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Introduction: Since optical coherence tomography angiography (OCTA) is non-
invasive and non-contact, it is widely used in the study of retinal disease detection. 
As a key indicator for retinal disease detection, accurate segmentation of foveal 
avascular zone (FAZ) has an important impact on clinical application. Although the 
U-Net and its existing improvement methods have achieved good performance 
on FAZ segmentation, their generalization ability and segmentation accuracy 
can be further improved by exploring more effective improvement strategies.

Methods: We propose a novel improved method named Feature-location Attention 
U-Net (FLA-UNet) by introducing new designed feature-location attention blocks 
(FLABs) into U-Net and using a joint loss function. The FLAB consists of feature-aware 
blocks and location-aware blocks in parallel, and is embed into each decoder of 
U-Net to integrate more marginal information of FAZ and strengthen the connection 
between target region and boundary information. The joint loss function is composed 
of the cross-entropy loss (CE loss) function and the Dice coefficient loss (Dice loss) 
function, and by adjusting the weights of them, the performance of the network on 
boundary and internal segmentation can be comprehensively considered to improve 
its accuracy and robustness for FAZ segmentation.

Results: The qualitative and quantitative comparative experiments on the three 
datasets of OCTAGON, FAZID and OCTA-500 show that, our proposed FLA-UNet 
achieves better segmentation quality, and is superior to other existing state-of-
the-art methods in terms of the MIoU, ACC and Dice coefficient.

Discussion: The proposed FLA-UNet can effectively improve the accuracy and 
robustness of FAZ segmentation in OCTA images by introducing feature-location 
attention blocks into U-Net and using a joint loss function. This has laid a solid 
theoretical foundation for its application in auxiliary diagnosis of fundus diseases.
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1 Introduction

With the rapid development and popularization of medical imaging equipment, the imaging 
technology has been widely used in clinical practice, and become an indispensable auxiliary 
means to carry out disease diagnosis, surgical planning, prognosis assessment and so on. Optical 
coherence tomography angiography (OCTA) (Kashani et al., 2017) is a new non-invasive fundus 
imaging technology, which uses light interference to obtain vascular structure and blood flow 
information, and provide high resolution vascular imaging. In recent years, OCTA has been 
widely used in clinical diagnosis of various eye diseases, such as macular region disease, diabetic 
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retinopathy, and retinal vascular obstruction. These eye diseases are 
related to the size and morphological changes of foveal avascular zone 
(FAZ) (Chui et al., 2012), which is surrounded by continuous capillary 
plexus of the retina, and does not have any capillary structure itself. It is 
an important area for the formation of fine visual function. The changes 
in its shape and surrounding capillary density reflect the degree of 
ischemia of the macula, and are closely related to retinal vascular 
diseases, such as diabetic retinopathy and retinal venous obstruction. For 
the three eye-related conditions, namely normal, diabetes and myopia 
(Balaji et al., 2020), diabetic eyes have a statistically significant increase 
in FAZ area compared to normal eyes. Similarly, the FAZ area increases 
and the blood vessel diameter decreases in myopia, especially in high 
myopia. Therefore, the changes in the area and morphology of FAZ can 
provide an important basis for clinical diagnosis of diabetes and myopia. 
The accurate segmentation of FAZ in OCTA images is crucial for 
diagnosis of fundus diseases.

In early days, many classical methods are proposed for FAZ 
segmentation. For example, the methods based on threshold 
segmentation (Liu et  al., 2022), region growth (Ghassemi and 
Mirzadeh, 2007) and morphological operation (Yang et al., 2016) can 
be used to segment FAZ, by setting appropriate thresholds or using 
local features of images. However, these methods may have some 
limitations when dealing with complex image conditions. To further 
improve the segmentation performance, some methods based on 
traditional machine learning algorithms are proposed, such as Markov 
Random Fields (MRF) (Bourennane, 2010) and Support Vector 
Machine (SVM) (Alam et al., 2019), where hand-crafted features and 
traditional classifiers are used for segmentation. Nevertheless, the 
segmentation accuracy is usually limited by the selection of features 
and the capability of classifiers.

In recent years, with the development of deep learning technology, 
fundus image segmentation methods based on deep learning have 
achieved great success. A typical example is the segmentation method 
using U-Net (Ronneberger et al., 2015; Sherwani and Gopalakrishnan, 
2024), which is a kind of full convolutional network with simple structure 
and beneficial effect. As this method processes the whole image in the 
same way and cannot give different attentions to different areas, various 
improvement methods based on U-Net are proposed later. The 
introduction of attention mechanism (Chen et al., 2022) in network 
models is one of the most effective ways, which can improve the accuracy 
and stability of segmentation by focusing on FAZ. These methods are 
often implemented by adding attention branches to models and adjusting 
the weights of features in channel and spatial dimensions, respectively. 
For instance, the channel attention branch can globally model the 
channels on feature maps and adjust the importance of each channel 
according to task requirements, to better express attention on FAZ. The 
spatial attention branch can consider the position relationship between 
pixels in spatial dimension to adjust the weight of each pixel in global 
feature maps, so as to accurately segment FAZ.

In addition to the improvement of the network structure, another 
improvement point is adopting a more appropriate loss function to 
optimize the model parameters, so as to improve the performance of the 
network model. For example, a hybrid loss function is used in DT-Net 
to improve the accuracy of retinal vessel segmentation (Jia et al., 2023), 
and a joint loss function is used in a multi-task segmentation framework 
for thyroid tumor segmentation (Yang et al., 2023).

Inspired by these strategies, it is very promising to obtain a novel 
method, by incorporating more effective attention mechanisms into 

U-Net, and using a more appropriate loss function that can further 
improve the accuracy of FAZ segmentation.

2 Related works

The methods for FAZ segmentation of OCTA images are mainly 
divided into classical methods, traditional machine learning methods 
and deep learning-based methods.

Among classical methods, the threshold segmentation (Liu et al., 
2022) is a simple and commonly used method to segment FAZ based 
on pixel threshold. Each pixel is compared with a pre-defined 
threshold, and once the pixel value is greater than the threshold, it is 
marked as belonging to FAZ. Its segmentation result can be further 
optimized by subsequent morphological operations. The segmentation 
method based on region-growing (Ghassemi and Mirzadeh, 2007) 
utilizes the similarity between seed points and adjacent pixels, where 
a seed point is first selected, and then the FAZ is gradually expanded 
by comparing the similarity of adjacent pixels to the seed point. This 
method requires appropriate similarity measurement and seed point 
selection. The method based on morphological operation (Yang et al., 
2016), such as corrosion, dilation, open and close operations, 
processes images to extract structures of interest, which achieves a 
good segmentation effect for objects with obvious morphological 
features. The frequency domain analysis method (Liu and Li, 2019) is 
to segment FAZ based on Fourier transform or wavelet transform 
equal frequency domain analysis technology, which can distinguish 
between vascular and non-vascular areas by extracting frequency 
information. The two-stage image processing method proposed by 
Díaz et al. (2019a) is based on FAZ positioning and contour extraction, 
which can handle detailed information well. Although these classical 
methods have made some progress, there are still limitations, such as 
inaccurate boundary due to poor image quality, confusion between 
FAZ and non-perfusion region, segmentation error when there is 
wrong layer projection, and cannot adapt well to complex image 
scenes and shapes.

In terms of traditional machine learning methods, the method 
proposed by Simó and Ves (2001) uses a statistical Bayesian 
segmentation for FAZ detection in digital retinal angiograms, which 
provides a global segmentation, i.e., veins, arteries and fovea are 
obtained simultaneously. The method proposed by Alam et al. (2019) 
employs an AI system containing an SVM classifier model and utilizes 
a hierarchical backward elimination technique to identify optimal-
feature-combination for the best diagnostic accuracy and most 
efficient classification performance. Another method proposed by 
Bourennane (2010) first uses singular value decomposition (SVD) to 
improve signal to noise ratio, then applies MRF for FAZ segmentation, 
which achieves an encouraging result as a first approach for location 
and evolution of FAZ in retinal images. These machine learning-based 
methods on FAZ segmentation usually rely on hand-crafted features 
and prior knowledge, which are difficult to adapt to the complexity 
and diversity of FAZ, especially in the segmentation of low-quality 
images or diseased areas, and are prone to missegmentation or 
missing segmentation.

Among deep learning-based methods, U-Net (Ronneberger 
et  al., 2015; Sherwani and Gopalakrishnan, 2024) is a landmark 
network structure for medical image segmentation, which is formed 
by concatenating feature maps of its encoder branch with feature 
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maps of its decoder branch via skip connections. Subsequently, a 
variety of improved networks based on this structure are proposed. 
MED-Net proposed by Guo et  al. (2018) is the first deep neural 
network used for avascular zone detection in OCTA images, which 
consists of encoders and decoders with multi-scale blocks to capture 
features at different scales. An automatic superficial FAZ 
segmentation and quantification method proposed by Guo et  al. 
(2019) to classify each pixel into superficial FAZ or non-superficial 
FAZ class. Subsequent applied largest connected-region extraction 
and hole-filling to fine-tune the automatic segmentation results. 
Another customized encoder-decoder network incorporates a 
boundary alignment strategy with boundary supervision proposed 
by Guo et  al. (2021) to automatically segment the superficial 
FAZ. BSDA-Net proposed by Lin et  al. (2021) uses boundary 
regression and distance graph reconstruction of two auxiliary 
branches to improve the performance of the main branch. A 
lightweight U-Net proposed by Li et al. (2020) is used to perform fast 
and robust FAZ segmentation. A segmentation network leveraging 
optical density and disease features ODDF-Net is proposed by Yang 
et al. (2024) for the simultaneous 2D segmentation of RC, RA, RV, 
and FAZ in 3D OCTA, which can learn the relationship between 
retinal diseases and the disrupted vascular structures, facilitating 
multi-object structure extraction. A multistage dual-branch image 
projection network (DIPN) is proposed by Liu et al. (2025) to learn 
feature information in B-scan images to assist geographic atrophy 
segmentation and FAZ segmentation. At present, these deep learning-
based methods on FAZ segmentation still faces the problems of 
insufficient segmentation accuracy and limited generalization ability, 
and still needs to be further improved.

In order to further improve the accuracy of FAZ segmentation 
while maintaining good generalization ability, we propose a novel 
improved method named FLA-UNet by incorporating feature 
attention and location attention into U-Net and using a joint loss 
function. The main contributions of this paper are as follows:

 1) An innovative feature-location attention block (FLAB) is 
designed by using a feature-aware block and a location-aware 
block in parallel for each feature map, where the feature-aware 
block can be used to adjust the weight of each feature map and 
enhance the expression ability of network, while the location-
aware block can obtain the global statistics of each feature map 
and better retain texture features and background 
information of FAZ.

 2) A novel improved method based on U-Net for FAZ 
segmentation is proposed by embedding a FLAB into each 
decoder of U-Net to integrate more marginal information of 
FAZ and strengthen the connection between target region and 
boundary information, and using a joint loss function 
consisting of the cross-entropy loss (CE loss) function and the 
Dice coefficient loss (Dice loss) function to realize the 
optimization of the whole continuity of image and the 
boundary recovery.

 3) A series of qualitative and quantitative comparative 
experiments on the three datasets of OCTAGON, FAZID and 
OCTA-500 are implemented to show the superiority of our 
method over other existing state-of-the-art methods in terms 
of visual segmentation effect and the MIoU, ACC and 
Dice coefficients.

3 Proposed method

Typically, for a basic U-Net structure used for object segmentation, 
the encoded low-level feature maps are concatenated with the 
corresponding high-level feature maps from the decoder branch, so 
the beneficial semantic information and redundant information are 
simultaneously input to its next layer, which may affect the 
segmentation accuracy of network. This problem can be solved by 
adding appropriate attention blocks into the main network. Besides, 
since the CE loss function used in U-Net is only concerned with the 
prediction result at pixel level, the generated segmentation boundary 
may be  discontinuous or jagged. This problem can be  solved by 
combining it with the Dice loss function, which is used to measure 
overlap in segmentation tasks and tends to produce smoother 
segmentation boundaries, to form a compound loss function to 
optimize the network model parameters for FAZ segmentation.

3.1 Improved network structure

The novel improved network for FAZ segmentation is designed by 
embedding an innovative FLAB into each decoder of U-Net, as shown 
in Figure 1. In the encoder branch, five encoders are used to extract 
features of the input image. Each encoder contains two identical 
convolution blocks, and each of which consists of a 3 × 3 convolution 
layer, a batch normalization (BN) layer, and a ReLU activation layer. 
Between every two encoders, a max pooling operation is used to 
implement downsampling, and eventually, the spatial dimension is 
halved by setting the value of stride length to 2 and the number of 
channels doubles by setting the number of output channels to twice 
the number of input channels. In the decoder branch, four decoders 
use the feature maps of encoders to progressively obtain the 
segmentation result. Each decoder contains a skip connection block, 
a FLAB, and two identical convolution blocks, each of which is the 
same as in its corresponding encoder. Between every two decoders (or 
the last encoder and the first decoder), the bilinear interpolation is 
used to implement upsampling, where low-resolution feature maps 
are upsampled to the same resolution as the encoder stage for feature 
fusion, which can accelerate the training speed of model and make the 
marginal contour clearer. In each skip connection block, the 
upsampled feature maps from the previous decoder (or the last 
encoder) are concatenated with the encoded feature maps from the 
encoder at current layer, and the concatenated feature maps are input 
into the corresponding FLAB. In each FLAB, the concatenated feature 
maps are processed to obtain more detailed features. Finally, the 
segmentation result is obtained by performing a 1 × 1 convolution 
operation on the output of the last level decoder, followed by using a 
Softmax function.

3.2 Feature-location attention block

For the concatenated feature maps F ∈ℝH × W × C, a FLAB contains 
C attention modules to process C feature maps separately, each 
attention module consists of a feature-aware block and a location-
aware block in parallel, as shown in Figure 2. For channel i (i ∈1, …, 
C), firstly, the feature weight WFi ∈ℝH × W × 1 and location weight WLi 
∈ℝH × W × 1 is calculated simultaneously to, respectively, represent the 
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important features in channel and different spatial positions. Then, 
WFi and WLi are fused together through a simple addition operation 
to ensure information interaction. Finally, the fused feature map is 
activated by a Sigmoid function and multiplied with the concatenated 
feature map in channel i to obtain an updated feature map with 
enhanced feature and location information. The updated feature maps 
from C channels are processed by performing a 3 × 3 convolution 
operation and halving the number of channels to serve as input of the 
subsequent convolution block.

For the concatenated feature map Fi ∈ℝH × W × 1 in channel i, 
firstly, an average pooling and max pooling operation is separately 
performed in the feature-aware block to produce the feature maps 
FAvg∈ℝH × W × 1 and FMax∈ℝH × W × 1. Then, FAvg and FMax are concatenated 
to preserve the texture and marginal features of the image. Finally, 
the feature map sequentially passes through a 1 × 1 convolution 

layer, a ReLU activation layer and a 1 × 1 convolution layer to 
generate the feature weight WFi ∈ℝH × W × 1. Its form is shown in 
Equation 1.

 
( )( )( )( )× ×= 1 1 1 1 Avg Maxconv ReLU conv conc ,atFiW F F

 
(1)

In the location-aware block, an average pooling and max pooling 
operation is separately performed on the concatenated feature map Fi 
∈ℝH × W × 1 in channel i, and the corresponding feature maps 
FAvg∈ℝH × W × 1 and FMax∈ℝH × W × 1 are concatenated similarly. Then, the 
feature map passes through a 7 × 7 convolution layer to capture the 
contextual information on location. The output of the convolution 
layer is the location weight WLi ∈ℝH × W × 1. Its form is shown in 
Equation 2.

FIGURE 1

Schematic representation of our improved network structure, which is formed by embedding a FLAB into each decoder of U-Net.

FIGURE 2

Schematic representation of a FLAB, which mainly consists of a feature-aware block and a location-aware block in parallel.
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( )( )×= 7 7 Avg Maxconv con ,catLiW F F

 
(2)

 = +Fi LiW W W  (3)

Finally, WFi and WLi are fused together through a simple addition 
operation to ensure information interaction, as shown in Equation 3.

3.3 Model optimization and 
implementation details

In order to optimize the parameters of improved network model 
for FAZ segmentation, the joint loss function LJloss (Jia et al., 2023; 
Yang et al., 2023) is adopted, which includes the CE loss function LCE 
and the Dice loss function LDice, as shown in Equation 4.

 = +Jloss 1 Dice 2 CEL w L w L  (4)

Where, w1 and w2 are the weight coefficients, LCE is used to 
promote the improved model to learn more accurate classification 
information and improve its generalization ability, while LDice is used 
to help it learn more accurate boundary segmentation information, so 
as to improve the segmentation accuracy. By combining these two loss 
functions, the robustness of the model and the accuracy of 
segmentation can be enhanced.

According to the experimental results, w1 is set to 0.8 and w2 is set 
to 0.2. LCE and LDice can be expressed by the following Equations 5 and 6.

 ( ) ( ) = − + − − CE log 1 log 1L y p y p  (5)

 
Dice

| |1 2
| | | |

X YL
X Y

∩
= − ×

+  
(6)

Where, y is the true label, representing the category of the sample, 
p is the prediction probability that the sample belongs to the positive 
class; X represents the positive pixel set in the prediction segmentation 
image and Y represents the positive pixel set in the real segmentation 
image, |X| and |Y| respectively indicate the size of the pixel set, while 
|X ∩ Y| represents the intersection size of two-pixel sets.

The proposed FLA-UNet is implemented with Pytorch framework 
using the NVIDIA A40 on Ubuntu, which has 48 GB memory and 
19.5 TFLOPs. The Adam optimizer is used with a learning rate of 0.01, 
and the model is trained for 200 epochs with a batch size of 8. Each 
original image is cropped to a size of 480 × 480 for model training. 
The ratio between the training set and testing set is 7:3. Each dataset 
is trained three times, and the final model is determined to be the 
model that has the optimal value of the selected performance metrics 
on the testing set.

4 Experiments and results

4.1 Datasets and evaluation metrics

In order to verify the performance of the proposed FLA-UNet, 
three public datasets OCTAGON (Díaz et  al., 2019b), FAZID 

(Agarwal et al., 2020) and OCTA-500 (Li et al., 2020) with high 
image quality are selected, and their details are listed in Table 1. 
OCTAGON contains 213 OCTA images with a resolution of 
320 × 320, 144 of which are normal with a field of view (FOV) size 
of 6 × 6 mm2, and 69 of which are diabetic with a FOV size of 
3 × 3 mm2. FAZID consists of 304 OCTA images with a resolution 
of 420 × 420, 88 of which are normal, 109 of which are myopic and 
107 of which are diabetic. All of these OCTA images in FAZID have 
a FOV size of 6 × 6 mm2. For OCTA-500, only three states of 
images are selected, which are normal, myopic and diabetic. These 
images are divided into two sub-datasets based on different 
resolutions and FOV sizes. In the sub-dataset with a resolution of 
400 × 400 and a FOV size of 6 × 6 mm2, there are 169 OCTA 
images, 91 of which are normal, 43 of which are myopic and 35 of 
which are diabetic. While in the sub-dataset with a resolution of 
304 × 304 and a FOV size of 3 × 3 mm2, there are 195 OCTA 
images, 160 of which are normal, only 6 of which are myopic and 
29 of which are diabetic. The corresponding sample images are 
shown in Figure 3.

The quantitative evaluation metrics used for FAZ segmentation 
are Mean Intersection over Union (MIoU), Accuracy (ACC) and Dice 
coefficient (Dice), which are defined in Equations 6–9.

 =
=

+ + +∑
0

1MIoU
1

k

i

TP
k FN FP TP  

(7)

 
+

=
+ + +

ACC TP TN
TP FP TN FN  

(8)

 
=

+ +
2Dice

2
TP

TP FP FN  
(9)

Where TP, TN, FP and FN represent the numbers of true 
positive, true negative, false positive and false negative pixels 
respectively, k represents the number of segmentation categories, 
which is set to 1.

TABLE 1 The details of three selected datasets.

Dataset FOV 
[mm2]

State Number Resolution

OCTAGON
6 × 6 Normal 144

213 320 × 320
3 × 3 Diabetic 69

FAZID 6 × 6

Normal 88

304 420 × 420Myopic 109

Diabetic 107

OCTA-500

6 × 6

Normal 91

169 400 × 400Myopic 43

Diabetic 35

3 × 3

Normal 160

195 304 × 304Myopic 6

Diabetic 29
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4.2 Qualitative comparison results

The comparative experiments with the existing state-of-the-art 
methods (Ronneberger et al., 2015; Gu et al., 2019; Mou et al., 2021; 
Zhou et al., 2020; Huang et al., 2020; Li et al., 2020; Hu et al., 2022; Li 
et  al., 2022) are carried out to prove the superiority of our 
proposed method.

The segmentation results of some examples using the existing 
representative methods [including the U-Net (Ronneberger et al., 
2015), CE-Net (Gu et al., 2019), CS2-Net (Mou et al., 2021), U-Net++ 
(Zhou et  al., 2020) and U-Net3 + (Huang et  al., 2020)] and our 

method are shown in Figure 4. We can see that U-Net just roughly 
segment the outline of FAZ, it is difficult for the basic U-Net to 
accurately segment the FAZ with irregular contours for myopic and 
diabetic patients. Despite the good segmentation result on the sample 
image from OCTAGON, where some sharp regions are also well 
segmented, CE-Net cannot segment the outline of FAZ well on the 
sample images from OCTA-500. The similar segmentation effect 
appears in CS2-Net. For U-Net++ and U-Net3+, the outlines of FAZ 
are affected by blood vessels, resulting in imprecise segmentation. 
Compared with the above segmentation results, our results have 
clearer outlines or margins, and are more similar to GT.

FIGURE 3

Some sample images from three selected datasets. The FAZ state is listed at the bottom of each column. On the left side of each row of images, the 
dataset where the picture is located and the field of view are marked.
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FIGURE 4

Qualitative comparison of segmentation results using different methods. The left-most and right-most columns, respectively, correspond to the input 
images and their given GT images. The name at the bottom of each column (except for the left-most and right-most columns) refers to the used 
segmentation method. On the left side of each row of images, the dataset where the picture is located, the field of view and the FAZ state are marked.
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4.3 Quantitative comparison results

The quantitative comparison results with the existing representative 
methods on OCTAGON, FAZID and OCTA-500 are shown in Table 2. 
We can see from Table 2, our method achieves the best segmentation 
performance on the first two datasets. The MIoU, ACC and Dice of our 
method on OCTAGON (3 × 3) is, respectively, 1.23, 1.51 and 0.8% 
higher than results of the suboptimal method. Similarly, the MIoU, ACC 
and Dice of our method on FAZID is, respectively, 0.55, 2.93 and 1.19% 
higher than results of the suboptimal method. Although the ACC of our 
method on OCTAGON (6 × 6) is 1.56% lower than that of U-Net3+, its 
MIoU and Dice is, respectively, 2.63 and 1.54% higher. On OCTA500 
(3 × 3), although both the MIoU and Dice of our method are lower than 
those of U-Net3+, the differences are small and the ACC of our method 
is still the highest. On OCTA500 (6 × 6), in spite of the slightly lower 
MIoU than the result of U-Net++, our method still achieves the highest 
ACC, and its Dice is 4.17% higher than that of the suboptimal method.

In order to further demonstrate the superiority of our proposed 
method, we  select some recent methods [including Automatic 
segmentation (Li et al., 2020), Joint-Seg (Hu et al., 2022), and RPS-Net 
(Li et al., 2022)] for comparison. Due to its universality and importance 
in medical image segmentation task, the Dice is selected as the indicator 
for further comparison. The comparison results on OCTAGON and 
OCTA-500 (6 × 6) are shown in Table 3. As can be seen from Table 3, 
our method achieves the highest Dice on all three datasets, which 
confirms its superiority over the selected recent methods.

4.4 Ablation studies

To demonstrate the effectiveness of FLABs and joint loss function 
used in our proposed method for FAZ segmentation, a series of 
ablation experiments are conducted. The results of quantitative 

comparisons for different ablation methods on three datasets are 
shown in Table 4.

As can be seen from Table 4, when FLABs are added in U-Net, the 
MIoU, ACC and Dice are improved in most cases. This proves that the 
strategy of introducing FLABs into U-Net is effective. When 
we further use the joint loss function to adjust the influence of the CE 
loss function and the Dice loss function, the MIoU, ACC and Dice are 
further improved in comparison with U-Net + FLABs in most cases. 
In terms of MIoU and Dice, our proposed FLA-UNet achieves the best 
performance on three datasets. Although the ACC of our proposed 
FLA-UNet is not the best on OCTAGON, it achieves the highest 
values on other two datasets. This proves that the strategy of using the 
joint loss function also helps to improve the segmentation accuracy.

Based on the above analysis, we can confirm that FLABs and joint 
loss function are effective, and without them, the model’s segmentation 
accuracy will deteriorate.

5 Conclusion

In this paper, a novel improved method named FLA-UNet is 
proposed for FAZ segmentation in OCTA images. On the basis of 
U-Net, by embedding an innovative FLAB into each decoder, the FAZ 
boundaries are accurately predicted; and by using the joint loss 
function, the optimization of the whole continuity of an image and its 
boundary recovery are realized. The effectiveness of FLABs and joint 
loss function used in FLA-UNet is verified by a series of ablation 
experiments conducted on OCTAGON, FAZID and OCTA-500. The 
quantitative comparisons with the existing representative methods on 
the three datasets show that our proposed FLA-UNet is superior to 
other methods, in most cases in terms of the MIoU, ACC and Dice 
coefficient. Accordingly, their qualitative comparison results also 
confirm this point. In addition, further quantitative comparisons with 

TABLE 2 Quantitative comparisons with the existing representative methods for FAZ segmentation.

Dataset FOV Metrics U-Net 
(Ronneberger 

et al., 2015)

CE-Net 
(Gu 

et al., 
2019)

CS2-
Net 

(Mou 
et al., 
2021)

U-Net++ 
(Zhou 
et al., 
2020)

U-Net3 + (Huang 
et al., 2020)

FLA-
UNet

OCTAGON

3 × 3

MIoU 80.29 74.59 75.31 82.56 83.05 84.28

ACC 95.31 87.57 91.38 95.03 96.14 97.65

Dice 86.16 84.24 84.57 86.52 87.43 88.23

6 × 6

MIoU 81.04 77.49 73.65 80.92 83.83 86.46

ACC 94.91 84.37 92.16 93.05 96.29 94.73

Dice 86.13 85.23 82.64 86.60 87.27 88.81

FAZID 6 × 6

MIoU 77.23 78.79 79.14 77.80 79.61 80.16

ACC 87.66 87.39 89.74 88.36 90.15 93.08

Dice 87.22 84.68 83.69 86.55 87.37 88.56

OCTA-500

3 × 3

MIoU 79.21 80.22 80.83 81.31 83.70 83.11

ACC 87.51 84.35 83.86 87.76 88.16 89.31

Dice 89.56 87.36 89.12 91.98 95.22 93.27

6 × 6

MIoU 76.88 80.93 79.31 81.79 80.16 81.55

ACC 85.42 83.39 81.71 86.32 87.50 88.64

Dice 87.70 84.68 83.69 88.58 87.44 92.75

The best results are marked in bold.
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some recent methods also demonstrate the superiority of our 
proposed FLA-UNet. It is worth noting that since the OCTA images 

may be affected by eye movement, improper device parameter setting 
or ocular lesions of patients, which leads to blur, motion artifacts and 
occlusion in the images, the input images may have poor quality, as 
shown in the left-most column in Figure 5. Although our proposed 
FLA-UNet can segment FAZ to a certain extent, there is still a 
significant difference between the segmentation results and their GT 
values, which will lead to some problems in clinical application. In 
further work, we will try to perform data preprocessing on the input 
image to enhance the edge contrast between FAZ and its background, 
to improve the accuracy and reliability of segmentation. Furthermore, 
the optimization and adjustment of the loss function will also 
be attempted, such as introducing different train losses commonly 
used for non-medical applications (Sherwani et al., 2020), to enhance 
the robustness and generalization of the model. It is believed that, the 
optimization and application of our proposed FLA-UNet for FAZ 
segmentation will improve the accuracy of auxiliary diagnosis of 
fundus diseases.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: https://ieee-dataport.org/open-access/octa-500. The 
source code is available at: https://github.com/LiCao-WHPU/
FLA-UNet.

TABLE 3 The Dice coefficients of quantitative comparisons with the recent methods for FAZ segmentation.

Method OCTAON FAZID OCTA-500

3 × 3 6 × 6 6 × 6 3 × 3 6 × 6

Automatic segmentation (Li et al., 2020) 85.00 83.62 85.15 88.64 85.21

Joint-Seg (Hu et al., 2022) 73.25 75.17 74.29 87.01 90.29

RPS-Net (Li et al., 2022) 87.47 86.61 84.98 84.00 91.68

FLA-UNet 88.23 88.81 88.56 89.31 92.75

TABLE 4 Quantitative results of different ablation methods for FAZ segmentation.

Dataset FOV Metrics U-Net U-Net + FLABs FLA-UNet

OCTAGON

3 × 3

MIoU 80.29 81.24 84.28

ACC 95.31 98.29 97.65

Dice 86.16 87.38 88.23

6 × 6

MIoU 81.04 83.47 86.46

ACC 94.91 95.75 94.73

Dice 86.13 87.62 88.81

FAZID 6 × 6

MIoU 77.23 79.65 80.16

ACC 87.66 92.11 93.08

Dice 87.22 88.31 88.56

OCTA-500

3 × 3

MIoU 79.21 80.26 83.11

ACC 87.51 87.41 89.31

Dice 89.56 91.46 93.27

6 × 6

MIoU 76.88 80.52 81.55

ACC 85.42 86.37 88.64

Dice 87.70 91.77 92.75

FIGURE 5

Qualitative results using our proposed FLA-UNet. The left-most 
column from top to bottom corresponds to the input images, 
respectively, under the conditions of blur, motion artifacts and 
occlusion. The middle column refers to the segmentation results 
using our proposed FLA-UNet. The right-most column refers to their 
given GT images from OCTAGON.
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