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Background: The anatomically constrained registration network (AC-RegNet), 
which yields anatomically plausible results, has emerged as the state-of-the-art 
registration architecture for chest X-ray (CXR) images. Nevertheless, accurate 
lung field registration results may be  more favored and exciting than the 
registration results of the entire CXR images and hold promise for dynamic lung 
field analysis in clinical practice.

Objective: Based on the above, a registration model of the dynamic lung field of 
CXR images based on AC-RegNet and static CXR images is urgently developed 
to register these dynamic lung fields for clinical quantitative analysis.

Methods: This paper proposes a fully automatic three-stage registration 
pipeline for the dynamic lung field of CXR images. First, the dynamic lung field 
mask images are generated from a pre-trained standard lung field segmentation 
model with the dynamic CXR images. Then, a lung field abstraction model is 
designed to generate the dynamic lung field images based on the dynamic lung 
field mask images and their corresponding CXR images. Finally, we propose a 
three-step registration training method to train the AC-RegNet, obtaining the 
registration network of the dynamic lung field images (AC-RegNet_V3).

Results: The proposed AC-RegNet_V3 with the four basic segmentation 
networks achieve the mean dice similarity coefficient (DSC) of 0.991, 0.993, 
0.993, and 0.993, mean Hausdorff distance (HD) of 12.512, 12.813, 12.449, and 
13.661, mean average symmetric surface distance (ASSD) of 0.654, 0.550, 0.572, 
and 0.564, and mean squared distance (MSD) of 559.098, 577.797, 548.189, and 
559.652, respectively. Besides, compared to the dynamic CXR images, the mean 
DSC of these four basic segmentation networks with AC-RegNet has been 
significantly improved by 7.2, 7.4, 7.4, and 7.4% (p-value < 0.0001). Meanwhile, 
the mean HD has been significantly improved by 8.994, 8.693, 9.057, and 7.845 
(p-value < 0.0001). Similarly, the mean ASSD has significantly improved by 4.576, 
4.680, 4.658, and 4.658 (p-value < 0.0001). Last, the mean MSD has significantly 
improved by 508.936, 519.776, 517.904, and 520.626 (p-value < 0.0001).
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Conclusion: Our proposed three-stage registration pipeline has demonstrated 
its effectiveness in dynamic lung field registration. Therefore, it could become 
a powerful tool for dynamic lung field analysis in clinical practice, such as 
pulmonary airflow detection and air trapping location.
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1 Introduction

Compared with computed tomography (CT), magnetic resonance 
imaging (MRI), positron emission tomography (PET), PET-CT, and 
other imaging devices, X-ray is the most widely used primary chest 
imaging technique as it is widely available, low-cost, fast imaging 
speed, and easy to acquire (Howell, 2016; Seah et al., 2021; Yang et al., 
2024). Notably, its characteristic of fast imaging speed (seconds after 
exposure) makes the X-ray the preferred chest imaging device to 
improve work efficiency and facilitate the diagnosis of routine, 
critically ill, and emergency settings in clinical chest imaging 
examinations (Yang et al., 2024; Yang et al., 2024).

Although traditional static chest X-ray (CXR) images can display 
gross lesions such as lung inflammation, lung lumps, tuberculosis, etc., 
they lack corresponding information on dynamic lung motion. 
Therefore, dynamic CXR images during free breathing are captured to 
analyze dynamic indicators during lung respiration, such as hemi-
diaphragm motion (Yang et al., 2024; Chen et al., 2022) and dynamic 
cardiothoracic ratio detection (Yang et al., 2024; Jafar et al., 2022). 
However, for dynamic CXR images, detecting the above dynamic 
indicators is not enough in clinical practice. It is more important to 
analyze further the detected dynamic indicators to provide reasonable 
clinical recommendations. Like the parametric response mapping in 
expiratory and inspiratory chest CT images (Deng et al., 2024; Wang 
et al., 2024), registration technology is indispensable to accurately 
determine the point-to-point relationship between the above dynamic 
indicators of these dynamic CXR images.

Based on the above, medical image registration technology is a 
crucial step and pillar problem in medical image analysis for aligning 
the source image (moving image) with the target image (fixed image) 
(Mansilla et al., 2020). Essentially, registration technology aims to find 
the deformation fields of the point-to-point correspondence between 
the source and target image. Specifically, the classic unsupervised 
technology for medical image registration, SimpleElastix (Marstal 
et al., 2016), is widely used in non-deformable tissues such as three-
dimensional (3D) brain and two-dimensional (2D)/3D bone X-ray/
CT/MRI images (Guo et al., 2022; Guo et al., 2022; Guo et al., 2022; 
Yang and Guo, 2024; Chang and Lee, 2021). Compared with 
SimpleElastix, the end-to-end deep convolutional neural network is 
constantly proposed for the intelligent processing of medical images 
(Iqbal et al., 2021; Iqbal et al., 2025; Yang et al., 2022). However, it is 
disappointing that most of the supervised registration techniques for 
chest medical images are focused on 3D CT images (Xiao et al., 2023), 
and only a few studies have been conducted on 2D X-ray images from 
2016 to the present (Nie et al., 2024). The only registration method, 
AC-RegNet, for chest CXR images during this period was proposed 
in 2020 (Mansilla et al., 2020). Specifically, this technique produces 
anatomically plausible results for 2D chest CXR images. The evaluation 

metrics of the proposed AC-RegNet surpass the AE-RegNet, 
CE-RegNet, RegNet, and SimpleElastix (Mansilla et al., 2020; Marstal 
et al., 2016). Therefore, the AC-RegNet has been considered the state-
of-the-art registration architecture for chest X-ray (CXR) images. 
Nevertheless, the above models have not achieved registration of 
dynamic lung field images collected during free or forced breathing. 
Therefore, this limits the quantitative analysis of the dynamic lung 
field based on the CXR images.

Accurate lung field registration results may be more favored and 
exciting than the registration results of the entire CXR images for 
dynamic lung field analysis in clinical practice, such as pulmonary 
airflow detection (Jiang et al., 2024) and air trapping location (Zhang 
et al., 2024). Specifically, the lung undergoes a non-rigid and complex 
process of contraction and expansion during breathing (Santhanam, 
2006). Compared to other static organs or tissues (such as the brain, 
bones, etc.), these non-rigid and complex deformations present 
significant challenges for lung field registration. Registration is even 
more challenging for dynamic chest CXR images projected in 2D 
further. In addition, the limited quantity and quality of dynamic CXR 
images also constrain the development of dynamic lung field 
registration. Despite the existing problems and challenges, we still 
hope to propose a registration model for dynamic lung field images 
based on the limited quantity and quality of static CXR images to 
expand the clinical application of dynamic chest CXR images and 
improve the accuracy of quantitative analysis based on lung fields.

However, the limited number of dynamic CXR images makes it 
challenging to train the AC-RegNet, which limits the clinical 
quantitative analysis of dynamic lung fields. Based on the above, 
we propose a fully automatic registration pipeline for the dynamic 
lung field of CXR images based on AC-RegNet architecture and static 
posteroanterior (P-A) CXR images. First, the dynamic lung field mask 
images are generated from a pre-trained standard lung field 
segmentation model with the dynamic P-A CXR images. Then, a lung 
field abstraction model is designed to generate the dynamic lung field 
images based on the dynamic lung field mask images and their 
corresponding P-A CXR images. Finally, we  propose a three-step 
registration training method to train the basic architecture 
(VectorCNN and differentiable warper) of AC-RegNet, obtaining the 
registration network of the dynamic lung field images. Our 
contributions in this paper are briefly described as follows:

 (1) Overall, this paper presents a fully automatic three-stage 
registration pipeline for the dynamic lung field of CXR images 
based on AC-RegNet, which effectively addresses the issue of 
the inability to register dynamic lung field images for the 
quantitative analysis of lung fields.

 (2) Essentially, this paper proposes a three-step registration 
training method that includes initial training, enhanced 
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training, and final training of the basic architecture of 
AC-RegNet based on static P-A CXR images, which fully 
utilizes static P-A CXR images to address the registration issue 
of these non-rigid and complex deformations in the dynamic 
lung field.

 (3) Clinically, the proposed fully automatic registration pipeline 
can effectively register dynamic lung field images to maintain 
lung field morphology alignment during respiration. Thus, this 
may become a valuable tool for further quantitative analysis of 
dynamic lung fields, such as pulmonary airflow detection, air 
trapping location, etc.

2 Materials and methods

2.1 Materials

Figure 1 intuitively shows the detailed distribution of the static 
and dynamic P-A CXR images in the six datasets. Meanwhile, 
Figure  1a intuitively shows each dataset’s proportion of normal, 
abnormal, and unclear cases. Besides, Figure 1b intuitively shows the 
proportion of pneumonia and tuberculosis cases in each dataset.

Specifically, five datasets, D1-D5, include 786 sets of static 
512 × 512 P-A CXR images, and dataset D6 includes 11 sets of 
dynamic 512 × 512 CXR images. These five datasets, D1-D5, are from 
publicly available datasets (Yang et  al., 2024). Besides, 11 sets of 
dynamic P-A CXR images of dataset D6 are selected from the case of 
CXR video. This case of CXR video collected from a female 
participant aged 53 during free breathing using a digital X-ray 

imaging system (manufacturer: Lanmage, collection mode: sequence 
point slice, exposure parameters: 78KV, 200 mA, 50 ms, and flat 
panel detector: IRAY) for chest photography. Besides, due to the 
unstable radiation dose during the startup of the digital X-ray 
imaging system, the 13 video frames and subsequent frames in the 
video image tend to stabilize. Therefore, these 11 sets of dynamic 
3,072 × 3,072 P-A CXR images are 13–23 video frames extracted 
from the CXR video. Then, to ensure that these dynamic P-A CXR 
images are the same size as static P-A CXR images, resize them to 
512 × 512.

This female participant was provided written informed consent, 
and the Guangzhou Medical University Ethics Committee in China 
approved this study (Grant number: 2023-hg-ks-24, Approval 
Date: 28 August 2023, Tel: +86–20-34153599, and Fax: +86–20- 
34153066).

2.2 Methods

Figure 2 shows the three-stage structure of the dynamic lung field 
registration pipeline of CXR images based on AC-RegNet architecture. 
First, the dynamic lung field mask images of the CXR images are 
generated by a pre-trained standard and pathological lung field 
segmentation network. Then, the dynamic lung field mages are 
abstracted based on the dynamic lung field mask images and their 
corresponding CXR images. Lastly, dynamic lung field images can 
be registered at different times based on the pre-trained AC-RegNet 
(registration network). The source code is available on the website: 
https://github.com/YingjianYang/Dynamic-Lung-Field-Registration.

FIGURE 1

Data distribution map of P-A CXR images in each dataset. (a) Case classification map of P-A CXR images in each dataset; (b) Abnormal case 
classification map of P-A CXR images in each dataset.
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2.2.1 Stage І: dynamic lung field segmentation
A cross-center and standard segmentation network of pathological 

lungs is crucial for extracting lung fields from dynamic P-A CXR 
images, effectively assisting the registration of dynamic lung 
field images.

Convolutional neural networks (CNNs) have become the leading 
technical means for medical image segmentation tasks (Yang et al., 
2022; Long et al., 2015; Badrinarayanan et al., 2017; Ronneberger 
et al., 2015; Yang et al., 2021; Jha et al., 2019; Wang et al., 2021; Zaman 
et al., 2024; Zeng et al., 2023; Duan et al., 2023), providing excellent 
technical support for registering dynamic lung fields. Our previous 
research separately utilized these cross-center 755 static P-A CXR 
mages and their lung field label images to train five basic CNNs, 
achieving corresponding cross-center and standard pre-train 
segmentation networks (Yang et al., 2024). These five CNNs include 
FCN (Long et al., 2015), SegNet (Badrinarayanan et al., 2017), U-Net 
(Ronneberger et al., 2015), ResU-Net++ (Yang et al., 2021; Jha et al., 
2019), and AttU-Net (Wang et al., 2021). However, the above research 
found that due to the lack of skip connections between each level in 
FCN, the pre-train lung field segmentation network based on FCN 
lacks detailed information and exhibits noticeable jagged edges at the 
edges of the lung field mask. Therefore, the other four pre-trained lung 
field segmentation networks can be  used to perform lung field 
segmentation tasks for dynamic P-A CXR images.

2.2.2 Stage ІІ: dynamic lung field extraction
Dynamic lung field images are extracted from the dynamic P-A 

CXR images to register dynamic lung field images. Like the lung field 
extraction of the chest CT images for calculating lung parenchyma 
parameters (Yang et al., 2021), locating chronic obstructive pulmonary 
disease (Yang et al., 2020), and calculating lung radiomics feature 
(Yang et al., 2022), the lung field extraction of dynamic P-A CXR 
images is based on the dynamic lung field mask images generated 
from the segmentation network and their CXR images.

The pixel values in the lung field of the dynamic lung field mask 
images should be set to 1 instead of the pixel values in the non-lung 
field to 0, obtaining the dynamic preprocessed lung field mask images. 
Then, the dynamic preprocessed lung field mask images are multiplied 
by their CXR images at the pixel level to obtain the dynamic lung field 

images. The above pixel values set maintain the grayscale of the 
dynamic lung field mask images consistent with the grayscale of the 
lung field in the CXR image.

2.2.3 Stage Ш: dynamic lung field registration
Since the AC-RegNet architecture was proposed, this technique 

has produced anatomically plausible results and has been considered 
the state-of-the-art registration architecture for CXR images (Mansilla 
et al., 2020; Nie et al., 2024). In this work, we extend the application of 
the AC-RegNet architecture to the registration of dynamic lung field 
images. Specifically, this basic architecture of AC-RegNet includes two 
main modules: VectorCNN and differentiable warper (Mansilla et al., 
2020; Jaderberg et al., 2015).

Figure 3 shows the training process of the registration network 
(AC-RegNet), including the encoder and basic architecture training. 
Specifically, we follow the previous training method of AC-RegNet. 
First, 787 static CXR images and their lung field label images were 
used to train the anatomically constrained network [a kind of 
denoising autoencoders (Vincent et al., 2010)] on the lung field. Then, 
the encoder module of this pre-train anatomically constrained 
network participates in the training of VectorCNN and differentiable 
warper in the basic architecture of AC-RegNet. Since the registration 
task is to achieve dynamic lung field registration, the heart labels are 
discarded during the training of this anatomically constrained network.

Specifically, we propose a three-step registration training method 
to train the VectorCNN and differentiable warper of AC-RegNet. The 
three cascaded steps separately complete the initial, enhanced, and 
final training of the basic architecture of AC-RegNet based on 787 
static P-A CXR images. First, any two pairs of these 787 static P-A 
CXR images (787 × 787–787 = 618,582) are combined. Then, they are 
configured as the source and target images for initially training the 
VectorCNN and differentiable warper (Step  2.1: Initial training 
process of VectorCNN and differentiable warper). Second, 787 static 
affine P-A CXR images are generated by affine transformation [a kind 
of data augmentation technique (Yang et al., 2024; Chlap et al., 2021)] 
of static P-A CXR images, respectively. Subsequently, 787 pairs of the 
source and target images are configured based on these 787 static P-A 
CXR images, and their affine images are used for enhanced training 
of the initial pre-trained VectorCNN and differentiable warper 

FIGURE 2

Three-stage structure of dynamic lung field registration pipeline of CXR images based on AC-RegNet architecture.
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FIGURE 3

The meticulous training process of the registration network, designed to instill confidence in the method’s reliability.
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(Step 2.2: Enhanced training process of VectorCNN and differentiable 
warper). Third, 787 pairs of static lung field images are abstracted 
from their static P-A CXR images using the dynamic lung field 
extraction method in Section 2.2.2. Then, 787 static affine lung field 
images are generated by the affine transformation of 787 pairs of static 
lung field images. Similarly, these static lung field images and their 
affine images are used for the final training of the enhanced pre-trained 
VectorCNN and differentiable warper (Step 2.3: Final training process 
of VectorCNN and differentiable warper). Notably, AC-RegNet 
introduces an anatomically constrained network to produce 
anatomically plausible results during training. Specifically, the 618,582 
(787 × 787–787) pairs of static lung field mask images participate in 
the initial training (Step 2.1 AC-RegNet_V1). Similarly, 787 pairs of 
lung field mask images and their affine images participate in the 
enhanced and final training (Step  2.2 AC-RegNet_V2 and 
Step 2.3 AC-RegNet_V3), respectively. It should be noted that the 
randomized parameters of affine transformation to each affine P-A 
CXR/lung field image and its corresponding affine lung field mask 
image should be consistent.

2.2.4 Loss function
During each training step, the loss values are meticulously 

calculated to adjust the VectorCNN and differentiable warper 
parameters based on the following comprehensive loss function 

( ), , , ,t t t It Jt t lossLoss I J S S T  shown in Equation 1 (Yang et al., 2024; 
Mansilla et al., 2020; Balakrishnan et al., 2018; Ferrante et al., 2018; 
Yeap et al., 2023).

 2

( , , , , )
( , ) ( )
( , )

2 ( ( ), ( ))

t t t It J t t loss

NCC t t t t loss TV t t loss

BCE t It t Jt loss

L t It t Jt loss

Loss I J S S T
NCC I T J TV T
BCE S T S

L enc S T enc S

λ λ
λ
λ

= − • + •
+ •
+ •





  (1)

Where train step t = 1,2,3 represents the initial, enhanced, and 
final training process of VectorCNN and differentiable warper, 
respectively; parameters It, Jt, SIt, SJt, and Tt separately represent the 
source image, target image, source mask, target mask, and deformation 
field at the tth train step; functions NCCt (), TVt (), BCEt (), and L2t () 
separately represent the Negative normalized cross-correlation (NCC) 
loss (Balakrishnan et al., 2018), total variation (TV) loss (Ferrante 
et  al., 2018), binary cross-entropy (BCE) Loss (Yang et  al., 2024; 
Mansilla et al., 2020), and L2 loss (Mansilla et al., 2020) at the tth train 
step. Meanwhile, the weight factors of functions NCCt (), TVt (), BCEt 
(), and L2t () are set to the previous default values. Therefore, the 
weight factors are: NCCλ =1.0, TVλ =5.0 × 10−5, BCEλ =1.0, 2Lλ
=1.0 × 10−1. Last, enc represents the pre-trained encoder.

Specifically, Equation 2 presents the precise mathematical 
expression of NCC loss, which accurately describes the degree of 
correlation between the source images and their target images 
(Balakrishnan et al., 2018).
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Where a non-zero factor ε is added to ensure that the denominator 
of NCC loss is not zero (ε = 1 × 10−5), and functions Cov () and Var () 
separately represent the covariance and variance calculation.
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Where function E () represents the expected value calculation.
Substitute these Equations 3–5 into Equation 2, obtaining 

Equation 6.
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The final simplified Equation 7 can be obtained using the expected 
linear property.
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The simplification process from Equations 6, 7 is shown in 
Equations 8–10.
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Specifically, Equation 11 shows the mathematical expression of 
TV loss, which smooths the source images’ registration images 
(Ferrante et al., 2018).
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Where function mean () represents the average operation and this 
function •  represents the absolute value operation; deformation field 
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, ,i j tt T⊂ ; n1 and n2 are the dimensions of 

deformation field tT  at the tth train step; txT  and tyT  separately represent 
the element of the x-axis and y-axis of the dimension of deformation 
field tT  at the tth train step.

Specifically, Equation 12 shows the mathematical expression of 
BCE loss for calculating the difference between these target mask 
images and the warped mask images generated by the source mask 
images and differentiable warper (Yang et  al., 2024; Mansilla 
et al., 2020).
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Where JtiS , JtiS , tiT , and N separately represent the ith source 
mask, target mask, deformation field at the tth train step, and the 
number of i.

Specifically, Equation 13 shows the mathematical expression of L2 
loss for calculating the difference between these encoding target mask 
images and their encoding warped mask images (Mansilla et al., 2020).
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Where function mean () represents the average operation and this 
function 2  represents the 2-norm operation; the encoding warped 
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( ),i j Jts enc S⊂ ; n × n is the size of the encoding warped mask images 
or target mask images.

Finally, this final-train network is applied to register the dynamic 
lung field images of 512 × 512 P-A CXR images in the dataset D6.

3 Experiments

This section conducts comprehensive ablation and comparison 
studies based on the above materials and methods. The purpose of 
these studies is to reflect the scientific validity and superior 
performance of our proposed registration model (AC-RegNet_V3) in 
a variety of scenarios.

3.1 Experimental design

Figure 4 shows the experimental design for the ablation study to 
compare the effects of different steps (AC-RegNet_V1, AC-RegNet_
V2, AC-RegNet_V3). Specifically, the fixed lung filed mask images are 
generated from the dynamic P-A CXR images based on a pre-trained 
lung field segmentation network [U-Net (Ronneberger et al., 2015)]. 
Besides, experiments 1 and 2 register any two pairs of these 11 
dynamic P-A CXR images. Unlike experiments 1 and 2, experiment 3 
registers any two pairs of these dynamic lung field images abstracted 
from the dynamic P-A CXR images based on their lung field 
mask images.

In addition, Figure  5 shows the experimental design for the 
comparing study to compare the performance of our proposed 
registration model and the SimpleElastix. Previous research confirmed 
that the evaluation metrics of the AC-RegNet have surpassed the 
AE-RegNet, CE-RegNet, and RegNet (Mansilla et al., 2020). Therefore, 
the evaluation metrics among these registration models above will not 
be  compared again in the experimental section. Specifically, four 
pre-trained lung field segmentation networks, SegNet (Badrinarayanan 
et al., 2017), U-Net (Ronneberger et al., 2015)], ResU-Net++ (Yang 
et al., 2021; Jha et al., 2019), and AttU-Net (Wang et al., 2021), to 
compare the effects of different lung field segmentation networks on 
the proposedAC-RegNet_V3. Besides, the widely used unsupervised 
technology for medical image registration, SimpleElastix (Marstal 
et  al., 2016) with the affine transform, is also compared with the 
proposed AC-RegNet_V3. Specifically, these four pre-trained lung 
field segmentation networks are separately applied to segment the 
lung fields of 11 sets of dynamic P-A CXR images, obtaining four sets 
of dynamic lung field mask images in Stage І. Then, four groups of 
dynamic lung field images are abstracted from the dynamic P-A CXR 
images based on their lung field mask images in stage ІІ. Ultimately, 
110 pairs of the source and target images are generated by combining 
any two pairs of these 11 sets of dynamic lung field images in each 
group. Last, the AC-RegNet_V3 and SimpleElastix are applied 
separately to register the dynamic lung field image groups in stage Ш.
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3.2 Evaluation metrics

Our previous study has displayed the evaluation metrics of these 
four pre-trained segmentation networks (Yang et al., 2024; Yang et al., 
2024). Therefore, this section mainly presents and compares the 
registration evaluation metrics of these dynamic CXRs, lung fields, 
and registration images.

After completing the registration of 110 pairs of the source and 
target images, four stand evaluation metrics, dice similarity coefficient 
(DSC) (Mansilla et al., 2020; Yeap et al., 2023), Hausdorff distance 

(HD) (Yang et al., 2024), average symmetric surface distance (ASSD) 
(Mansilla et al., 2020) and mean squared distance (MSD) (Rahunathan 
et al., 2005), are used to evaluate these dynamic CXR, lung field, and 
registration images. Besides, unlike medical images of non-deformable 
tissues such as brain and bone images (Guo et al., 2022; Guo et al., 
2022; Guo et al., 2022; Yang and Guo, 2024; Chang and Lee, 2021; Guo 
et  al., 2022), the lung fields in dynamic CXR images undergo 
anatomical folding during respiration. Therefore, the Jacobian 
determinant (Kuang, 2019) is excluded from this study to evaluate the 
registration performance.

FIGURE 5

Experimental design for the comparing study.

FIGURE 4

Experimental design for the ablation study.
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The DSC, HD, and ASSD focus on changes in lung field 
morphology based on their mask, while the evaluation metric MSD 
focuses on changes in the CXR or lung field image. Equations 14–17 
show the mathematical expression of these four stand evaluation 
metrics (Yang et  al., 2024; Mansilla et  al., 2020; Yeap et  al., 2023; 
Rahunathan et al., 2005).
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Where fixedI  represents the fixed lung filed mask image of the 
( ),fixedI x y , and ( ),fixedI x y  represents the fixed CXR image. Besides, 

/registered movingI represents the registered/moving lung filed mask 
image of ( )/ ,registered movingI x y , and ( )/ ,registered movingI x y  represents 

the registered/moving CXR image. Last, this function  represents 
the 2-norm operation, and N represents the pixel number of the fixed 
or registered/moving CXR image.

4 Results

This section comprehensively compares and presents the 
registration results of dynamic lung field images based on the above 
materials and methods.

4.1 Ablation study results

Table 1 separately shows the descriptive statistics on the evaluation 
metrics of the 110 pairs of images based on the ablation study. Besides, 
Figure 6 shows the visual distribution of the evaluation metrics of the 
Baseline and AC-RegNet_V1-V3 in the ablation study, respectively.

Specifically, DSC (mean ± SD), HD (mean ± SD), ASSD 
(mean ± SD), and MSD (mean ± SD) of these 110 pairs of dynamic 
CXR images (Baseline in Figure 6) are 0.919 ± 0.047, 21.506 ± 8.243, 
5.230 ± 2.947, and 612.654 ± 503.383, respectively. Meanwhile, the 
evaluation metrics of the 110 pairs of dynamic CXR images based on 
AC-RegNet_V1 achieve the DSC (mean ± SD) of 0.909 ± 0.049, HD 

TABLE 1 The evaluation metrics of the ablation study.

Evaluation metrics Network 110 pairs of images

Segmentation Lung field 
extraction

Registration

DSC (mean ± SD*)

× × × 0.919 (0.808–0.987) ± 0.047

× × AC-RegNet_V1 0.909 (0.762–0.980) ± 0.049

× × AC-RegNet_V2 0.933 (0.840–0.989) ± 0.034

U-Net [26] ✓ AC-RegNet_V3 0.993 (0.901–1.000) ± 0.016

HD (mean ± SD*)

× × × 21.506 (5.385–39.000) ± 8.243

× × AC-RegNet_V1 26.074 (6.083–43.046) ± 7.577

× × AC-RegNet_V2 20.755 (4.472–39.000) ± 7.642

U-Net [26] ✓ AC-RegNet_V3 12.813 (1.000–42.202) ± 11.460

ASSD (mean ± SD*)

× × × 5.230 (0.866–12.130) ± 2.947

× × AC-RegNet_V1 5.197 (1.245–10.690) ± 2.253

× × AC-RegNet_V2 4.243 (0.719–9.270) ± 2.116

U-Net [26] ✓ AC-RegNet_V3 0.550 (0.035–4.361) ± 0.911

MSD (mean ± SD*) × × × 612.654 (32.924–

2050.390) ± 503.383

× × AC-RegNet_V1 250.506 (46.376–

926.845) ± 212.108

× × AC-RegNet_V2 422.766 (23.824–

1688.810) ± 381.697

U-Net [26] ✓ AC-RegNet_V3 92.878 (9.438–616.990) ± 106.752

* SD, standard deviation.
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(mean ± SD) of 26.074 ± 7.577, and ASSD (mean ± SD) of 
5.197 ± 2.253, and MSD (mean ± SD) of 250.506 ± 212.108. The 
evaluation metrics of the 110 pairs of dynamic CXR images based on 
AC-RegNet_V2 achieve the DSC (mean ± SD) of 0.933 ± 0.034, HD 
(mean ± SD) of 20.755 ± 7.642, and ASSD (mean ± SD) of 
4.243 ± 2.116, and MSD (mean ± SD) of 422.766 ± 381.697. The 
evaluation metrics of the 110 pairs of dynamic CXR images based on 
AC-RegNet_V3 achieve the DSC (mean ± SD) of 0.993 ± 0.016, HD 
(mean ± SD) of 12.813 ± 11.460, and ASSD (mean ± SD) of 
0.550 ± 0.911, and MSD (mean ± SD) of 92.878 ± 106.752.

Compared with the evaluation metrics of the Baseline, only all the 
evaluation metrics of the AC-RegNet_V_3 have significantly improved 
(p-value < 0.0001). Specifically, compared with the mean DSC of the 
Baseline, this evaluation metric of the AC-RegNet_V1, AC-RegNet_
V2, and AC-RegNet_V3 is improved by −0.010 (↓), 0.014 (↑), and 
0.074 (↑), respectively. Besides, compared with the mean HD of the 
Baseline, this evaluation metric of the AC-RegNet_V1, AC-RegNet_
V2, and AC-RegNet_V3 is improved by 4.568 (↓), −0.751 (↑), 
and − 8.693 (↑), respectively. Meanwhile, compared with the mean 
ASSD of the Baseline, this evaluation metric of the AC-RegNet_V1, 
AC-RegNet_V2, and AC-RegNet_V3 is improved by −0.033 (↑), 
−0.987 (↑), and − 4.680 (↑), respectively. Last, compared with the 
mean MSD of the Baseline, this evaluation metric of the AC-RegNet_
V1, AC-RegNet_V2, and AC-RegNet_V3 is improved by −362.148 
(↑), −189.888 (↑), and − 519.776 (↑), respectively.

Compared with the evaluation metrics of the AC-RegNet_V1, all 
these evaluation metrics of the AC-RegNet_V2 and AC-RegNet_V_3 
have significantly improved (p-value < 0.0001). Specifically, compared 
with the mean DSC of the AC-RegNet_V1, this evaluation metric of 
the AC-RegNet_V2 and AC-RegNet_V3 is improved by 0.024 (↑) and 
0.084 (↑), respectively. Besides, compared with the mean HD of the 
AC-RegNet_V1, this evaluation metric of the AC-RegNet_V2 and 
AC-RegNet_V3 is improved by −5.319 (↑) and − 13.261 (↑), 
respectively. Meanwhile, compared with the mean ASSD of the 
AC-RegNet_V1, this evaluation metric of the AC-RegNet_V2 and 
AC-RegNet_V3 is improved by −0.954 (↑) and − 4.647 (↑), 
respectively. Last, compared with the mean MSD of the AC-RegNet_
V1, this evaluation metric of the AC-RegNet_V2 and AC-RegNet_V3 
is improved by 172.26 (↓) and − 157.628 (↑), respectively.

Compared with the evaluation metrics of the AC-RegNet_V2, all 
these evaluation metrics of the AC-RegNet_V3 have significantly 

improved (p-value < 0.0001). Specifically, compared with the mean 
DSC of the AC-RegNet_V2, this evaluation metric of the AC-RegNet_
V3 is improved by 0.06 (↑). Besides, compared with the mean HD of 
the AC-RegNet_V2, this evaluation metric of the AC-RegNet_V3 is 
improved by −7.942 (↑). Meanwhile, compared with the mean ASSD 
of the AC-RegNet_V2, this evaluation metric of the AC-RegNet_V3 
is improved by −3.693 (↑). Last, compared with the mean MSD of the 
AC-RegNet_V2, this evaluation metric of the AC-RegNet_V3 is 
improved by −329.888 (↓).

4.2 Comparing study results

Table 2 shows the descriptive statistics on the evaluation metrics 
of the 110 pairs of dynamic lung field registration images based on the 
comparing study. Meanwhile, Figure 7 shows the visual distribution 
of the evaluation metrics of the SimpleElastix and AC-RegNet_V3 
based on the four pre-trained segmentation networks. Last, 
Figures 8–11 show the visual differences among the dynamic CXR, 
lung field, and registration images of the source image (13) and target 
images (14–23) based on the SimpleElastixSegNet and AC-RegNet_
V3 with the different pre-trained lung field segmentation networks.

First, the DSC (mean ± SD) of these 110 pairs of dynamic lung field 
and registration images based on the SimpleElastixSegNet with the 
SegNet, U-Net, ResU-Net ++, and AttU-Net are 0.960 ± 0.014, 
0.959 ± 0.020, 0.963 ± 0.019, and 0.962 ± 0.017, respectively. Meanwhile, 
the DSC (mean ± SD) of these 110 pairs of dynamic lung field and 
registration images based on the AC-RegNet_V3with the SegNet, 
U-Net, ResU-Net ++, and AttU-Net are 0.991 ± 0.018, 0.993 ± 0.016, 
0.993 ± 0.017, and 0.993 ± 0.016, respectively. Compared with the mean 
DSC of 0.961 [(0.96 + 0.959 + 0.963 + 0.962)/4] based on the 
SimpleElastixSegNet, this mean evaluation metric of 0.993 based on the 
AC-RegNet_V3 is improved by 0.0315 (↑).

Second, the HD (mean ± SD) of these 110 pairs of dynamic lung 
field and registration images based on the SimpleElastixSegNet with 
the SegNet, U-Net, ResU-Net ++, and AttU-Net are 17.874 ± 8.186, 
19.147 ± 9.136, 17.478 ± 8.818, and 17.651 ± 7.486, respectively. 
Meanwhile, the HD (mean ± SD) of these 110 pairs of dynamic lung 
field and registration images based on the AC-RegNet_V3with the 
SegNet, U-Net, ResU-Net ++, and AttU-Net are 12.512 ± 11.338, 
12.813 ± 11.460, 12.449 ± 11.450, and 13.661 ± 11.760, respectively. 

FIGURE 6

Visual distribution of the evaluation metrics of the AC-RegNet_V1-V3 in the ablation study. (a) Dice similarity coefficient (DSC); (b) Hausdorff distance 
(HD); (c) Average symmetric surface distance (ASSD); (d) Mean squared distance (MSD).
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Compared with the mean HD of 18.038 based on the 
SimpleElastixSegNet, this mean evaluation metric of 12.859 based on 
the AC-RegNet_V3 is improved by −5.179 (↑).

Third, the ASSD (mean ± SD) of these 110 pairs of dynamic lung 
field and registration images based on the SimpleElastixSegNet with 
the SegNet, U-Net, ResU-Net ++, and AttU-Net are 2.590 ± 0.928, 

2.653 ± 1.279, 2.506 ± 1.278, and 2.525 ± 1.126, respectively. 
Meanwhile, the ASSD (mean ± SD) of these 110 pairs of dynamic lung 
field and registration images based on the AC-RegNet_V3with the 
SegNet, U-Net, ResU-Net ++, and AttU-Net are 0.654 ± 1.025, 
0.550 ± 0.911, 0.572 ± 0.992, and 0.564 ± 0.988, respectively. 
Compared with the mean ASSD of 2.569 based on the 

TABLE 2 The evaluation metrics of the comparing study.

Evaluation metrics Network 110 pairs of images

Segmentation Lung field 
extraction

Registration

DSC (mean ± SD*)

SegNet [25] ✓ SimpleElastix [10] 0.960 (0.926–0.983) ± 0.014

U-Net [26] ✓ SimpleElastix [10] 0.959 (0.926–0.983) ± 0.020

ResU-Net ++ [17] ✓ SimpleElastix [10] 0.963 (0.918–0.989) ± 0.019

AttU-Net [18] ✓ SimpleElastix [10] 0.962 (0.924–0.987) ± 0.017

SegNet [25] ✓ AC-RegNet_V3 0.991 (0.894–0.999) ± 0.018

U-Net [26] ✓ AC-RegNet_V3 0.993 (0.901–1.000) ± 0.016

ResU-Net ++ [17] ✓ AC-RegNet_V3 0.993 (0.898–1.000) ± 0.017

AttU-Net [18] ✓ AC-RegNet_V3 0.993 (0.905–1.000) ± 0.016

HD (mean ± SD*)

SegNet [25] ✓ SimpleElastix [10] 17.874 (7.071–37.947) ± 8.186

U-Net [26] ✓ SimpleElastix [10] 19.147 (4.472–39.217) ± 9.136

ResU-Net ++ [17] ✓ SimpleElastix [10] 17.478 (4.000–36.674) ± 8.818

AttU-Net [18] ✓ SimpleElastix [10] 17.651 (6.403–37.577) ± 7.486

SegNet [25] ✓ AC-RegNet_V3 12.512 (1.000–42.579) ± 11.338

U-Net [26] ✓ AC-RegNet_V3 12.813 (1.000–42.202) ± 11.460

ResU-Net ++ [17] ✓ AC-RegNet_V3 12.449 (1.000–43.139) ± 11.450

AttU-Net [18] ✓ AC-RegNet_V3 13.661 (1.000–43.278) ± 11.760

ASSD (mean ± SD*)

SegNet [25] ✓ SimpleElastix [10] 2.590 (1.115–4.795) ± 0.928

U-Net [26] ✓ SimpleElastix [10] 2.653 (0.762–5.812) ± 1.279

ResU-Net ++ [17] ✓ SimpleElastix [10] 2.506 (0.757–5.416) ± 1.278

AttU-Net [18] ✓ SimpleElastix [10] 2.525 (0.892–4.999) ± 1.126

SegNet [25] ✓ AC-RegNet_V3 0.654 (0.065–4.665) ± 1.025

U-Net [26] ✓ AC-RegNet_V3 0.550 (0.035–4.361) ± 0.911

ResU-Net ++ [17] ✓ AC-RegNet_V3 0.572 (0.025–4.825) ± 0.992

AttU-Net [18] ✓ AC-RegNet_V3 0.564 (0.019–4.702) ± 0.988

MSD (mean ± SD*) SegNet [25] ✓ SimpleElastix [10] 559.098 (156.463–

1212.521) ± 225.013

U-Net [26] ✓ SimpleElastix [10] 577.797 (127.297–

1200.305) ± 269.190

ResU-Net ++ [17] ✓ SimpleElastix [10] 548.189 (116.112–

1183.068) ± 254.528

AttU-Net [18] ✓ SimpleElastix [10] 559.652 (131.187–

1117.780) ± 247.021

SegNet [25] ✓ AC-RegNet_V3 103.718 (13.923–

658.279) ± 116.340

U-Net [26] ✓ AC-RegNet_V3 92.878 (9.438–616.990) ± 106.752

ResU-Net ++ [17] ✓ AC-RegNet_V3 94.750 (8.655–630.870) ± 94.750

AttU-Net [18] ✓ AC-RegNet_V3 92.028 (8.731–607.461) ± 109.771

* SD, standard deviation.
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SimpleElastixSegNet, this mean evaluation metric of 0.585 based on 
the AC-RegNet_V3 is improved by −1.984 (↑).

Last, the MSD (mean ± SD) of these 110 pairs of dynamic lung 
field and registration images based on the SimpleElastixSegNet with 
the SegNet, U-Net, ResU-Net ++, and AttU-Net are 559.098 ± 225.013, 
577.797 ± 269.190, 548.189 ± 254.528, and 559.652 ± 247.021, 
respectively. Meanwhile, the MSD (mean ± SD) of these 110 pairs of 
dynamic lung field and registration images based on the AC-RegNet_
V3with the SegNet, U-Net, ResU-Net ++, and AttU-Net are 
103.718 ± 116.340, 92.878 ± 106.752, 94.750 ± 94.750, and 
92.028 ± 109.771, respectively. Compared with the mean MSD of 
561.184 based on the SimpleElastixSegNet, this mean evaluation 
metric of 95.844 based on the AC-RegNet_V3 is improved by 
−465.341 (↑).

Figures  8–11 show the visual differences among the dynamic 
CXR, lung field, and registration images of the source image (13) and 
target images (14–23) based on the SimpleElastix and AC-RegNet_V3 
with the different pre-trained lung field segmentation networks. The 
registration effect of the proposed AC-RegNet_V3 comprehensively 
surpasses that of the SimpleElastix. Visually, the source image (13) can 
be well aligned with target images (14–23) based on each lung field 

segmentation network with AC-RegNet_V3. However, it is easy to 
observe a certain degree of tearing on the registration images (13_16, 
13_22, and 13_23 marked by the red box) based on each lung field 
segmentation network with AC-RegNet_V3.

5 Discussion

This section conducts the following discussion and points out this 
study’s limitations based on the experimental results.

5.1 Dynamic lung field registration driven 
by automatic segmentation technology

The automatic organ segmentation task based on CNN is the 
foundation and key to achieving quantitative analysis of regions of 
interest (ROI) in medical images, such as 3D chest CT images, 
magnetic resonance angiography images, and cardiac MRI images, etc. 
(Yang et al., 2024; Yang et al., 2024; Deng et al., 2024; Wang et al., 2024; 
Yang et al., 2021; Zaman et al., 2024; Zeng et al., 2023; Duan et al., 

FIGURE 7

Visual distribution of the evaluation metrics of the SimpleElastix and AC-RegNet_V3 based on the four pre-trained segmentation networks. (a) Dice 
similarity coefficient (DCS); (b) Hausdorff distance (HD); (c) Average symmetric surface distance (ASSD); (d) Mean squared distance (MSD).
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FIGURE 8

Visual differences among the dynamic CXR, lung field, and registration images of the source image (13) and target images (14–23) based on the 
SimpleElastixand AC-RegNet_V3 with the SegNet.
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FIGURE 9

Visual differences among the dynamic CXR, lung field, and registration images of the source image (13) and target images (14–23) based on the 
SimpleElastix and AC-RegNet_V3 with the Unet.
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FIGURE 10

Visual differences among the dynamic CXR, lung field, and registration images of the source image (13) and target images (14–23) based on the 
SimpleElastix and AC-RegNet_V3 with the ResU-Net ++.
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FIGURE 11

Visual differences among the dynamic CXR, lung field, and registration images of the source image (13) and target images (14–23) based on the 
SimpleElastix and AC-RegNet_V3 with the AttU-Net.
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2023). Similarly, this critical task also exists in the CXR images for ROI 
segmentation of the lung field.

Accurate lung field registration results may be more favored and 
exciting than the registration results of the entire CXR images for 
dynamic lung field analysis in clinical practice. The effective and 
accurate lung field segmentation of dynamic P-A CXR images will 
drive the development of dynamic lung field registration for clinical 
quantitative analysis. Meanwhile, the automatic lung field 
segmentation of the P-A CXR images is a data diversity problem, not 
a methodology problem (Yang et al., 2024). Therefore, our previous 
study trained several robust and standard segmentation networks of 
pathological lungs based on the CNN with cross-center static P-A 
CXR images and their diversity of disease. Besides, the data 
augmentation technology is applied to enrich the training set of the 
static P-A CXR images and relieve the engineering problem of 
generalization in these lung field segmentation networks (Yang et al., 
2024; Chlap et  al., 2021; Kiruthika and Khilar, 2024; Hasan and 
Abdulazeez, 2024). These robust and standard segmentation networks 
provide optional models for lung field segmentation in dynamic P-A 
chest CXR images. Based on the above, the proposal of these 
segmentation networks has laid a solid foundation for the lung field 
segmentation of cross-center dynamic P-A CXR images, allowing the 
subsequent registration of the dynamic lung fields. Actually, the 
registration evaluation metrics further indicate that these 
segmentation networks can meet the requirements for registering 
dynamic lung field images.

5.2 Dynamic lung field registration driven 
by static P-A CXR images

Compared with static P-A CXR images, dynamic CXR images 
have not been widely collected. Meanwhile, the lung undergoes a 
non-rigid and complex process of contraction and expansion during 
breathing (Santhanam, 2006). Compared to other static organs or 
tissues (such as the brain, bones, etc.), these non-rigid and complex 
deformations present significant challenges for lung field registration. 
Therefore, the limited number of dynamic CXR images and the 
non-rigid and complex deformations in the dynamic lung field make 
registering the dynamic lung fields challenging.

Based on the above, this paper fully utilizes static P-A CXR images 
to simulate the non-rigid and complex deformations in the dynamic 
lung field during the enhanced and final training of the basic 
architecture of AC-RegNet. Although AC-RegNet_V1 can produce 
certain deformations in dynamic images collected from the same 
person’s breathing process, it lacks learning from dynamic CXR 
images during training, resulting in its inability to register dynamic 
CXR images well. When the enhanced and final training of the basic 
architecture of AC-RegNet, we  are inspired by these lung field 
segmentation networks above and subsequently apply the affine 
transformation technology (Yang et  al., 2024; Chlap et  al., 2021), 
originally used for data augmentation for training segmentation 
networks, to simulate lung respiratory changes in the static P-A CXR 
and lung field images. Compared with AC-RegNet_V1, even if 
simulated dynamic images are added during the training process of 
AC-RegNet_2, the network needs to consider the registration of the 
entire CXR image, which imposes a great registration burden on the 
network. However, AC-RegNet_V3 eliminates this registration burden 

by focusing only on the lung fields. The significant improvement in 
registration evaluation metrics also benefits from the simulated 
changes in lung respiration mentioned above. Meanwhile, when the 
lung field changes too much during respiration, the lung field in the 
registration images may tear due to significant deformation of the 
source image for alignment with the target image. In addition, there 
is tearing in the lung field in the registered images, leading to a 
reasonably great value in HD of the evaluation metrics. However, 
we believe that this tearing is inevitable.

5.3 Providing the possibility for quantitative 
analysis of dynamic lung fields

The proposed fully automatic registration pipeline effectively 
registers dynamic lung field images to maintain lung morphology 
alignment during respiration. Thus, this may become a valuable tool 
for further quantitative analysis of dynamic lung fields, such as 
pulmonary airflow detection (Jiang et  al., 2024) and air trapping 
location (Zhang et al., 2024).

Specifically, the most direct way is to use registered images from 
adjacent time points to detect the trajectory of lung field movement, 
thereby revealing the trajectory rules in the respiratory process. 
Besides, like the air trapping location based on expiratory and 
inspiratory CT images (Deng et al., 2024; Wang et al., 2024), a pair of 
lung field images with the maximum and minimum areas can 
be  determined during a respiratory cycle. Then, the registration 
images based on this pair of lung field images can be used to locate the 
air trapping, which may provide a new avenue for diagnosing chronic 
obstructive pulmonary disease based on dynamic CXR images. 
Dynamic CXR images can also capture more images within one 
respiratory cycle compared to expiratory and inspiratory CT images 
at only 2-time points. Furthermore, the registration images based on 
adjacent CXR images can detect pulmonary airflow within the lung 
field (Jiang et al., 2024), which will undoubtedly help reveal pulmonary 
airflow movement patterns within a respiratory cycle.

5.4 Limitations

Although we propose a fully automatic three-stage registration 
pipeline based on static P-A CXR images that can effectively register 
dynamic lung field images to maintain lung field morphology 
alignment during respiration from an engineering perspective, our 
research still has certain limitations. We  do not have sufficient 
dynamic CXR images to further validate the proposed registration 
pipeline’s performance. Therefore, we encourage researchers to collect 
more dynamic CXR image images to validate the proposed registration 
pipeline’s performance and subsequently perform the quantitative 
analysis of dynamic lung fields.

6 Conclusion

We propose a fully automatic three-stage registration pipeline for the 
dynamic lung field of CXR images based on AC-RegNet with the static 
P-A CXR images, which effectively addresses the issue of the inability to 
register dynamic lung field images for the quantitative analysis of lung 
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fields. First, the dynamic lung field mask images are generated from a 
pre-trained standard lung field segmentation model with the dynamic 
CXR images. Then, a lung field abstraction model is designed to generate 
the dynamic lung field images based on the dynamic lung field mask 
images and their corresponding CXR images. Finally, we propose a 
three-step registration training method to train the AC-RegNet, 
obtaining the registration network of the dynamic lung field images. The 
results show that the mean evaluation metrics of registration images 
based on the four basic segmentation networks with AC-RegNet achieve 
the mean DSC of 0.991, 0.993, 0.993, and 0.993, mean HD of 12.512, 
12.813, 12.449, and 13.661, mean ASSD of 0.654, 0.550, 0.572, and 0.564, 
and mean MSD of 559.098, 577.797, 548.189, and 559.652, respectively. 
Therefore, our proposed three-stage registration pipeline has 
demonstrated its effectiveness in dynamic lung field registration and may 
become a powerful tool for dynamic lung field analysis in clinical practice.
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