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assessment
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1Siemens Healthineers, Princeton, NJ, United States, 2School of Medicine, Duke University, Durham,

NC, United States

Introduction: Early identification of sepsis in the emergency department using

machine learning remains a challenging problem, primarily due to the lack of

a gold standard for sepsis diagnosis, the heterogeneity in clinical presentations,

and the impact of confounding conditions.

Methods: In this work, we present a deep-learning-based predictive model

designed to enable early detection of patients at risk of developing sepsis, using

data from the first 24 h of admission. The model is based on routine blood

test results commonly performed on patients, including CBC (Complete Blood

Count), CMP (Comprehensive Metabolic Panel), lipid panels, vital signs, age, and

sex. To address the challenge of label uncertainty as a part of the training process,

we explore two di�erent definitions, namely, Sepsis-3 and Adult Sepsis Event.

We analyze the advantages and limitations of each in the context of patient

clinical parameters and comorbidities. We specifically examine how the quality

of the ground truth label influences the performance of the deep learning system

and evaluate the e�ect of a consensus-based approach that incorporates both

definitions. We also evaluated the model’s performance across sub-cohorts,

including patients with confounding comorbidities (such as chronic kidney, liver

disease, and coagulation disorders) and thosewith infections confirmed by billing

codes.

Results: Our results show that the consensus-based model identifies at-risk

patients in the first 24 h with 83.7% sensitivity, 80% specificity, 36% PPV, 97%

NPV, and an AUC of 0.9. Our cohort-wise analysis revealed a high PPV (77%)

in infection-confirmed subgroups and a drop in specificity across cohorts with

confounding comorbidities (47-70%).

Discussion: Thiswork highlights the limitations of retrospective sepsis definitions

and underscores the need for tailored approaches in automated sepsis detection,

particularly when dealing with patients with confounding comorbidities.
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Introduction

Early detection of sepsis is critical in an emergency department (ED) setting to identify

patients with an elevated risk and treat them promptly. While several machine-learning-

based decision support tools have been developed to address this challenge, significant

obstacles remain (van der Vegt et al., 2023). A key limitation is that machine learning

models usually depend on labeled retrospective data. It is difficult to accurately identify
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sepsis given the lack of a pathological gold standard, as there is no

confirmatory test to diagnose sepsis.

Sepsis is defined as the body’s dysregulated response to

infection; it may lead to multiple organ failure that can be

fatal. Over the years, various guidelines have been developed to

identify sepsis based on laboratory values, vital signs, and other

clinical data. In 1991, a consensus conference (Bone et al., 1992)

characterized sepsis using the Systemic Inflammatory Response

Syndrome (SIRS) criteria, which identified sepsis as a presumed

infection accompanied by at least two of four clinical signs: fever

or hypothermia, tachycardia, tachypnea, and abnormal white blood

cell count. However, while SIRS criteria were effective in detecting

a generalized inflammatory response, they lacked specificity for

sepsis and often included non-infectious conditions. In 2001,

another consensus conference (Levy et al., 2003) expanded the

SIRS criteria by incorporating additional symptoms and organ

dysfunction variables. Under this revised framework, the presence

of four ormore of the expanded criteria due to a presumed infection

was indicative of sepsis. Recognizing the limitations of SIRS-based

definitions, a task force of experts in sepsis pathobiology, clinical

trials, and epidemiology established a new consensus definition in

2016 (Singer et al., 2016), published in the Journal of the American

Medical Association (JAMA). This consensus-based definition is

widely known as the Sepsis-3 definition, according to which a

change in a Sequential Organ Failure Assessment (SOFA) score of

greater than or equal to 2, along with suspicion of infection, was

indicative of Sepsis. The SOFA score quantifies the extent of organ

dysfunction in six different systems (respiratory, cardiovascular,

hepatic, coagulation, renal, and neurological). Organ dysfunction

could be due to an infection or existing co-morbid conditions such

as chronic kidney disease. Suspicion of infection was determined

as those who have received antibiotics and had either a urine or

a blood culture within a certain time window (see Materials and

methods). Although Sepsis-3 definition provides a guideline to

establish a suspicion of infection, several studies have shown that

when it is used for automated retrospective assessment of sepsis

cases, it has a low positive predictive value (Henning et al., 2017),

often identifying patients who have organ dysfunction that is not

necessarily due to an infection (Henry et al., 2019; Litell et al.,

2021). In response to a lack of a robust definition for retrospective

surveillance of sepsis, the CDC funded a consortium to create

an alternative set of criteria (Rhee et al., 2019). The criteria for

presumed infection are stronger with this definition, which requires

a blood culture and at least 4 days of antimicrobial therapy. Organ

dysfunction is established by a set of criteria that looks at the use

of vasopressors, ventilation, and a major change in lab values of

creatinine, bilirubin, and platelets (see Materials and methods).

Over the past two decades, numerous automated sepsis

detection studies have relied on the SIRS criteria, combined with

organ dysfunction parameters from either the SEP-1 or Sepsis-3

definitions, to identify sepsis cases (Ackermann et al., 2022; van der

Vegt et al., 2023; Fleuren et al., 2020; Liu et al., 2025). However, it

is important to recognize that these criteria, when used in isolation,

cannot definitively confirm the presence of sepsis (Henning et al.,

2017). As a result, models trained solely on these definitions

may incorporate inaccuracies that compromise their reliability. A

notable study by Henry et al. (2019) evaluated multiple approaches

for retrospectively identifying sepsis using electronic health record

(EHR) data, highlighting the limitations of the SEP-1 and Sepsis-

3 criteria. In response, they proposed a modified version of the

ASE criteria that excludes patients with comorbidities that could

independently contribute to laboratory abnormalities indicative

of organ dysfunction. While this exclusion strategy offers some

benefits, its effectiveness may be limited, as a substantial proportion

of sepsis patients are older adults with preexisting comorbidities

(Sabir et al., 2022) or have experienced trauma (Osborn et al., 2004;

van der Vegt et al., 2023).

In this paper, we compute both Sepsis-3 and ASE labels on a

retrospective dataset of 96,992 patients. We begin by analyzing the

performance of models trained with these two different labeling

systems. Through an automated chart review, we identify common

confounders in sepsis definitions. Using results from the models

trained with different labels, along with the insights from the

chart review, we create various patient subgroups. We demonstrate

that the Sepsis-3 definition is more likely to classify patients with

organ dysfunction due to preexisting comorbidities, such as chronic

kidney disease or liver cancer, without evidence of infection. We

then compare the performance of models with different labels

and show that a consensus-based approach, which integrates

both labeling criteria, yields more robust model performance.

Additionally, we evaluate our models across different subgroups,

with confounding conditions and confirmed infections. This

approach addresses cohort heterogeneity and allows for the future

development of more tailored models that incorporate patient-

specific clinical information, ultimately enhancing overall model

performance.

In summary, we highlight two key challenges in developing

automated sepsis prediction models. First, defining the ground

truth for sepsis retrospectively is inherently difficult, leading to

low replicability, which complicates model training and evaluation.

Second, the heterogeneity of sepsis presentations and the presence

of multiple confounders further exacerbate these challenges.

Materials and methods

Our approach involves training a deep neural network (DNN)

called Deep Profiler using a large and heterogeneous cohort of

patients. The input data includes a range of lab markers, vital

signs, and age, as outlined in Appendix Table 1. The model’s output

is a calibrated probability (Niculescu-Mizil and Caruana, 2005)

indicating the likelihood of a sepsis diagnosis in an emergency

department setting.

Training began by assigning a diagnosis label to each patient

based on either the Sepsis-3 or ASE criteria. The Sepsis-3 label

is assigned to patients who meet two conditions (Singer et al.,

2016): (1) there is a suspicion of infection, and (2) there is evidence

of organ dysfunction, defined by a change in the Sequential

Organ Failure Assessment (SOFA) score, within a 72-h window

from the time infection is suspected. Suspicion of infection is

indicated by a blood culture order within 24 h of antibiotic

administration or followed by antibiotics within 72 h. Organ
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FIGURE 1

Consort diagram indicating the process of identification of patients with Sepsis-3 label.

dysfunction is considered present when there is a change in the

SOFA score of greater than or equal to 2 within 48 h before or

24 h after the onset of suspicion. The SOFA score is calculated

by aggregating the individual organ function scores as defined by

the following:

• Respiratory SOFA (1-4 points as the ratio of PaO2 to FiO2

decreases).

• Cardiovascular SOFA (1-4 points as mean arterial pressure

decreases or vasopressor dependence increases).

• Liver SOFA (1-4 points as bilirubin increases).

• Coagulation SOFA (1-4 points as platelets decrease).

• Kidney SOFA (1-4 points as creatinine increases).

We do not compute the nervous system SOFA score, as

the Glasgow Coma Scale (GCS) score is not available in the

emergency department setting for the MIMIC-IV dataset (Johnson

et al., 2020). The detailed SOFA calculation is provided in

Appendix Table 8. The baseline SOFA score is assumed to be zero

unless additional information is available. The control class label is

assigned to patients who meet neither of the two criteria, i.e., they

do not have a suspicion of infection and do not experience a change

in SOFA greater than 2 at any point during their ED or hospital

stay.

The ASE label is assigned based on two sets of criteria: patients

who have a suspicion of infection and those who have organ

dysfunction. For suspicion of infection, patients must have at least

four qualifying days of antibiotic use that overlap with the suspicion

window surrounding a culture. The suspicion window starts 48 h

before the culture order and ends 48 h after. For organ dysfunction,

at least one of the following criteria must be met:

• Initiation of mechanical ventilator.

• Initiation of vasopressor.

• Doubling serum creatinine OR eGFR dropped by 50%.

• Doubling bilirubin.

• 50% decline in Platelet count or ≤ 100 cells/µL.

The data used for training is from the MIMIC-IV dataset

(Johnson et al., 2020, 2023; Goldberger et al., 2000). Figure 1 shows

the data flow for the Sepsis-3 label definition, while Figure 2 shows

the consort diagram for the ASE label. We begin with 148,128 adult

patients admitted through the emergency department, of which

96,992 patients have at least one of the following values:creatinine,

bilirubin, platelet counts, or PaO2/FiO2, which are crucial for

measuring organ dysfunction.

For the Sepsis-3 model, 10,175 patients are labeled as Sepsis-3

positive, and 75,712 patients are classified as controls. This cohort

is split into training and testing datasets. We further restrict our

analysis to cases with at least 50% non-null laboratory and vital

values for training. As a result, the final training dataset consists

of 32,823 patients (26,026 control and 6,801 Sepsis-3 labeled), and

the test dataset contains 8,111 patients (6,598 control and 1,513

Sepsis-3 labeled).

A 10-fold cross-validation method is employed to train 10

models based on the training data to predict Sepsis-3 labels. The

testing data is used solely for evaluation purposes and was not

involved in model training or selection. Similarly, a second set of
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FIGURE 2

Consort diagram indicating the process of identification of patients with ASE (Adult Sepsis Event) label.

models is trained to predict the ASE label. The training set for these

models includes 31,841 patients (27,939 control and 3,902 ASE

labeled). The test dataset consists of 7,837 patients (6,916 controls

and 921 ASE labeled). The features used in this model include

routine blood tests such as CBC (Complete Blood Count), CMP

(ComprehensiveMetabolic Panel), and lipid panels, along with vital

signs, age, and sex. We took into account the extent of missing

data in the MIMIC-IV database, and features with significantly

different levels of missingness between the control and disease

populations were excluded to minimize potential bias in the model.

The complete list of features used in the model is provided in

Appendix Table 1. All blood measurements are collected within a

specific patient encounter; no blood measurements are combined

from different encounters on different dates. Clinical evidence

supports that these values, measured at the time of admission to the

emergency department, are strong indicators of sepsis, as outlined

in the consensus paper on Sepsis definitions (Singer et al., 2016).

The training objective was to minimize the difference between

the true and predicted sepsis likelihoods as output by the

Deep Profiler. The network consists of a two-stage multi-

layer perceptron, with its detailed architecture described in

Singh et al. (2021). The input vector includes the median values

for each laboratory and vital sign measurement within the first

24 h of admission. We train the Deep Profiler, shown in Figure 3,

which learns a latent representation of the input vector and predicts

a severity score for sepsis. The latent vector is learned using

a variational autoencoder (VAE) framework, which generates a

probability distribution for each latent attribute corresponding to

an input instance. The encoder consists of three fully connected

layers with channel sizes of 64, 32, and 32, each followed by a

batch normalization layer and a leaky rectified linear activation

(leaky ReLU) with a slope of 0.2. A decoder reconstructs the

original vector from the latent representation to maintain the

integrity of the input features. The decoder comprises three fully

connected layers with channel sizes of 32, 32, and 64, each followed

by a batch normalization layer and a rectified linear activation

(ReLU). A classifier network is used to predict the likelihood of

sepsis. The network consists of four fully connected layers. The

first three layers each have 32 channels and are followed by a

rectified linear activation (ReLU). The fourth fully connected layer

maps the 32-channel feature to a single value (i.e., a calibrated

softmax output; Niculescu-Mizil and Caruana, 2005) in the range

of 0 to 1, where 0 indicates a very low likelihood of being

diagnosed with sepsis and 1 indicates a very high likelihood of

being diagnosed with sepsis in an emergency department. We

performed a grid search with 10-fold internal cross-validation on

the training data to identify the optimal hyperparameters. The best

results were achieved with a batch size of 128, a learning rate of

3× 10−4, and a dropout rate of 0.2. We also found that the model’s

performance was relatively stable, with minimal variation across

the range of hyperparameters tested. The Adam optimizer was used

for training.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1452471
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Chaganti et al. 10.3389/frai.2025.1452471

FIGURE 3

Model architecture for the deep profiler.

Results

The study was conducted on patients admitted through the

emergency department, as captured in the MIMIC-IV database

(Johnson et al., 2020, 2023; Goldberger et al., 2000). A total of

148,128 adults, aged 18 to 89 years, were included, of whom 96,992

had available laboratory data related to organ dysfunction. Only

the first admission for each patient was considered. Among the

96,992 patients, 10,175 had a positive Sepsis-3 label, and 75,172

had a negative label, as shown in Figure 1. Additionally, 11,645

patients were assigned neither a positive nor negative label during

training, as they could not be classified as Sepsis-3 positive based

on the official criteria, but later had either a sepsis billing code

(Appendix Table 4) or a positive culture. It was unclear whether

these patients should be classified as negative for sepsis.

Figure 2 illustrates the flowchart for the ASE cohort. Of these,

6,704 patients were labeled as positive, while 78,601 patients were

labeled as negative because they did not meet the criteria for organ

dysfunction, were never coded for sepsis, and never had a positive

culture sample. Another 11,687 patients were omitted from this

definition as they had a sepsis billing code or a positive culture,

even though they technically did not meet the criteria for an ASE

positive label.

Sepsis-3 and ASE labels concordance

Sepsis-3 and ASE use different criteria for presumed infection.

According to ASE criteria, 11,053 cases (11.4%) are identified with

presumed infections due to the administration of antibiotics for at

least four consecutive days within 48 h of a culture analysis. 7,024

subjects (7.2%) either died or were discharged before completing

a four-day antibiotic course and undergoing a culture test, thus

qualifying as presumed infection under ASE criteria. Notably,

both ASE and Sepsis-3 criteria align within these two categories.

However, there is disagreement in some cases: Of the 23,806

individuals who received less than four days of antibiotics, 8,335

(35%) had a culture order within 48 h, making them positive for

suspicion of infection according to Sepsis-3 criteria. This leads

to a divergence from the ASE criteria. Finally, 55,109 subjects

(56.6%) showed no suspicion of infection, a consistency across both

definitions.

The ASE definition aligns with the Sepsis-3 negative label in

95% of cases. However, of the 10,175 Sepsis-3 positive subjects,

only 5,308 (52.2%) are also positive by ASE criteria, while 4,867

(47.8%) show disagreement. To explore this discrepancy, we

conduct a large-scale statistical EHR phenotyping of the subjects

with disagreement in the positive label, utilizing tools provided

by pyPheWAS (Kerley et al., 2022). pyPheWAS employs PheCode

(Wu et al., 2019), an aggregation of ICD-9 and ICD-10 billing

codes, to identify clinical phenotypes.

Figure 4 presents log odds plots for clinical phenotypes

more likely to be found in each group. On the right side,

we observe conditions more common in patients with both

Sepsis-3 and ASE labels positive, such as infections, acute organ

failures, sepsis, and septicemia. On the left side, conditions

more common in patients with a Sepsis-3 positive label

but an ASE negative label include underlying kidney, liver,

and coagulation disorders, as well as hemorrhages. These

conditions could result in a higher SOFA score, leading to

misidentification as sepsis due to the higher SOFA score and

the weaker presumption of infection criteria in the Sepsis-3

definition.

Performance of the models for early risk
prediction

To predict the risk of sepsis, we trained two separate

models: one based on Sepsis-3 criteria and the other on ASE
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FIGURE 4

Results of the pyPheWAS analysis between the cohort of patients who are positive both with Sepsis-3 and ASE (right hand side) and the cohort

where Sepsis-3 is positive and ASE is negative (left hand side). The analysis shows which conditions are more likely in each of the two cohorts. We

see that chronic diseases which can result in organ dysfunction are more likely to be present in patients who have a positive Sepsis-3 label but

negative with ASE.

criteria. The features included in the models comprised laboratory

measurements and vital signs (see Appendix Table 1 for a complete

list). We employed a deep neural network (DNN) known as

the deep profiler (Singh et al., 2021) to train the models.

Each model demonstrated similar performance individually, with

both achieving an AUC of 0.88. When specificity was set to

80%, the Sepsis-3 model had a sensitivity of 80.5%, while

the ASE model had a sensitivity of 80.9%. Appendix Table 2

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1452471
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Chaganti et al. 10.3389/frai.2025.1452471

FIGURE 5

The ROC curves for the three ensemble models are shown here. The blue line represents the results from combining the output of 10 models trained

with the Sepsis-3 label, which has an AUC of 0.881. The orange line is used to represent the ASE ensemble model, with an AUC of 0.883. The

Consensus model is represented by the green line with an increased AUC of 0.900.

presents the performance metrics along with confidence intervals.

Although the performance differences between the two models

were not statistically significant, we observed a statistically

significant (Appendix Table 2b) improvement when the models

were combined, as shown in Figure 5. The ground truth for the

consensus model is derived from the combined Sepsis-3 and ASE

labels. The AUC increased to 0.9, and sensitivity rose to 83.7%.

We also performed SHAP analysis (Lundberg and Lee, 2017)

to determine the contribution of each feature to the models (see

Appendix Figures 1, 2). In the Sepsis-3 model, the top three most

important features were Calcium, Creatinine, and Platelet values—

two of which are used in the calculation of SOFA scores. Low

calcium levels are commonly observed in patients with sepsis

(Zivin et al., 2001). The three most important features for the

ASE model are calcium, glucose, and bicarbonate values. To

visualize the distribution of the classes in a low-dimensional

space, we computed UMAPs (McInnes et al., 2018), which help

to see how the significant lab values are distributed in relation

to the class labels. Figure 6 illustrates the distribution of Sepsis-

3 class and control labels in this reduced space. The region with

a high concentration of Sepsis-3 labels is associated with lower

calcium levels, elevated creatinine, and reduced platelet count.

Interestingly, we observe that regions with hypocalcemia, high

creatinine, and low platelet counts overlap with both Sepsis-3 and

control regions. This overlap indicates that there could be various

reasons for changes in these lab values. The value of the model

lies in correctly identifying when these changes are due to sepsis

rather than other confounding clinical factors. Similarly, Figure 6

shows that the region with a high concentration of ASE labels

corresponds to areas with lower calcium and bicarbonate levels and

elevated glucose.

Performance by cohort

Sepsis is a condition characterized by a dysregulated immune

response to severe infection, leading to sequential organ failure.

Identifying sepsis in the emergency department is particularly

challenging due to the diverse presentations of patients and

the lack of detailed patient history. A high SOFA score, which

indicates organ dysfunction, can result from either acute sepsis or

pre-existing chronic conditions such as chronic kidney disease or

liver disease, making it difficult to distinguish between the two in

real-time or retrospective analyses. This ambiguity complicates the

evaluation of sepsis prediction models. On the other hand, certain

cohorts are less prone to misclassification. For instance, patients

with confirmed infections (validated by infection-related billing

codes) or those with a confirmed Sepsis billing code are more likely

to have SOFA score increases that are attributable to sepsis, rather

than unrelated chronic conditions. This makes them more suitable

for robust model evaluation. To assess model performance across

these diverse subgroups, we analyze performance metrics based on

EHR phenotypes as follows:

• Cohorts with confounding conditions: these cohorts

encompass diseases capable of causing organ failure, leading
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FIGURE 6

UMAPs for the Sepsis-3 and ASE models showing the distribution of class labels and the top three labs contributing to the respective models. For the

model trained on Sepsis-3 labels: (a) Shows the distribution of the class labels (b) Shows the distribution of calcium lab values (c) Shows the

distribution of platelet counts. (d) Shows the distribution of creatinine lab values. For the model trained on ASE labels: (e) Shows the distribution of

ASE class labels. (f) Shows the distribution of calcium lab values. (g) Shows the distribution of bicarbonate values. (h) Shows the distribution of

glucose lab values.
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TABLE 1 Comparison of performance among di�erent sub-cohorts.

Training
Label

Entire Cohort Without confounders With confounders

Infection
billing code

only

Sepsis billing
code only

Chronic or
underlying

kidney disease

Hemorrhage
or chronic

coagulapathy

Chronic or
underlying
liver disease

Sepsis 3 AUC = 0.880

SE = 0.820 SE = 0.863 SE = 0.923 SE = 0.896 SE = 0.896 SE = 0.839

SP = 0.802 SP = 0.733 SP = 0.460 SP = 0.531 SP = 0.704

PPV = 0.357 PPV = 0.772 PPV = 0.223 PPV = 0.452 PPV = 0.351

NPV = 0.971 NPV = 0.836 NPV = 0.963 NPV = 0.922 NPV = 0.958

ASE AUC = 0.881

SE = 0.826 SE = 0.869 SE = 0.923 SE = 0.842 SE = 0.899 SE = 0.871

SP = 0.824 SP = 0.768 SP = 0.603 SP = 0.569 SP = 0.747

PPV = 0.387 PPV = 0.797 PPV = 0.268 PPV = 0.473 PPV = 0.397

NPV = 0.972 NPV = 0.848 NPV = 0.957 NPV = 0.929 NPV = 0.968

Sepsis 3 ASE

Consensus

AUC = 0.901

SE = 0.837 SE = 0.879 SE = 0.931 SE = 0.898 SE = 0.903 SE = 0.839

SP = 0.800 SP = 0.725 SP = 0.479 SP = 0.528 SP = 0.704

PPV = 0.359 PPV = 0.770 PPV = 0.229 PPV = 0.452 PPV = 0.351

NPV = 0.973 NPV = 0.851 NPV = 0.964 NPV = 0.927 NPV = 0.958

to elevated SOFA scores. There are three specific confounding

cohorts:

– Underlying or chronic kidney disease, which can impact

creatinine or BUN labs (detailed in Appendix Table 5).

– Chronic or underlying liver disease, affecting albumin,

bilirubin, PTT, or INR labs (detailed in Appendix Table 7).

– Hemorrhage or underlying coagulation conditions, which

may influence platelet counts, INR, or PTT (detailed in

Appendix Table 6).

• Cohort with Infection Billing Codes (detailed in Appendix 8).

• Cohort with All Test Subjects, excluding those with

confounding conditions.

• Cohort with Sepsis Billing Codes Only (detailed in

Appendix Table 4).

In Table 1, cohorts with confounding conditions show notably

higher sensitivity compared to the overall sensitivity. For this

comparison, we only included patients with Sepsis-3 and ASE

labels in agreement to eliminate potential bias from label errors

and provide a fair evaluation of how cohort characteristics and

individual labels impact the model. However, this results in a

higher false positive rate. Additionally, patients with underlying

kidney conditions have the lowest Positive Predictive Value

(PPV) at 22.9% for the consensus model. The cohort with

hemorrhage or coagulation conditions demonstrates the highest

sensitivity, reaching 90.3% for the consensus model. Within the

cohort of patients with infection billing codes, overall sensitivity

remains high at 87.9%, with a PPV of 77%. However, the

Negative Predictive Value (NPV) drops to 85.1%, as the model

occasionally misclassifies infected patients as having sepsis. The

cohort excluding confounding conditions shows higher specificity

compared to the entire test dataset. Notably, sepsis billing codes

are known for their low sensitivity but high PPV and specificity

(Henry et al., 2019). The models perform the best for the cohort

with sepsis billing codes, as shown in Table1, with the consensus

model achieving the highest sensitivity of 93.1%.

Discussion

Sepsis causes organ failure due to a dysregulated immune

response to infection and is typically assessed by evaluating the

function of multiple organs based on Sepsis-3 or ASE criteria.

Our investigation focused on the robustness of various sepsis

definitions and the efficacy of ensemble classifiers in identifying

patients with severe illness. In the emergency department,

distinguishing between acute sepsis and pre-existing chronic

organ dysfunction is particularly challenging without access to

patient history. Comorbidities such as chronic kidney disease,

liver disease, or coagulation disorders complicate retrospective

labeling and model evaluation. Our comprehensive analysis,

encompassing diverse patient cohorts, highlights the difficulty

of achieving consistent performance in a heterogeneous sepsis

population characterized by numerous confounding conditions.

The variable performance across different cohorts emphasizes the

need for tailored approaches in sepsis diagnosis, particularly when

managing patients with complicating comorbidities.

We note that the models presented in this paper are based on

the median of the laboratory values available in the first 24 h of

patient admission. In practice, emergency departments may have

already flagged some patients as being suspected of having sepsis,

as evidenced by the placement of culture orders for a subset of
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these patients. However, we chose to include all laboratory values

from the first 24 h for all patients to simplify the comparison of

model performance across different labels and comorbidity cohorts.

A causal evaluation of model performance, based on the timing

and presence or absence of culture orders, is provided in the

Appendix Table 3 for additional clarity. We show that the model

is able to identify 88% of the cases that receive a delayed culture

order within 24 h. This suggests that, regardless of the training

label used, the model’s output is informative for cases where care

providers might not have suspected an infection. Comparing our

model to existing sepsis models is inherently complex due to

differences in patient populations, clinical settings, and predicted

outcomes. Most existing models focus on hospital-onset sepsis

in ICU settings, which differs significantly from our focus on

community-onset sepsis in emergency departments. Retrospective

labeling inconsistencies further complicate these comparisons.

However, when compared to Liu et al. (2025), who used Sepsis-

3 criteria and the MIMIC-IV dataset in emergency department

settings, our model achieves a higher AUC (0.9 vs. 0.83).

Deploying predictive models in emergency settings also raises

significant ethical considerations. Performance variability across

sub-cohorts, particularly for patients with confounding conditions,

may lead to disparities in care. While SHAP analysis offers

valuable insights into feature importance, real-time interpretability

is crucial for building clinician trust and ensuring the model is

used effectively. Furthermore, false positives can contribute to

alert fatigue, potentially leading to unnecessary interventions and

misallocation of resources.

The insights from this paper contribute to the ongoing

discussion on sepsis management and emphasize the need for

individualized assessments, especially for patients with specific

underlying health conditions. In future work, we will focus

on prospective validation and implementing post-deployment

strategies, including real-time monitoring, clinician training, and

optimizing alert thresholds to balance sensitivity and specificity.

A key area of our future research will be the development of

personalized machine learning models tailored to each patient’s

unique comorbidities. The concepts and information presented in

this paper/presentation are based on research results that are not

commercially available. Future commercial availability cannot be

guaranteed.
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