0.1 0.88± 0.12 21.97± 8.99 0.87± 0.12 11.95± 4.36

0.01 0.88± 0.12 33.38± 23.35 0.88± 0.12 30.31± 12.6

CWL 0.87± 0.12 14.05 ± 3.09 0.67± 0.2 6.73 ± 4.44

Yeast 1.0 0.37± 0.05 273.05± 33.34 0.14± 0.03 42.96± 1.73

0.1 0.38± 0.05 1,901.43± 2965.44 0.39± 0.03 560.85± 11.1

0.01 0.39± 0.07 326.12± 125.37 0.37± 0.04 287.15± 106.46

CWL 0.46± 0.08 443.29± 101.58 0.33± 0.1 71.11 ± 14.62

Values in Bold indicate the top one, two or three competing results obtained for a given dataset.

efficient sampling process, making it accessible for a wide range

of research.

5 Conclusion

The Gaussian Priors placed on the weights of a dense layer

Bayesian Neural Network are found to be the most suitable choice

among the four Priors, namely the Isotropic Cauchy, Isotropic

Laplace, Isotropic Gaussian, and Layer wise Scaled Gaussian Priors.

The heavy tailed Priors i.e. Isotropic Cauchy, and the Isotropic

Laplace Prior suffer from inefficient convergence and are therefore

not suitable. Within the choice of Gaussian Priors, the Layer wise

Scaled Gaussian Prior is more efficient compared to an Isotropic

Gaussian Prior.

The large variance of the Isotropic Gaussian Prior causes the

activations to saturate and renders the inference process inefficient.

Layer wise Scaled Gaussian Priors provides us with a consistent

variance of the activations during the sampling process thus

offering a speed up of upto four times and therefore we conclude

that it should be the default choice when performing Bayesian

inference of neural network parameters.

The Cold posterior effect was not observed in eight datasets,

when using MCMC inference for neural networks, and the best

classification performance is obtained at T = 1. We have found the

class weighted likelihood to improve the classification performance

and the convergence statistics, this is especially advantageous in

datasets where balancing the datasets is not possible. Therefore we

conclude that using layer-wise scaled Gaussian prior in conjunction

with a class weighted likelihood can provide a default configuration

for dense Bayesian neural networks, irrespective of the dataset.

The improved sampling efficiency and classification performance

comparable to state of the art make the MCMC Bayesian neural

networks accessible for a wide range of research, especially

for their advantage in cases where uncertainty quantification

is required.
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