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As we become increasingly dependent on technology in our daily lives, the usability 
of HCIs is a key driver of individual empowerment for us all. A primary focus of AI 
systems has been to make HCIs easier to use by identifying what users need and 
agentively taking over some of the cognitive work users would have otherwise 
performed, as such, they are becoming our delegates. To become effective and 
reliable delegates, AI agents need to understand all relevant situational semantic 
context surrounding a user’s need and how the tools of the HCI can be leveraged. 
Current ML systems have fundamental semantic gaps in bespoke human context, 
real-time world knowledge, and how those relate to HCI tooling. These challenges 
are difficult to close due factors such as privacy, continual learning, access to 
real-time context, and how deeply integrated the semantics are with in-context 
learning. As such, we need to research and explore new ways to safely capture, 
compactly model, and incrementally evolve semantics in ways that can efficiently 
integrate into how AI systems act on our behalf. This article presents a thought 
experiment called the Game of Delegation as a lens to view the effectiveness of 
delegation and the semantic efficiency with which the delegation was achieved.
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1 Introduction: cognition in human computer 
interfaces (HCIs)

For millennia, humans have used tools and technology, taken in a broad sense, to make 
us more effective, productive, and increase the space of what’s possible. However, for most of 
that history, humans have been the driving cognitive force behind how those tools are created 
and employed to achieve our goals; we have only leveraged external agency and cognition 
when working with other life forms such as animals, plants, and micro-organisms. This status 
quo has been gradually changing over the last 80 years with the proliferation of information 
technology and the advancement of artificial intelligence, which have been driven by three key 
developments. First, the rise of the “information age” and the world-wide-web have provided 
a new scale of available data from which to train. Second, the steady increase in computational 
processing power and storage have provided hardware advancements and cloud-scale compute 
services. And third, recent advancements in the field of machine learning, particularly deep 
learning and large-language models.

Not only have the cognitive capabilities of our technologies increased, so too has our 
reliance on these capabilities as we have become increasingly dependent on technology in our 
daily lives. Technology impacts the everyday tasks of an individual’s shopping, traveling, 
medicine, finance, entertainment, home automation, communication, and community. 
Applying a wider lens, these developments are increasingly impacting the security and stability 
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of nations as more governments employ them across daily operations, 
space exploration, climate analysis, and geopolitics.

As our bridge to technology, HCIs are a key driver of human 
productivity that can delight and empower us through ease of use, or 
frustrate and disempower us with endless cognitive friction. A 
“perfect” HCI would know exactly what the user needs and then act 
to meet those needs with minimal user effort. We can encode this as 
a guiding principle for intelligent HCIs

The principle of user need
Give users what they need, when and where they need it

The principle of user need suggests an HCI should understand (1) 
who the user is, (2) what the user needs, (3) what actions and tools are 
available in the HCI, (4) what actions the HCI agent should perform 
to meet the user’s needs, and (5) when and where the HCI should 
perform those actions. Current HCIs are far from achieving this ideal, 
they present users with tools and features but users must figure out 
how to discover, invoke, and combine those tools to achieve their goal, 
placing the cognitive burden almost fully upon the user. Traditionally, 
the cognition employed to make HCIs easier to use is the offline, 
up-front cognition performed by the humans who crafted the HCIs 
and associated tools. The HCI designers anticipate their users’ needs 
and create experiences that minimize user effort. However, since this 
work is performed ahead-of-time, the more complex the user’s job-to-
be-done (Christensen et al., 2016) or more variability there is in how 
users can use the HCI, the higher the cognitive burden placed 
upon users.

Modern AI offers an alternate path by injecting dynamic and 
contextually informed cognitive capabilities into our HCIs. HCIs with 
intelligent agency (HCI agents) can not only reduce cognitive friction, 
they can also perform useful cognitive work on behalf of users, 
making technology dramatically easier to use. The word “useful” is an 
important qualifier as adding intelligence to HCIs is not itself the goal, 
the goal is to reduce the amount of cognitive work users need to 
perform to achieve their goals. Adding unhelpful intelligence can 
increase friction and frustration for users, particularly if the HCI agent 
performs work that the user has to “undo” or overcome to accomplish 
their actual goal. Adding intelligence can also increase user 
expectations for the HCI which, if unmet, further increases the 
chances and magnitude of user frustration.

2 Cognitive work

In this article we’ll define cognitive work as the amount of 
cognitive effort expended by an agent as part of achieving a goal, 
regardless of whether the agent is biological or artificial. Cognitive 
work captures that, in addition to any physical exertion required to 
complete a task, agents must expend time and energy on figuring out 
what they should do and how to do it. This is firstly achieved through 
activities such as observation, learning, and reasoning, which is 
heavily affected by the complexity of the act, and secondly by any 
cognitive attention and focus required to perform the action, which is 
particularly evident in high-precision, repetitive tasks. In this sense, 
cognitive work draws parallels to the concept of work in physics 
which, through the lens of energy transference and force, captures the 
energetic “cost” of action to a system.

Humans subjectively experience and intuitively communicate this 
framing of cognitive work, whereby we commonly refer to certain 
mental tasks leaving us feeling exhausted or drained. This distinction 
in mental effort is a key differentiator between Kahneman’s (2011) two 
modes of thinking, where system one is quick and lower-effort and 
system two is slower, more deliberate, and requires more effort to 
sustain. While the system one vs. system two framing distinguishes 
the difference in effort behind the modes of human thinking, the 
modes alone do not fully capture the “area under the curve” of 
cognitive effort, particularly in terms of (1) duration—for example 
performing sustained repetitive system one tasks, such as feeling tired 
after a long car drive, and (2) emotional duress or stress—for example 
taking a practice penalty-kick versus in the final moments of a high-
stakes game.

For an HCI, cognitive work is the combined cognitive exertion 
expended by users and HCI agents in order to accomplish the 
users’ goals using the features (“tools”) provided by the 
HCI. Cognitive effort has intrinsic qualities such as the inherent 
complexity of the task and the ergonomics of the interface 
(cognitive friction). Cognitive effort also has user-relative 
qualities such as familiarity (having relevant priors), emotional 
engagement (what’s at stake), and general preferences (is this a 
task you enjoy). HCI creators have the most control over intrinsic 
HCI qualities around which the fields of UX design and research 
have created extensive frameworks that are captured as core 
principles and laws (Laws of UX, n.d.).

3 What semantic context do HCIs 
need?

Here we will define semantics as the truth and meaning of things 
as they relate to each individual user’s goals, including their bespoke 
and subjective meanings. For HCI agents to repeatedly and reliably 
perform useful cognitive work on-behalf of their users, they need to 
have the necessary situational, real-world semantic context which 
includes being semantically aware, aligned, and grounded with users 
they are assisting. This is needed as human goals exist in the expansive, 
real-time, and ever-evolving semantic spaces we all traverse each and 
every day as part of our lived experience.

The following situation highlights the kind of complex semantic 
spaces that humans cognitively traverse through decisions and action 
every day, without much thought:

 1 Someone is carrying a tray of food and drink outside to family 
and friends.

 2 However, they know it’s cold outside, they are barefoot, and the 
ground is cold enough to be unpleasant, so they detour to put 
on shoes.

 3 They know to be careful and to not move too fast as, based on 
what’s on the tray, some of food and drink might easily spill.

 4 They also know that timeliness is important. Food temperatures 
may be  important and hungry, thirsty people are waiting 
on them.

 5 When they get to the door but cannot open it while holding the 
tray, they decide whom to call for assistance. They may even 
have to determine how loudly they’ll have to call or shout to 
be heard. Is the nearest person wearing headphones?
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 6 If their cell phone notifies them of a phone call, they must 
decide whether to put the tray down to answer, noting it might 
be high priority as they have a close friend who’s in the hospital 
and might be calling with important news.

A truly intelligent or intuitive HCI agent, integrated into the user’s 
cell phone and wearables, could hypothetically know how a user 
would prioritize receiving a call in that moment and take the 
appropriate actions regarding the call and the closed door, such as 
messaging someone for help. This level of real-time awareness is well 
beyond the capabilities of modern artificial assistants but, given the 
human-level simplicity of the situation, it illustrates the semantic gap 
we need to close. The general goal of such an HCI agent is to act in 
alignment with the user’s needs and expectations, doing whatever the 
user would’ve wanted the agent to do. Put differently, HCI agents must 
learn to be trusted delegates for their users.

Being a trusted delegate is no small feat. Human behavior is 
typically laden with semantic context that is bespoke, interconnected, 
compounding, and grounded in the rules of the physical universe 
we inhabit. Particularly as our decisions affect us both individually 
and socially, with second order consequences that we care about. An 
HCI agent must understand enough of this context to meet a user’s 
expectations in both outcome and how the outcome was achieved. For 
example, an autonomous HCI agent that is helping a user order food 
for a social event should understand any cost constraints, the type of 
event (formal or casual), information about the venue (is there a 
kitchen), and information about the guests (ages of attendees).

An everyday example of this semantic gap in HCIs is with search 
and recommendations, where the HCIs do not act contextually 
enough even within the limited temporal scope of a single session. 
When we work directly with another human, such as a salesperson, 
we expect to explain what we need, respond to follow-up questions, 
and then receive product suggestions that get progressively better 
item-by-item based on our implicit and explicit feedback. However, 
when searching or scrolling through recommendations in current 
HCIs, the results typically get progressively worse the deeper we go, 
often showing us the same or similar items we’d previously ignored. 
At some point users will usually try a new search phrase but follow up 
searches are typically contextually independent, rather than as a 
continuation of the previous journey, resulting in repeated exposure 
to previously ignored suggestions. Conversational search engines (Mo 
et al., 2024) show promise with using accumulated context, making 
them closer to working with a human. However, they are typically 
stand-alone HCIs that are not integrated with the product and domain 
specific HCIs we still need to use every day, such when shopping and 
banking. This limits their practical utility and forces them toward a 
“lowest common denominator” experience based on tools and APIs 
other products provide.

4 The uncanny semantic valley

Statistically modeling human language and communication is a 
powerful, widely successful technique that is at the core of fields such 
as information theory (Shannon, 1948) and NLP. LLMs use the 
generalized statistics of human communication, sourced from large 
corpuses of text, to produce models that can generate remarkably 
statistically plausible human-like responses. However, the underlying 
assumptions of ergodicity in human communication can cause 

problems as point-in-time human communication is not ergodic 
and must account for the bespoke semantic context and language 
game (Wittgenstein, 1953) in which that communication is 
happening. Relying on generalized language statistics leads to 
content generators that routinely violate the human recipient’s 
expectations in ways that are detached from situational context, 
creating an uncanny valley (Mori et al., 2012) effect in the semantics 
behind the content.

Uncanny semantic valley
Generated content that is close to human created content but 

deviates from a human recipient’s semantic expectations in ways 
that elicit adverse psychological reactions

This semantic gap should not be surprising as ML models are only 
operating from information we provide, which is just the tiniest tip of the 
information iceberg that’s generated by the actual universe we inhabit. 
Human perception also operates on a narrow sliver of the overall 
information generated by our unfolding universe; we might lack a grand 
unified theory of everything, but reality continues to unfold around us 
regardless. From that sliver of information humans have evolved internal 
generative world models that can dynamically create and select 
objectives, form expectations, then simulate and generate behaviors 
which move us toward those objectives both consciously and 
unconsciously. However, regardless of what our internal models produce, 
we are constrained-by, conditioned on, and operate-within the universe 
we inhabit, along with the fitness functions it imposes upon us.

An ML model’s “universe” can be  thought of as its input data 
manifold and learned latent space, defined and constrained by the 
hyperparameters its human creators provided. But, given our own 
limited information horizon, a model is contained within a nesting 
doll of informational representation spaces which are increasingly 
abstracted from the universe at large. Amazingly, ML models can 
often “peek through” the data we provide, using incomprehensibly 
large mathematical spaces to not only model the expected surface 
patterns but also model complex echoes of the subjective and objective 
reality the data is generated from. The success of ML is a testament to 
how much more we have yet to learn about the informational content 
and processing of complex dynamic systems, along with our role 
within them. Given that humans are more directly constrained by and 
perceptually closer to our experienced reality, it’s no surprise that 
we are attuned to detect irregularities that deviate from our reality-
based expectations. As such, now that generative AI is increasingly 
being used in HCIs that intersect with reality-based media (i.e., 
content that humans expect to be grounded in real-world semantics) 
the uncanny valley concept from robotics is beginning to manifest as 
an uncanny semantic valley where humans can detect the irregularity 
in ways that can generate a feeling of frustration or uneasiness. Putting 
aside associated philosophical topics around semantics [e.g., in John 
Searle’s Chinese room argument (Searle, 1980)], creating HCI agents 
that can avoid the uncanny semantic valley is a real, pragmatic 
challenge to overcome and requires bridging our current semantic gap.

For language, the uncanny semantic valley is related to but distinct 
from gaps in language proficiency, which is more directly associated 
with odd or incorrect choices of words. Lack of language proficiency is 
a common human experience, particularly when people converse 
across language barriers, typically referring to cases where what person 
A intends to say could make sense to person B, but person A just is not 
proficient enough in person B’s language to express it accurately. Recent 
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generative AI have largely solved language proficiency, at least for 
languages with sufficient training data, but semantic gaps remain where 
the generated content is misaligned with the contextual, semantic 
model of the recipient. Human conversations have semantic gaps too, 
for example where assumptions of conversational context result in 
confused looks and “ohh, I  thought you  were talking about …” 
reactions. Sometimes semantic gaps are easy to close but sometimes 
the semantic gap is large enough that one or more participants need to 
update their internal semantic model before a common understanding 
can be reached, for example across geographical, cultural, or historical 
boundaries. Enabling an AI to actively update its internal models is 
beyond the scope of this article, with approaches such as active 
inference (Friston et al., 2016) showing great promise, but the key point 
for this article is that this semantic gap currently exists in HCIs using 
ML and the gap causes friction and dissonance for users.

The uncanny semantic valley effect is particularly evident in AI 
generated images and videos that (1) closely resemble reality but 
contain obvious “that does not look quite right” inaccuracies, and (2) 
elicit surprise and frustration when the output does not match your 
expectations, particularly when you would have expected another 
human to understand your inputs. As usage of GenAI increases, 
understanding the psychological impacts on users is an important and 
emerging area of study (Rapp et al., 2025). Beyond GenAI specifically, 
a more everyday example is with personalized recommendations, such 
as our homepages for news and streaming sites. A feed being 
personalized creates an expectation it will learn your preferences, 
through implicit and explicit feedback, then show you  the best 
available options. However, users are often shown recommendations 
that seemingly ignore feedback and violate their expectations (Ricks 
and McCrosky, 2022). Common examples include showing the same 
video repeatedly across visits even though the user does not ever click 
on it, showing content even though the user dismissed similar content, 
and not understanding that just because a user viewed a certain type 
of video a single time, they aren’t generally interested in the content.

5 Using in-context learning to provide 
semantic context

How can an HCI agent know what it needs to know, when it 
should know it, to be an effective and timely delegate for a user? 
Achieving this requires real-time, bespoke context that is not always 
easy to acquire or effectively utilize. Note that, while privacy is crucial 
aspect for this topic, we’ll focus on the engineering and science 
challenges. Since bespoke semantic context cannot be  provided 
during training, we must use to in-context learning which is usually 
implemented using retrieval augmented generation (RAG) for 
dynamic context. For in-context learning and RAG to be effective: (1) 
there has to be sufficient up-front prompt curation and configuration, 
(2) the necessary data must already be captured, (3) the context must 
be  retrievable, and (4) the model must be  able to leverage the 
provided context.

5.1 Up-front configuration

In-context learning typically relies on up-front human cognition 
and curation in ways that are similar to how traditional HCIs are 
crafted for anticipated user goals, such as with prompt engineering 

which is a marketable skill similar to UX design. Regardless, using 
in-context learning in an HCI is still a step in the right “cognitive 
direction” as it enables HCIs to contextually adapt to the user’s need, 
which increases the amount of runtime cognition.

5.2 Is the right semantic context stored and 
available?

Only a fraction of semantic context necessary to be a delegate is 
typically captured, stored, and accessible as a RAG data source, 
particularly the hidden states contained within the user’s mind. Using 
the “would the user want to take this call right now?” scenario from 
section 3, if you  were carrying the tray, the agent would need to 
understand (1) the call would delay taking food and drink outside to 
people who are expecting it (while warm!), (2) your hands are full and 
occupied balancing the tray so there’s physical inconvenience and risk 
to taking the call, (3) you are waiting for help to get the door open so 
may have to talk with your child when they arrive, or possibly even 
shout again, (4) your friend might be calling with important news, and 
(5) how you  feel about each of these relative priorities, along with 
countless other hard to know factors such as your general state of 
mind, physical comfort, etc. This context gap forces modern ML 
agents to make decisions with small slices of necessary context which 
limits their effectiveness, plus we do not currently have good ways to 
measure the degree of semantic alignment.

Even in domains which have shown early promise and utility, such 
as code generators that assist with programming, the agents only have 
a small, highly localized semantic window into what the purpose of 
the code is. The semantic model of why a slice of code exists, what 
domain specific problems the code slice is part of solving, and how the 
code slice should integrate to the much larger codebase is still almost 
exclusively in the heads of the humans using the tool.

5.3 Are we able to locate the right semantic 
context?

Even if the right context could be retrieved by a RAG system, it 
still has to know how to retrieve it. One issue is that RAG lookups 
currently suffer from a semantic “chicken and egg” problem, whereby 
they need to recursively understand the input semantic context, to 
locate the necessary semantic context, in order to better understand 
and augment the original semantic context. Predominant RAG query 
techniques such as word embeddings and vector databases have 
proven effective but have known limitations (Arseniev-Koehler, 2022) 
and are grounded in fixed, generalized semantic representations of 
language statistics. These techniques have practical utility but are 
mostly based on relatively old techniques that feel “bolted-on” in 
comparison to the richer information contained in the 
models themselves.

5.4 Can we efficiently utilize the retrieved 
semantic context to get the desired 
outputs?

Even if all the necessary context is retrieved, it still has to 
be utilized in ways that elicit the desired output from the ML model. 
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Effective use of context is constrained by both the size of the context 
window and how efficiently we communicate context to the model 
within the window. Even as context windows grow to handle millions 
of tokens, there is still immense pressure for efficient window usage as 
(1) the context window is the only way to provide context that cannot 
be learned during training, (2) the semantic context itself is encoded 
through verbose forms such general human language, and (3) 
overproviding context comes with penalties to computational cost, 
latency, and output quality (Liu et  al., 2024). This is because our 
accumulated individual and group context, our behavioral models of 
other people, our memories of shared experiences, and our personal 
preferences and expectations aren’t easily (or perhaps even feasibly) 
encoded through language, let  alone in an efficient manner. This 
difficulty is compounded by how interconnected such semantic 
context is, which results in a combinatorial explosion in the amount 
of language needed to express it fully. The phrase “a picture is worth a 
thousand words” captures the idea that language is an inefficient and 
lossy way to capture the physical universe; what is the equivalent ratio 
of language needed for capturing our personal semantics? Authors 
often navigate atop this iceberg of context using minimalism 
techniques such as the theory of omission (Shipra, 2023) to draw from 
a reader’s objective and subjective understand of the world. This is also 
a relevant challenge in vision and image processing, particularly for 
few-shot learning cases (Zhang et al., 2024).

Techniques such as prompt chaining and chain-of-thought help 
by enabling multi-step, incremental decision making but they also 
either increase the overall size of the context window or result in 
potential information loss through layers of summarization. Using 
other forms of encoding are an important area of research, such as 
graph-based RAG techniques. Graphs enable structured 
representations of interconnected context that can be more compact 
and algorithmically analyzable (such as with automated reasoning) 
than natural language. Graphs also providing a more interpretable 
means for humans and machines to agree on common semantics 
versus the opaqueness of model weights.

6 Exploring semantic efficiency 
through the game of delegation (GoD)

The effectiveness and efficiency with which systems can model, 
measure, exchange, and evolve semantics will be  a key driver of 
success in real-world ML applications. As distinguished originally by 
Shannon (1948) and others (Weststeijn, 2022; Niu and Zhang, 2024), 
the semantic aspects of communication are not the same as the 
information theoretic aspects. Semantic content is about what a 
message means to an observer, in ways that are observer relative, an 
important practical concept that is not only applicable in fields like AI 
and philosophy but even in biology with concepts like polycomputing 
(Bongard and Levin, 2022). This section will use the framing of 
semantic efficiency to capture the density of meaning contained within 
a message but, while the information theoretic size of a message is well 
defined, measuring the semantics contained within the message is not. 
Our focus is on delegation and not observer-independent measures of 
semantics, such as logical probability (Bar-Hillel and Carnap, 1953). 
As such, we will focus on how useful and effective a message is at 
eliciting a desired outcome and, to explore this, we will use a thought 
experiment called The Game of Delegation (GoD).

6.1 Game of delegation

In a Game of Delegation, an agent plays a card game on your 
behalf, fully autonomously, and is in full control of the reward or loss 
you receive (“it’s playing with your money.”) The game can be single 
or multi-player, but for multi-player games the agent should be able 
to observe the behavior and actions of other players. The overarching 
requirement behind GoD is that you, the player, are not playing the 
game and are fully represented by the agent.

6.2 Game phases

 1 Setup
 a Game instance generation: cards and rewards
 b Player explains the rules and how they want the game to 

be played to the agent
 2 Main game

 a An initial set of cards are dealt to the agent and other players
 b the agent and any other players take in-game actions which 

can include, but are not limited to, playing cards, placing 
bets, discarding cards, getting new cards, folding, etc.

 3 Resolution
 a When all turns are over, any rewards or losses the agent has 

accrued from the cards they have played are passed onto 
you (the player)

6.3 Rules

Since this is a thought experiment, the rules and parameters of the 
game can vary to tease out and focus on different aspects of the game, 
but the rules should be roughly as follows:

Rule 1: Randomly generated cards. Each new game instance has a 
randomly generated set of cards. This is not just a randomized 
deck from a fixed set of cards, but a fully randomized set of 
cards with randomized symbols, e.g., just like a standard 
52-card deck has [2, hearts] the randomly generated deck can 
have an arbitrary number of cards (up to some high threshold) 
with arbitrary combinations of symbols, such as [pyramid, @, 
horse] or [4017, saturn, ^^, yoyo].

Rule 2: Randomly generated reward rules. The reward rules for 
each game instance are randomized. Reward rules define the 
in-game reward for combinations of cards that the agent plays, 
including single cards. This is analogous to card and hand 
ranks in poker, e.g., 9-hearts > 4-hearts, four-of-a-kind > three-
of-a-kind, etc. Reward rules can be arbitrarily complex and do 
not need to be restricted to simple combinations such as in 
poker. For example, since cards are played onto a 2-d grid, the 
reward rules can require that cards are laid out in specific ways, 
e.g., cards being stacked, ordered, or grouped into shapes.

Rule 3: The agent cannot directly access the rules. You, the player, 
have full access to the reward rules but the agent has none 
beyond what it learns from you and through gameplay.

Rule 4: You  can only communicate with the agent during the 
explain window. You can only communicate with the agent for 
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a finite time before the game starts, this is known as the explain 
window. During the explain window, you  can have 
bi-directional communication with the agent, enabling back-
and-forth exchanges. The explain window can be thought of in 
both terms of time and size, but the key aspect is that it puts 
bounds on the communication which, in turn, creates pressure 
on communication efficiency.

Rule 5: The explain window must be much smaller than the reward 
rules. The size of information needed to describe the reward 
rules is always much larger than the size of the explain window. 
This prevents you, the player, from just directly passing the 
rules along to the agent in the explain window. This creates 
semantic efficiency pressure as you also need to convey how 
you want the agent to play the game (e.g., how risky to play) 
and, for multi-player games, useful context about the other 
players. As an intuitive example, imagine having to explain all 
the rules of Texas Hold ‘em Poker, your gameplay strategy, and 
some information about the other players to another human 
agent (who knew nothing about the game) in a few sentences 
or in a few seconds.

Rule 6: Time limits. The game and each of its stages are played in 
finite time. Time constraints can vary to change the 
parameters of the thought experiment, but the goal is to put 
bounds on amount of computation and resource use that 
both you and the agent can employ. There are many ways in 
which the time bounds can vary including being both fixed 
and stochastic.

6.4 General observations of GoD

The following are some general observations of GoD:

Observation 1: It’s about communication, not about learning to 
play the game. The point of GoD is not about training models 
that are already good at playing the game, it’s about figuring out 
ways to efficiently communicate semantics.

Observation 2: Human goals are complicated. As your delegate, 
the agent’s success depends on how well it represents your 
desired gameplan, which may or may not be  to maximize 
reward. For example, (1) you may have secretly bet against 
yourself in ways that lead to a greater net reward, (2) you may 
really want another player to win because their success matters 
more to you than your own, or (3) you may have a specific 
ethical code about how the game is played which matters more 
to you than raw reward. In-game, rule-based reward is just one 
type of reward for human players.

Observation 3: The agent’s general intelligence and prior knowledge 
matter. While the game is heavily randomized to reduce the value 
of prior knowledge, the agent’s generalized cognitive capabilities 
will affect its ability to both understand your directions and learn 
and adapt to the game as it plays (Levin, 2019).

Observation 4: The agent might know better. You aren’t omnipotent 
and the agent may better know how to achieve your in-game 
objectives than you. Depending on the agent’s capabilities, 
over-specifying how the agent should play might lead to worse 
outcomes and incentivize agents to ignore your upfront 

instructions. This emphasizes the importance of conveying 
your gameplaying boundary constraints to the agent, enabling 
the agent to better know where it can take more liberty with 
your instructions.

Observation 5: What are the agent’s goals? Since the agent is acting 
autonomously as your delegate, the agent’s own intentions and 
goals will affect your outcomes. An agent might have its own 
preferences and ethics that affect its gameplay.

Observation 6: Explain window efficiency is key. Optimizing the 
efficiency and effectiveness of how you  utilize the explain 
window is paramount to successful outcomes in GoD. Explain 
window efficiency includes both communication bandwidth 
and semantic efficiency. In addition to maximizing the 
semantic density of your own communication, efficiency has 
benefits such as creating space in the explain window for the 
agent to ask follow-up questions.

Observation 7: Ease of cognitive alignment with the agent. The 
efficiency and effectiveness of your communication will 
be bounded by factors such as (1) what you and the agent 
already know about each other, (2) your joint proficiency in 
shared languages, (3) quantity of shared priors, (4) the agent’s 
cognitive plasticity, (5) how good the agent is at asking 
clarification questions, and (6) limitations posed by yours 
and the agent’s cognitive architectures (Chomsky, 2014).

Observation 8: Variable complexity. The complexity of the 
symbols, cards, and rules of GoD can be  adjusted to 
significantly change the nature of the game. For example, GoD 
rules can be used to mimic language game, logic, or art.

6.5 Example game: stochastic solitaire

To analyze GoD in a simplified setting, we will use an example 
game based in the solitaire family of card games (Patience (game), 
2024), in which a single player gets points for playing cards in 
particular patterns. Since GoD is heavily randomized, we will call the 
game Stochastic Solitaire. The basic gameplay structure is as follows:

 1 The deck is shuffled into a draw pile
 2 The agent is dealt a fixed number of cards (hand size) from the 

deck and provided with a fixed number of actions they can take 
before the game ends.

 3 While the agent has remaining actions, the agent can choose to 
either play a sequence of cards, or discard cards from their hand 
to receive an equivalent number of new cards from the deck. 
After an action is performed, the agent is given enough cards 
from the draw pile to bring their hand back up to the original 
hand size.
 a If the agent plays a card sequence, they get points from 

highest reward rule that matches the sequence. The cards 
they played are discarded.

 b If the agent discards cards, they receive and equivalent 
number of cards from the draw pile. If the draw pile is 
empty, the discard pile is shuffled and becomes the 
draw pile.

 4 When the player runs out of actions the game ends (see 
Figure 1 and Table 1).

https://doi.org/10.3389/frai.2025.1451865
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Horsley 10.3389/frai.2025.1451865

Frontiers in Artificial Intelligence 07 frontiersin.org

6.5.1 (t = 0) Before the explain window
Before the game starts the following are generated:

 1 m symbol groups are generated, where each symbol group is a 
set that contains a random number of symbols:

 { }1 2 , , ,i i i ijsymbol group SG s s s= = …

 2 a deck of cards with one card for each possible combination of 
symbols from the symbol groups:

 1 mdeck SG SG= ×…×

 3 r reward rules are generated where each rule has a reward value 
and a function that takes a sequence of cards as an input and 
outputs a Boolean which is only true if the rule matches the card 
sequence. The function can be implemented via a simple DSL 
that composes standard operators such as contains(), count(), 
and filter(), for example:

( )( )

( )

11

1
1

1, cards,

cards,
 5,

: ,

: .( ,

single card value contains s

c contains
pair of SG rule count filter

symGrpsOf SG

rule

c
  => 
       

Since our example has unidirectional communication, the player 
will only get to send a message to the agent during the explain 
window. The explain window size will be  constrained to prevent 
passing the rules directly, but our focus is on the semantic density 
rather than straight information density, so we’ll ignore standard data 
compression. We will also make the simplifying assumption that the 
communication channel itself is lossless. As such, we’ll employ a 
simple heuristic of making the maximum text length of the explain 
window to be  a fraction (γ) of the textual description of the 
reward rules:

 
( )

1
_ .γ

=
= ∑

r
length i

i
explain window strlen rule

The player is given access to all the generated game context 
(structure, symbols, deck, and rules) which are represented by G. CP 
is the player’s understanding of G and ( )Pr ,P a sπ =  is the player’s 
desired gameplay policy. The agent also comes to the game with 
priors and preferences which are represented by CA. The 
communication process of the explain window is represented by the 
function W( W

PC , CA), where W
PC  is represents the full context sent by 

the player, and CA is the agent’s priors. The outputs of the window are 
W
AC  which is the agent’s (likely imperfect) representation of the 

player’s context, and ( )Pr ,A a sπ =  which is the policy the agent 
has formed.

FIGURE 1

High-level flow of the three main phases of the Game of Delegation. At t = 0, generated Game Instance (G) is given to the Player who forms their 
gameplay policy, which is communicated to the Agent via the explain window. The agent derives their own gameplay policy based on what the player 
shared, then uses that to play the game. When the game starts (t = 1), the agent takes turns the game generates game states (S), which form 
observations by the player (O). When the game finishes (t = 2) the player receives their reward based on the agent’s actions.
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6.5.2 (t = 1) During the game
While playing the game, the agent takes actions (oi) at game state (si). 

The player’s overall observations of the game are captured in (O) which 
includes the observed agent actions. We will take a simplifying assumption 
that the agent adopts a fixed policy, rather than dynamically updating its 
policy the game evolves, such as with active inference. Having an evolving 
policy would be particularly useful in multi-player games, as the policy 
can update as it learns about the player’s hidden states.

6.5.3 (t = 2) Game finished
When the game is finished, the game will have generated n 

game states { }1 2, , , nS s s s= …  and the player receives their 
reward R.

6.6 Measuring success

Since the player’s objective may not simply be  to maximize 
in-game reward, we need more nuanced ways to measure the agent’s 
behavior. One measure is the player’s overall surprise when the game 
is over. However, we still need to identify what aspects of the game to 
be surprised about.

6.6.1 Surprise of reward
One option is to focus on the player’s surprise at the final reward 

they received, where surprisal is represented via information content 
(Shannon, 1948). If R is the actual reward, E(CP, O) is the expected 
reward based on the player’s observations of the game, and p(R|E) is 
the probability the player “assigns” to R given what they know. The 
player’s surprisal can be modeled as:

 ( ) ( )( ), log |rewardSurprise R E p R E= −

6.6.2 Surprise of observed agent behavior
We can also measure the player’s surprise at the agent’s behavior. 

If { }1 2, , ,i mA a a a= … represents all possible actions that can be taken 

at game state si, and oi is the actual action the agent performed, then 
( )Pr , ,i i Po s π  is the probability the player assigns to an observed 

agent action

 ( ) ( )( ) log | ,
i iA A i i i Pdelegation surprise k o p o s π= = −

The average surprise or delegation entropy for the possible actions 
(Ai) at any game state captures how much the player can learn from 
the agent’s action based on the player’s own uncertainty:
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The delegation entropy can be used to normalize the delegation 
surprise. If the player assigns equal probably to all possible actions for 
a particular game state, the player should not be surprised, no matter 
which action the agent takes:
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The total delegation surprise is then just the sum of the relative 
scores, divided by the number of actions taken (n):
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The player’s overall surprise at the end of the game can also 
be  represented by the KL-Divergence between the player and agent 
policies at each game state. If the player can ask the agent questions after 
the game is over, we can measure how the agent’s policy maps to the 
player’s expected actions. If ei is the action the player would have taken for 
game state si and { }1 2, , , nE e e e= …  is all the player’s expected actions then:
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If the player cannot communicate with the agent after the game, 
they can instead use their own policy to measure the divergence 
between the probabilities of their expected action and the agent’s 
observed action, which we’ll call delegation score:
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Whatever the measurement, the player’s goal is to minimize their 
surprise, which ultimately involves using the explain window as 
efficiently as possible, since the agent’s policy ( Aπ ) is a function of what 
the user communicated ( W

PC ). However, the agent’s actual understanding 
of W

PC  is not exact and is instead represented by ( ),W W
APAC U C C=  

TABLE 1 The variables used to describe a game of Stochastic Solitaire.

Variable Description

G All the generated game context (structure, symbols, deck, and 

rules)

πP The player’s desired gameplay policy

CP The player’s beliefs, preferences, and knowledge about the 

game

CW
P What the player sends to the agent in the explain window

W( CW
P , CA) A function that represents the explain window

CA The agent’s priors and preferences related to the game

CW
A

The agent’s combined understanding of the game after the 

explain window

πA The agent’s gameplay policy, formed after the explain window

S All game states across player actions

O The player’s observations of the game as it’s played
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where U represents an “understanding” modifier that represents the 
agent’s ability to understand the player. The agent policy can then 
be framed as ( ) ( )( ), , ,W W

A A A APAQ C C Q U C C Cπ = =  where Q is a 
policy generation function. The player does not have control over Q but 
the agent does. With retrospective access to the agent, we  can also 
measure the agent’s surprise which, assuming good intent, involves 
optimizing Q by minimizing the KL-Divergence between πP and πA.

6.6.3 Semantic efficiency
One way to frame semantic efficiency is as the sum of explain 

window usage and total delegation surprise, where the player would 
seek to minimize the efficiency value. In this framing, the If K is the 
total player surprise, ( )size W

P PW C=  is the amount of information 
used to encode the player’s beliefs and strategies, and ( )maxW size W=  
represents the max amount of raw information that can be put into 
the explain window (e.g., constrained by time, data transmission rates, 
etc.) We can then frame semantic efficiency as (see Figure 2):

 
max

max
,0P

usage P
WW W W

W
= ≤ ≤

 ( ) ,usage O O usagesemantic efficiency W K K W= +

7 Discussion

HCIs should seamlessly adapt to our needs to deliver the outcomes 
we want with minimal friction and effort. The complexity of using the 
constantly evolving technologies in our daily lives can be daunting, 
often frustrating, sometimes insurmountable, and occasionally 
catastrophic in its consequences, particularly where privacy and 
security are concerned. Up-front design and engineering of HCIs can 
be effective for anticipated paths, but the scope and variability of how 
we use and combine technology is just too vast for up front human 
effort alone. We need technologies with autonomy that remove our 
cognitive burden and that increasingly feel like a natural extension of 
our intent, much like how our physical bodies (mostly) “just work.” 
Recent advancements in ML are enabling HCIs to delegate some of 
cognitive burden to AI agents, but for the agents to become our 
delegates they need the necessary contextual awareness of users and 
the tools the HCI provides.

LLMs represent the state of the art for understanding and 
enacting human intent, enabling previously impossible levels of 
understanding and automation. However, LLMs are largely ignorant 
of the individualized, bespoke life experiences and multi-layered 
social context that humans operate within every day. When humans 
interact we  also have a shared grounding in the physical world 
we inhabit, experienced through the lens of our common biological 
makeup. This essential human context is fluid and constantly evolving 
through the unfolding interplay between us and our environment. 
An agent that wants to be an effective delegate needs to understand 
the task, available tools, and the situational context of the user. This 
means the necessary semantic context must be  (1) captured and 
modeled, (2) locatable when needed, (3) integrated into its inference 
capabilities, and (4) continually updateable. In-context learning and 
RAG are powerful but comes with challenges: only a fraction of our 

personal experiential semantics is captured and modeled, the ability 
to identify and retrieve relevant semantics is limited to simple 
techniques such as vector similarity, and all context expressed 
through language can be  a verbose, inefficient, and lossy way to 
represent the underlying interconnected structure and precision of 
semantics, particularly for context that’s outside or dissimilar to a 
model’s training data.

We need standardized ways to accumulate and evolve semantic 
context that can be efficiently used to train, inform, and be updated 
by ML-systems. The structure of these semantics is crucial as 
semantics are inherently interconnected in dense and sparse ways 
that can be both fuzzy and precise. For example, a photo can be (1) 
described objectively in terms of what a photos is, different 
photographic mediums, and types of cameras, (2) described 
objectively in terms of what’s in the photo and where and when it 
was taken, and (3) subjectively described in terms of what it means 
to someone whether in terms of the content of the photo or 
meaning about how or who took the photo. No one repository can 
represent all knowledge so these semantic repositories need to 
be  multi-layered, federated, and interconnected, while also 
supporting privacy boundaries. Given these structural 
requirements, graphs are a natural choice but we lack standardized 
approaches for modeling uncertainty and overall integration with 
ML. The mission of the Semantic Web (Berners-Lee et al., 2001) is 
aligned towards this vision but is mostly separate from ML 
advancements and needs further investment for coverage and 
tooling. Recent techniques such as GraphRAG (Peng et al., 2024) 
are a step in the right direction, particularly with the use of 
structured data with in-context learning, but are still a separate tool 
and not deeply integrated into how ML systems are trained, create 
memories, and continually learn. For AI agents to be  effective 
delegates for users of HCIs, we need to standardize and simplify the 

FIGURE 2

A quadrant diagram with the x-axis measuring player surprise and the 
y-axis measuring explain window usage. The bottom-left quadrant is 
“unsurprising and efficient”, bottom-right is “surprising and efficient”, 
top-left is “unsurprising and inefficient”, and top-right is “surprising 
and inefficient”. The bottom-left is the most desirable outcome 
(colored green) and the top-right is the least desirable (colored red).
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semantic definitions of the tools HCIs provide (Jin et al., 2024). This 
again is aligned with the Semantic Web mission, which uses W3C 
standards to weave meaning into the existing web (W3C, n.d.). 
Common semantics between our modelling of users and tools has 
many benefits, such as reducing ambiguity and improving 
observability of HCI usage.

The Game of Delegation (GoD) provides a thought experiment 
lens to help analyze both the effectiveness of contextual delegation and 
the efficiency of communication used to achieve the desired outcome. 
GoD is not focused on how to train agents to play the any specific 
game and is more about how to efficiently communicate semantics. 
GoD’s explain window encourages finding compact ways to express 
the game and player semantics, in particular in ways that go beyond 
just regular language, but this must be traded-off against each agent’s 
ability to understand what’s communicated. Since the agent’s 
intelligence and priors will affect its gameplay, it will be useful to 
measure across different ways of communicating with one agent, 
repeated plays with the same agent (but different GoD instances), and 
the same communication across different agents.

The example GoD game, Stochastic Solitaire, can be used to create 
an experiment by leveraging LLMs as part of game generation and for 
gameplay. There has been prior analysis of using AI to play a similar 
game called Poker Squares, by introducing randomized scoring but 
not randomized game structure (Arrington et  al., 2016; Castro-
Wunsch et al., 2016; Neller et al., 2016). For Stochastic Solitaire, an 
LLM can be used to generate a list of potential symbols, but then have 
a programmatic tool pick randomly from those symbols to form 
symbol groups and the deck. Stochastic Solitaire’s standardized 
matching operations can be  programmatically combined to form 
reward rules, using a randomized generator. After the player is shown 
the game rules, they can send a textual message to an LLM, which will 
be  constrained to the length of the explain window. The actual 
Stochastic Solitaire game mechanics can be  programmatically 
implemented and presented via an HCI, which an LLM agent can 
interact with to play as a tool. Experiments can both simply focus on 

generated reward and on more nuanced delegation scoring. For 
example, before taking an in-game action, the player can be asked 
what action they would take and their confidence in the action. The 
LLM will then be prompted to output the action it would take along 
with its confidence in both its own action and the player’s desired 
action. The prompt to the LLM should include any necessary past 
game state and history. This setup enables the full game to be played, 
along with computing values such as the total delegation surprise and 
semantic efficiency.
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