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Understanding how language and linguistic constructions are processed in

the brain is a fundamental question in cognitive computational neuroscience.

In this study, we investigate the processing and representation of Argument

Structure Constructions (ASCs) in the BERT language model, extending previous

analyses conducted with Long Short-Term Memory (LSTM) networks. We

utilized a custom GPT-4 generated dataset comprising 2000 sentences,

evenly distributed among four ASC types: transitive, ditransitive, caused-

motion, and resultative constructions. BERT was assessed using the various

token embeddings across its 12 layers. Our analyses involved visualizing the

embeddings with Multidimensional Scaling (MDS) and t-Distributed Stochastic

Neighbor Embedding (t-SNE), and calculating the Generalized Discrimination

Value (GDV) to quantify the degree of clustering. We also trained feedforward

classifiers (probes) to predict construction categories from these embeddings.

Results reveal that CLS token embeddings cluster best according to ASC types

in layers 2, 3, and 4, with diminished clustering in intermediate layers and a

slight increase in the final layers. Token embeddings for DET and SUBJ showed

consistent intermediate-level clustering across layers, while VERB embeddings

demonstrated a systematic increase in clustering from layer 1 to 12. OBJ

embeddings exhibited minimal clustering initially, which increased substantially,

peaking in layer 10. Probe accuracies indicated that initial embeddings contained

no specific construction information, as seen in low clustering and chance-

level accuracies in layer 1. From layer 2 onward, probe accuracies surpassed

90 percent, highlighting latent construction category information not evident

from GDV clustering alone. Additionally, Fisher Discriminant Ratio (FDR) analysis

of attention weights revealed that OBJ tokens had the highest FDR scores,

indicating they play a crucial role in di�erentiating ASCs, followed by VERB

and DET tokens. SUBJ, CLS, and SEP tokens did not show significant FDR

scores. Our study underscores the complex, layered processing of linguistic

constructions in BERT, revealing both similarities and di�erences compared to

recurrent models like LSTMs. Future research will compare these computational

findings with neuroimaging data during continuous speech perception to better

understand the neural correlates of ASC processing. This research demonstrates

the potential of both recurrent and transformer-based neural language models

to mirror linguistic processing in the human brain, o�ering valuable insights into

the computational and neural mechanisms underlying language understanding.
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Introduction

Understanding how the brain processes and represents

language is a fundamental challenge in cognitive neuroscience

(Pulvermüller, 2002). This paper adopts a usage-based

constructionist approach, which views language as a system

of form-meaning pairs (constructions) that link patterns to specific

communicative functions (Goldberg, 2009, 2003). Argument

Structure Constructions (ASCs), such as transitive, ditransitive,

caused-motion, and resultative constructions, are particularly

important for language comprehension and production (Goldberg,

1995, 2006, 2019). These constructions are key to syntactic theory

and essential for constructing meaning in sentences. Exploring the

neural and computational mechanisms underlying the processing

of these constructions can yield significant insights into language

and cognition (Pulvermüller, 2012; Pulvermüller et al., 2021;

Henningsen-Schomers and Pulvermüller, 2022; Pulvermüller,

2023).

In recent years, advances in computational neuroscience

have enabled the use of artificial neural networks to model

various aspects of human cognition (Cohen et al., 2022).

Furthermore, the synergy between AI and cognitive neuroscience

has led to a better understanding of the brain’s unique

complexities (Krauss, 2024). AI models, inspired by neural

networks (Hassabis et al., 2017), have allowed neuroscientists

to delve deeper into the brain’s workings, offering insights

that were previously unattainable (Krauss, 2023). These

models have been particularly useful in studying how

different parts of the brain interact and process information

(Savage, 2019).

Among these neural network models, recurrent neural

networks (RNNs) (Krauss et al., 2019b; Metzner and Krauss,

2022; Metzner et al., 2024), and specifically Long Short-Term

Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997),

have shown considerable promise inmodeling sequential data, such

as natural language (Wang and Jiang, 2015). However, transformer

based large language models (LLM) like ChatGPT (Vaswani et al.,

2017; Radford et al., 2018) and BERT (Bidirectional Encoder

Representations from Transformers) (Devlin et al., 2018) have

shown remarkable capabilities in understanding and generating

human language.

BERT’s ability to capture grammatical and syntactic

information has been extensively studied in recent years. Research

has shown that BERT embeddings encode hierarchical structures

in language, including syntax and part-of-speech information,

through its layered attention mechanisms (Jawahar et al., 2019;

Tenney et al., 2019a). Structural probes, such as those developed

by Hewitt and Manning (2019), have revealed that BERT’s

internal representations align closely with syntactic tree structures,

indicating a deep understanding of grammatical relationships.

Additionally, attention analyses have demonstrated that specific

attention heads in BERT focus on core syntactic dependencies,

further highlighting its capability to model grammatical constructs

(Clark et al., 2019). These findings underscore BERT’s potential for

capturing complex linguistic phenomena, providing a foundation

for our investigation into its representation of Argument Structure

Constructions (ASCs).

Recent research has increasingly focused on the application

of construction grammar (CxG) in computational linguistics to

evaluate language models’understanding of linguistic abstractions

and constructions, particularly in understanding how ASCs are

represented and processed by large language models. For instance,

Bonial and Madabushi (2024) introduced a corpus targeting

varying schematicity in argument structure constructions (ASCs),

providing a benchmark for evaluating abstraction capabilities in

language models. Similarly, Zhou et al. (2024) analyzed how

large language models approach constructional phenomena and

demonstrated that their correct predictions may stem from

unintended biases. Other studies, such as Tseng et al. (2022)

and Chronis et al. (2023), have proposed methods for integrating

constructional knowledge into language models or exploring

semantic construal in embedding spaces. Misra and Mahowald

(2024) further demonstrated how rare phenomena in language can

be learned indirectly through related constructions, underscoring

the nuanced ways language models process linguistic phenomena.

Li et al. (2022) investigate the neural reality of ASCs within

transformer-based models, adapting psycholinguistic paradigms

to demonstrate that LLMs encode ASCs as linguistic units,

even associating them with meaning in semantically nonsensical

contexts.Weissweiler et al. (2023a) argue for the application of CxG

as a powerful lens to probe neural language models, uncovering

unique insights into their handling of structural and semantic

relationships. Sung and Kyle (2024) further evaluate pre-trained

language models, such as RoBERTa and GPT-4, in identifying

ASCs, highlighting their practical utility in linguistic research and

educational contexts. Meanwhile, Wilson et al. (2023) examine the

capacity of LLMs to generalize abstract linguistic relationships in

argument structures, revealing both their potential and limitations

in capturing deeper linguistic generalizations. Collectively, these

studies underscore the value of CxG in probing and evaluating

LLMs, shedding light on their representational and generative

capabilities for investigating linguistic constructions.

In previous studies using RNNs, particularly LSTM networks,

we have demonstrated the emergence of representations for word

classes and syntactic rules in the hidden layer activation of such

networks when trained on next-word prediction tasks (Surendra

et al., 2023). Furthermore, we showed that recurrent language

models effectively differentiate between various Argument

Structure Constructions (ASCs), forming distinct clusters for

each ASC type in their internal representations, with the most

pronounced clustering in the final hidden layer (Ramezani et al.,

2024). These findings suggest that neural language models can

capture complex linguistic patterns, making them valuable tools

and models for studying language processing in the brain. While

capturing lexico-semantic information is essential, interpreting

the meanings of constructions can enhance the human-likeness of

these models. Given that LLMs undergo extensive training on vast

datasets, they are expected to effectively grasp human linguistic

knowledge.

In this study, we extend our previous analyses of LSTM

networks by investigating how ASCs are processed and represented

in a large language model (LLM), in particular BERT, which, with

its bidirectional attention mechanism, allows for a deeper and

more nuanced understanding of linguistic context compared to
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traditional RNNs. By examining BERT’s internal representations

across its multiple layers, we aim to uncover how different ASCs

are encoded and whether these representations align with those

observed in LSTM networks.

To this end, we utilized a custom dataset generated by

GPT-4, consisting of 2000 sentences evenly distributed among

four ASC types: transitive, ditransitive, caused-motion, and

resultative constructions. We analyzed the embeddings produced

by BERT’s CLS token and specific token embeddings (DET, SUBJ,

VERB, OBJ) across its 12 layers. Our methodology involved

visualizing these embeddings using Multidimensional Scaling

(MDS) and t-Distributed Stochastic Neighbor Embedding

(t-SNE), calculating the Generalized Discrimination Value

(GDV) to quantify clustering, and employing feedforward

classifiers (probes) to predict construction categories from

the embeddings.

Our findings reveal distinct patterns of clustering and

information encoding across BERT’s layers, highlighting the

model’s ability to capture complex linguistic constructions.

These results are compared to those from LSTM-based

models, providing a comprehensive understanding of how different

neural architectures process linguistic information. Future research

will focus on validating these findings with larger language

models and correlating them with neuroimaging data obtained

during continuous speech perception, aiming to bridge the gap

between computationalmodels and neuralmechanisms of language

understanding.

Methods

Dataset creation using GPT4

To investigate the processing and representation of different

Argument Structure Constructions (ASCs) in a recurrent

neural language model, we created a custom dataset using

GPT-4. This dataset was designed to include sentences that

exemplify four distinct ASCs: transitive, ditransitive, caused-

motion, and resultative constructions (cf. Tables 1, 2). Each

ASC category consisted of 500 sentences, resulting in a total of

2,000 sentences.

Selection of argument structure constructions
The four ASCs selected for this study are foundational

to syntactic theory and represent different types of sentence

structures:

Transitive Constructions: Sentences where a subject performs

an action on a direct object (e.g., “The cat chased the mouse”).

Ditransitive Constructions: Sentences where a subject performs

an action involving a direct object and an indirect object (e.g., “She

gave him a book”).

Caused-motion Constructions: Sentences where a subject

causes an object to move in a particular manner (e.g., “He pushed

the cart into the garage”).

Resultative Constructions: Sentences where an action results in

a change of state of the object (e.g., “She painted the wall red”).

TABLE 1 Name, structure, and example of each construction.

Constructions Structure Example

Transitive Subject + Verb +

Object

The baker baked a

cake

Ditransitive Subject + Verb +

Object1 + Object2

The teacher gave

students homework

Caused-Motion Subject + Verb +

Object + Path

The cat chased the

mouse into the

garden

Resultative Subject + Verb +

Object + State

The chef cut the cake

into slices

TABLE 2 Name and token of each construction.

Constructions Tokens

Transitive CLS +Det +Subj +Verb +Det +Obj

+SEP

Ditransitive CLS +Det +Subj +Verb +IndObj

+Obj +SEP

Caused-Motion CLS +Det +Subj +Verb +Det +Obj

+Prep +Det +ObjPrep +SEP

Resultative CLS +Det +Subj +Verb +Det +Obj

+Prep +ObjPrep +SEP

Common CLS +Det +Subj +Verb +Obj +SEP

Generation of sentences
To ensure the diversity and quality of the sentences in our

dataset, we utilized GPT-4, a state-of-the-art generative pre-trained

transform-based language model developed by OpenAI (Vaswani

et al., 2017). The generation process involved the following

steps: Prompt Design: We created specific prompts for GPT-

4 to generate sentences for each ASC category. These prompts

included example sentences and detailed descriptions of the desired

sentence structures to guide the model in generating appropriate

constructions. Sentence Generation: Using the designed prompts,

we generated 500 sentences for each ASC category. The generation

process was carefully monitored to ensure that the sentences

adhered to the syntactic patterns of their respective constructions.

Manual Review and Filtering: After the initial generation, we

manually reviewed the sentences to ensure their grammatical

correctness and adherence to the intended ASC types. Sentences

that did not meet these criteria were discarded and replaced with

newly generated ones. Balancing the Dataset: To prevent any bias

in the model training, we ensured that the dataset was balanced,

with an equal number of sentences (500) for each of the four

ASC categories. Our approach aligns with recent efforts to evaluate

language models on construction grammar datasets, such as the

work by Bonial and Madabushi (2024), who developed a corpus to

examine abstraction capabilities in ASCs.

Text tokenization
To ensure comparability across different sentences and

construction types, we aligned corresponding tokens (e.g., “DET,”

“SUBJ,” “VERB,” and “OBJ”) within each sentence after tokenization
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TABLE 3 Frequency of word types in di�erent construction types.

Constructions Noun Verb Adjective Preposition Determiner

Caused-Motion 624 208 0 208 624

Ditransitive 624 208 0 0 208

Transitive 624 208 0 0 416

Resultative 624 208 208 208 416

using BERT’s tokenizer. This alignment corrected for positional

differences in the sentences, enabling a standardized comparison

of equivalent linguistic elements across constructions. Importantly,

we did not enforce uniformity in the number of tokens across

sentences or constructions. Instead, we focused on aligning key

tokens to their corresponding positions in the sentence, regardless

of variability in sentence structure or token count. In cases

where BERT’s tokenizer produced subword splits, we ensured

that the aligned tokens corresponded to the same linguistic

element (e.g., the head word of a phrase or the primary lexical

token). This alignment process allowed us to analyze construction-

specific patterns effectively while mitigating potential confounds

introduced by syntactic variability or differences in tokenization.

This standardization facilitated easier tracking and better

comparison by focusing on differences across constructions rather

than within them. The tokens used in our dataset include

Subject (Subj), Verb (Verb), Direct Object (Obj), Indirect Object

(IndObj), Object of Preposition (ObjPrep), Preposition (Prep), and

Determiner (Det). Additionally, the CLS tokens were added by the

BERT tokenizer for sentence classification and separation.

The resulting dataset, comprising 2,000 sentences represented

as token sequences, serves as a robust foundation for probing and

analyzing the BERT model (cf. Table 3). This carefully curated and

preprocessed dataset enables us to investigate how different ASCs

are processed and represented within the BERT, providing insights

into the underlying computational mechanisms.

For a subset of our analysis, we focused on common tokens

across all constructions to enable a consistent comparison of single

tokens within different ASCs. This approach ensured that our

analysis captured the essential structural and functional aspects

of each construction type, thereby providing a robust framework

for understanding how BERT processes and represents linguistic

constructions.

BERT architecture

For our study, we utilized the BERT (Bidirectional Encoder

Representations from Transformers) model, renowned for

its ability to process bidirectional context effectively (Devlin

et al., 2018). BERT’s architecture comprises multiple layers of

bidirectional transformer encoders, which enable it to consider

both left and right context at all layers, enhancing its performance

on a range of natural language understanding tasks.

The BERT model starts with tokenization, where text is split

into subword units using WordPiece tokenization, allowing the

model to handle a diverse array of words and word forms efficiently.

Special tokens CLS and SEP are added to the beginning and end

of each input sequence, respectively. The CLS token is used for

classification tasks and summarized the entire input, while the SEP

token denotes sentence boundaries.

In the embedding layer, input tokens are converted

into embeddings that combine token embeddings, segment

embeddings, and position embeddings. These embeddings are

then passed through multiple layers of transformer encoders.

BERT’s architecture includes 12 layers (in the base model) of

transformer encoders, each comprising self-attention mechanisms

and feedforward neural networks. Each encoder layer has multiple

attention heads, allowing the model to focus on different parts of

the input sequence simultaneously. The self-attention mechanism

computes a representation of each token by considering the

entire input sequence, capturing complex dependencies and

relationships.

The output of each transformer encoder layer provides

contextualized representations of the input tokens. For each token,

the final layer’s output represents its contextualized embedding,

which incorporates information from the entire input sequence.

The CLS token’s final layer embedding is typically used for

classification tasks, as it contains an aggregated representation of

the entire sequence.

BERT was pre-trained on a large corpus using masked language

modeling and next sentence prediction tasks, enabling it to learn a

rich representation of language. For our specific task, we utilized the

pre-trained BERTmodel and fine-tuned it on our custom dataset to

capture the nuances of Argument Structure Constructions (ASCs).

By leveraging BERT’s robust architecture, we aimed to gain

insights into how different ASCs are represented and processed

across its layers. This detailed examination of BERT’s internal

representations provided a comprehensive understanding of

the model’s ability to encode complex linguistic constructions,

facilitating comparison with recurrent models like LSTMs and

enhancing our knowledge of computational language processing.

Analysis of hidden layer activation

We assessed BERT’s ability to differentiate between the various

constructions by analyzing the activations of its hidden layers

and attention weights. Initially, the dataset underwent processing

through the “bert-base-uncased” model without any fine-tuning.

The model comprises 12 hidden layers, each containing 768

neurons. For each token, the activity of each layer was extracted

for further analysis.

Given the high dimensionality of these activations, direct

visual inspection is not feasible. To address this, we employed
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dimensionality reduction techniques to project the high-

dimensional activations into a two-dimensional space. By

combining different visualization and quantitative techniques, we

were able to assess the BERT’s internal representations and its

ability to differentiate between the various linguistic constructions.

Multidimensional Scaling (MDS)
This technique was used to reduce the dimensionality of the

hidden layer activations, preserving the pairwise distances between

points as much as possible in the lower-dimensional space. In

particular, MDS is an efficient embedding technique to visualize

high-dimensional point clouds by projecting them onto a 2-

dimensional plane. Furthermore, MDS has the decisive advantage

that it is parameter-free and all mutual distances of the points are

preserved, thereby conserving both the global and local structure of

the underlying data (Torgerson, 1952; Kruskal, 1964; Kruskal and

Wish, 1978; Cox and Cox, 2008; Metzner et al., 2021, 2023a, 2022).

When interpreting patterns as points in high-dimensional

space and dissimilarities between patterns as distances between

corresponding points, MDS is an elegant method to visualize high-

dimensional data. By color-coding each projected data point of a

data set according to its label, the representation of the data can be

visualized as a set of point clusters. For instance, MDS has already

been applied to visualize for instance word class distributions

of different linguistic corpora (Schilling et al., 2021b), hidden

layer representations (embeddings) of artificial neural networks

(Schilling et al., 2021a; Krauss et al., 2021), structure and dynamics

of highly recurrent neural networks (Krauss et al., 2019c,a,b;

Metzner et al., 2023b), or brain activity patterns assessed during e.g.

pure tone or speech perception (Krauss et al., 2018a; Schilling et al.,

2021b), or even during sleep (Krauss et al., 2018b; Traxdorf et al.,

2019; Metzner et al., 2022, 2023a). In all these cases the apparent

compactness and mutual overlap of the point clusters permits a

qualitative assessment of how well the different classes separate.

t-Distributed Stochastic Neighbor Embedding
(t-SNE)

This method further helped in visualizing the complex

structures within the activations by emphasizing local similarities,

allowing us to see the formation of clusters corresponding to

different Argument Structure Constructions (ASCs). t-SNE is a

frequently used method to generate low-dimensional embeddings

of high-dimensional data (Van der Maaten and Hinton, 2008).

However, in t-SNE the resulting low-dimensional projections

can be highly dependent on the detailed parameter settings

(Wattenberg et al., 2016), sensitive to noise, and may not preserve,

but rather often scramble the global structure in data (Vallejos,

2019; Moon et al., 2019). Here, we set the perplexity (number of

next neighbors taken into account) to 100.

Generalized discrimination value (GDV)

To quantify the degree of clustering, we used the GDV as

published and explained in detail in Schilling et al. (2021a). This

GDV provides an objective measure of how well the hidden layer

activations cluster according to the ASC types, offering insights into

the model’s internal representations. Briefly, we consider N points

xn=1..N = (xn,1, · · · , xn,D), distributed withinD-dimensional space.

A label ln assigns each point to one of L distinct classes Cl=1..L.

In order to become invariant against scaling and translation,

each dimension is separately z-scored and, for later convenience,

multiplied with 1
2 :

sn,d =
1

2
·
xn,d − µd

σd
. (1)

Here, µd = 1
N

∑N
n=1 xn,d denotes the mean,

and σd =
√

1
N

∑N
n=1(xn,d − µd)2 the standard deviation of

dimension d.

Based on the re-scaled data points sn = (sn,1, · · · , sn,D), we
calculate themean intra-class distances for each class Cl

d̄(Cl) =
2

Nl(Nl−1)

Nl−1
∑

i=1

Nl
∑

j=i+1

d(s
(l)
i , s

(l)
j ), (2)

and themean inter-class distances for each pair of classes Cl and Cm

d̄(Cl,Cm) =
1

NlNm

Nl
∑

i=1

Nm
∑

j=1

d(s
(l)
i , s

(m)
j ). (3)

Here, Nk is the number of points in class k, and s
(k)
i is the

ith point of class k. The quantity d(a, b) is the euclidean distance

between a and b. Finally, the Generalized Discrimination Value

(GDV) is calculated from the mean intra-class and inter-class

distances as follows:

GDV =
1

√
D





1

L

L
∑

l=1

d̄(Cl) −
2

L(L−1)

L−1
∑

l=1

L
∑

m=l+1

d̄(Cl,Cm)





(4)

whereas the factor 1√
D
is introduced for dimensionality invariance

of the GDV with D as the number of dimensions.

Note that the GDV is invariant with respect to a global scaling

or shifting of the data (due to the z-scoring), and also invariant with

respect to a permutation of the components in the N-dimensional

data vectors (because the euclidean distance measure has this

symmetry). The GDV is zero for completely overlapping, non-

separated clusters, and it becomes more negative as the separation

increases. A GDV of -1 signifies already a very strong separation.

Probes

Probes, a technique from the mechanistic explainability area of

AI, are utilized to analyze deep neural networks (Alain, 2016). They

are commonly applied in the field of natural language processing

(Belinkov, 2022). Probes are typically small, neural network-

based classifiers, usually implemented as shallow fully connected

networks. They are trained on the activations of specific neurons or

layers of a larger neural network to predict certain features, which

are generally believed to be necessary or beneficial for the network’s

task. If probes achieve accuracy higher than chance, it suggests that
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the information about the feature, or something correlated to it, is

present in the activations.

Here, we employed edge probing to analyze different tokens

using the methodology described by Tenney et al. (2019b). This

probing approach involves designing a classification model tailored

to classify the hidden layer activities based on constructions.

The model is systematically trained on a per-layer and per-token

basis, targeting specific linguistic elements such as the CLS token,

subject, and verb. This allows for detailed insights into how BERT

encodes different Argument Structure Constructions (ASCs) across

its layers.

The classification model used in this probing endeavor is a 4-

class Support Vector Machine (SVM) classifier with a linear kernel.

The SVM takes the hidden layer activity of a layer per token

and predicts the class of its construction. This straightforward yet

effective approach enables us to quantify the degree of clustering

and construction-specific information present in different layers of

BERT.

By training the SVM classifier on the hidden layer activations

for various tokens, we can evaluate the model’s performance

in distinguishing between the four ASC types. In particular,

an accuracy significantly above chance level indicates that

information about the construction category is represented

(latent) in the respective token embedding. The results from this

probing technique provide a quantitative measure of classification

performance and clustering tendencies, offering a comprehensive

understanding of how linguistic constructions are represented

within the BERT model.

Analysis of attention heads

In BERT, each of the 12 layers contains 12 attention heads. For

each head, there are attention weights for all tokens in the sequence

relative to every other token. To facilitate a comparable analysis,

we focused on the attention weights for the common tokens: CLS,

DET, SUBJ, VERB, and OBJ.

This analysis aimed to identify which attention heads and layers

exhibit the most significant differences among the four Argument

Structure Constructions (ASCs). We then examined these attention

heads in detail, evaluating their function and the weights assigned

to each token.

To determine which tokens had more distinct weights across

the constructions, we first summed all attention weights directed

at each token from all other tokens. Next, we considered the

attention weight of each token per head and layer as a feature.

We then calculated the F-statistic using ANOVA (Analysis of

Variance) to assess the variability of attention weights among the

four constructions. A higher F-score indicates a greater difference

in attention weights among the constructions.

Finally, we averaged the attention weights for each token

across the heads and layers to provide a comprehensive view

of the attention distribution. This multi-step approach allowed

us to identify key attention heads and layers that significantly

contribute to differentiating the ASCs, offering insights into the

role of attention mechanisms in BERT’s processing of linguistic

constructions.

Fisher Discriminant Ratio (FDR)

The Fisher Discriminant Ratio (FDR) is a measure used in

pattern recognition, feature selection, and machine learning to

evaluate the discriminatory power of a feature (Kim et al., 2005;

Wang et al., 2011). It helps determine how well a feature can

distinguish between different classes. The FDR is calculated as the

ratio of the variance between classes to the variance within classes.

A higher FDR indicates that the feature has a greater ability to

differentiate between classes.

In this study, we utilized the FDR to assess the attention weights

in BERT for distinguishing between different Argument Structure

Constructions (ASCs). By calculating the FDR for attention weights

across each layer, we aimed to identify which layers and heads

provide the most distinct representations of the ASCs.

The FDR was computed using the following formula:

FDR =
(µ1 − µ2)

2

σ
2
1 + σ

2
2

where:

• µ1 and µ2 are the means of the feature for class 1 and class 2,

respectively.

• σ
2
1 and σ

2
2 are the variances of the feature for class 1 and class

2, respectively.

Code implementation, computational
resources, and programming libraries

All simulations were run on a standard personal computer. The

evaluation software was based on Python 3.9.13 (Oliphant, 2007).

For matrix operations the numpy-library (Van Der Walt et al.,

2011) was used and data visualization was done using matplotlib

(Hunter, 2007) and the seaborn library (Waskom, 2021). The

dimensionality reduction through MDS and t-SNE was done using

the sci-kit learn library. Mathematical operations were performed

with numpy (Harris et al., 2020) and scikit-learn (Pedregosa

et al., 2011) libraries. Visualizations were realized with matplotlib

(Hunter, 2007) and networkX (Hagberg et al., 2008). For natural

language processing we used SpaCy (Explosion, 2017).

Results

To understand how the BERT model differentiates between

various Argument Structure Constructions (ASCs), we visualized

the activations of its hidden layers using Multidimensional Scaling

(MDS) and t-Distributed Stochastic Neighbor Embedding (t-

SNE). Additionally, we quantified the degree of clustering using

the Generalized Discrimination Value (GDV). Furthermore, we

utilized probes to test for latent representations in the token

embeddings, Finally, we assessed the attention heads and their

discriminative power according to ASCs.
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FIGURE 1

MDS projections of the CLS token embeddings prior to the first attention layer (0) and in all attention layers of the BERT model (1–12). Each point

represents the activation of a sentence, color-coded according to its ASC type: caused-motion (blue), ditransitive (green), transitive (orange), and

resultative (red).

Hidden layer activity cluster analysis

Figure 1 shows the MDS projections of the CLS token

embeddings from various layers of the BERT model. Each point

represents the embedding of a sentence’s CLS token. In the initial

layer, there is minimal separation between the different ASC types,

indicating that the input embeddings do not yet contain specific

information about the construction categories.

As we move to the second layer, the separation between

ASC types becomes more apparent, with distinct clusters forming

for each construction type. This trend continues in the third

and fourth layers, where the clustering is most pronounced. The

inter-cluster distances increase, showing clearer differentiation

between the ASC types. However, in these middle layers, there

is still some overlap, particularly between the ditransitive and

resultative constructions.

In layers five, six, and seven, the degree of clustering decreases

slightly, with the clusters becoming less distinct. This reduction in

clustering suggests a transformation in how BERT processes and

integrates contextual information across these layers.

Interestingly, in the later layers (eight to twelve), there is a

slight increase in the degree of clustering again. The clusters for

the different ASC types become more defined compared to the

intermediate layers, indicating a resurgence in the model’s ability

to distinguish between the construction types. This pattern suggests

that BERT refines its understanding and representation of linguistic

constructions in the deeper layers.

Overall, the CLS token embeddings demonstrate varying

degrees of clustering across the BERT layers, with the best

separation observed in the early layers (2-4) and a notable

refinement in the final layers (8-12). This analysis reveals the

complex and layered nature of how BERT processes linguistic

constructions, highlighting the model’s capability to encode and

differentiate between ASCs at multiple stages of its architecture.

The corresponding t-SNE projections shown in Figure 2 show

results similar to the MDS projections but with more detailed sub-

cluster structures. Again, each point in the t-SNE plot represents the

embedding of a sentence’s CLS token. In the initial layer, minimal

separation between ASC types is observed, aligning with the MDS

results. Layers two, three, and four show distinct clusters, while

layers five to seven exhibit reduced cluster definition. In the later

layers (eight to twelve), clearer clustering re-emerges. Although,

the t-SNE plots reveal nuanced sub-structures within clusters, it

remains uncertain whether these sub-cluster structures are real

effects or artifacts of t-SNE.

To quantitatively assess the clustering quality, we calculated

the GDV for the embeddings of each token type across all layers,

including the initial input embeddings (layer 0) and subsequent

hidden layers (1–12) (cf. Figure 3). GDV values range from 0.0

(indicating no clustering) to -1.0 (indicating perfect clustering),
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FIGURE 2

t-SNE projections of the CLS token embeddings in all attention layers of the BERT model (1–12). Each point represents the activation of a sentence,

color-coded according to its ASC type: caused-motion (blue), ditransitive (green), transitive (orange), and resultative (red).

with more negative values reflecting better-defined clusters. The

qualitative results of the MDS and t-SNE projections are supported

by the GDV analysis, which reveals distinct patterns of clustering

for different token types across BERT’s layers.

The DET and SUBJ token embeddings showed relatively

stable clustering at an intermediate level from layer 0 onward,

indicating that these tokens consistently encode construction-

specific information throughout the layers of the model. This

consistency suggests that DET and SUBJ tokens contribute steadily

to differentiating the Argument Structure Constructions (ASCs).

VERB token embeddings displayed a dynamic pattern, starting

with intermediate clustering at layer 0 and showing a systematic

improvement across layers. Clustering quality gradually increased

from layer 1 to layer 12, reflecting an evolving ability of BERT

to differentiate VERB tokens according to construction types as

processing progresses.

OBJ token embeddings began with no clustering at layer 0,

indicating no initial differentiation among the construction types.

However, clustering quality improved significantly in deeper layers,

with a marked increase observed from layer 5 onward. By layer 10,

the clustering of OBJ tokens reached a level comparable to that

of the CLS token in layer 2, demonstrating that OBJ embeddings

become increasingly aligned with construction categories as they

are processed.

The CLS token embeddings exhibited the most pronounced

clustering improvement, with minimal differentiation at layer

0 and a peak clustering level at layer 2. This suggests that

construction-specific information becomes highly concentrated in

CLS embeddings early in the model’s processing.

These GDV results underscore the varied roles of different

tokens in representing ASCs within BERT. While DET

and SUBJ tokens consistently capture construction-specific

information, tokens like VERB and OBJ exhibit dynamic changes

in clustering, reflecting the layered and adaptive nature of BERT’s

representational hierarchy.

Hidden layer activity probing

The probing analysis involved training a 4-class Support Vector

Machine (SVM) classifier with a linear kernel to classify hidden

layer activities based onArgument Structure Constructions (ASCs).

This classifier was systematically trained on a per-layer and per-

token basis, targeting specific linguistic elements such as the CLS

token, subject (SUBJ), verb (VERB), and object (OBJ). The results

are summarized in Figure 4.

At layer 0, probing accuracies for CLS and DET tokens

were at chance levels (25%), establishing a clear baseline for
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FIGURE 3

GDV score of word embeddings prior to the first attention layer (0) and for all attention layer activations (1–12) of the BERT model. Note that

GDV=0.0 indicates chance level with no clustering, and GDV = -1.0 represents perfect clustering. More negative GDV values indicate better-defined

clusters. The GDV analysis supports the qualitative findings from the MDS and t-SNE projections, showing the lowest clustering for input CLS

embeddings (0) prior to the first attention layer and the best clustering occurring in layer 2. The GDV of specific token embeddings reveals distinct

patterns of clustering across the BERT layers. Initial input embeddings (0) generally exhibit the weakest clustering, reflecting limited

construction-specific di�erentiation. DET and SUBJ token embeddings show relatively constant clustering at an intermediate level across all layers,

suggesting consistent encoding of construction-specific information. VERB token embeddings display a systematic improvement in clustering from

layer 1 to layer 12, indicating progressively refined di�erentiation by construction types in deeper layers. OBJ token embeddings begin with no

clustering at layer 0 but show a marked improvement across layers, reaching clustering levels comparable to CLS token embeddings in layer 2 by

layer 10. These results demonstrate the dynamic and varied contributions of di�erent tokens to the representation of ASCs within BERT, with some

tokens showing progressive refinement while others maintain steady clustering across layers.

evaluating representational changes in subsequent layers. In

contrast, SUBJ, VERB, and OBJ embeddings exhibited better-than-

chance performance at layer 0, reflecting inherent lexical and

semantic information encoded in the pre-trained embeddings.

From layer 2 onwards, the probe accuracy for the CLS token

consistently exceeded 90%, demonstrating that construction-

specific information becomes latent in the CLS token embeddings

early in the processing. Probe accuracy slightly decreased in

intermediate layers (5 to 7) but increased again in the later

layers (8 to 12), showing a resurgence of construction-specific

information. DET token embeddings, while starting at chance

level in layer 0, consistently achieved over 90% accuracy from

layer 2 onwards, indicating effective encoding of construction-

specific information. Similarly, SUBJ and VERB embeddings

showed progressively higher accuracy across layers, highlighting

their role in capturing construction-specific details as processing

progresses.

The probe accuracy for VERB tokens started at a low level

in layer 1 but showed a systematic increase, with accuracies

surpassing 90 percent from layer 2 to layer 12. This indicates

that BERT progressively improves its differentiation of

VERB token embeddings according to construction types in

deeper layers.

Probe accuracy for OBJ tokens began at a very low level in

layer 1, reflecting no initial differentiation among the construction

types. However, as layers progressed, the probe accuracy for OBJ

tokens significantly increased, reaching and maintaining levels

above 90 precent from layer 2 to layer 12, demonstrating a marked

improvement in distinguishing construction categories for OBJ

tokens.

These probing results reveal that probe accuracies for CLS,

DET, SUBJ, VERB, and OBJ tokens start at low or chance levels

in layer 1, indicating that the initial embeddings contain no

specific information about construction type, as also revealed by

the GDV cluster analysis. However, from layer 2 to layer 12,

all probe accuracies for different tokens consistently exceeded 90

percent indicating latent information about construction categories

in all token embeddings, even when not revealed through

clustering alone.

Attention weight analysis

In Figure 5 the Fisher Discriminant Ratio (FDR) scores for

each token across all layers and attention heads are shown.

The analysis reveals that the OBJ token has the highest FDR

scores across all layers, indicating that this token plays a crucial

role in differentiating the four Argument Structure Constructions

(ASCs). The prominence of the OBJ token suggests it is key to

distinguishing between the construction types.

The VERB token is the second most significant, showing high

FDR scores in the same heads where the OBJ token performs well.
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FIGURE 4

Accuracies of probing of hidden layers for classification of constructions per common tokens. Probe accuracies for CLS and DET tokens start at

chance levels (25%) for the initial input word embeddings (layer 0), indicating that these embeddings contain no specific information about

construction type. In contrast, accuracies for VERB, SUBJ, and OBJ tokens are higher than chance at layer 0, reflecting inherent lexical and semantic

information encoded in the pre-trained embeddings. From layer 1 to layer 12, probe accuracies for all tokens consistently exceed 90%, highlighting

the presence of latent information about construction categories in all token embeddings, even when not fully revealed through clustering alone.

FIGURE 5

Fisher Discriminant Ratio (FDR) scores for each token across all layers and attention heads. Each dot represents the FDR score of a specific attention

head, while the dashed line indicates the mean FDR of all attention heads. Layers with similar FDR scores suggest consistent patterns of attention

across those layers.

This indicates that the verb token also contributes substantially to

the differentiation of the constructions.

The DET token follows in significance. Despite its form being

similar across all constructions, its embedding captures contextual

information that aids in distinguishing the construction types.

In contrast, the SUBJ and CLS tokens exhibit no notable FDR

scores, indicating that these tokens do not significantly contribute

to the differentiation of the constructions.

This attention weight analysis highlights the critical role of the

OBJ and VERB tokens in distinguishing between different ASCs

within BERT’s attention mechanisms, with the DET token also

playing a meaningful, albeit lesser, role.

Discussion

Summary of findings

In this study, we investigated how different Argument

Structure Constructions (ASCs) are processed and represented
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within the BERT language model. Utilizing a custom GPT-

4 generated dataset consisting of sentences across four ASC

types (transitive, ditransitive, caused-motion, and resultative

constructions), we analyzed BERT’s internal representations and

attention mechanisms using various techniques, including MDS,

t-SNE, Generalized Discrimination Value (GDV), probing, and

Fisher Discriminant Ratio (FDR) analysis.

To address the concern that clustering patterns may arise

from differences in sentential structure rather than constructional

distinctions, we implemented several measures to mitigate

this possibility. First, we aligned corresponding tokens (e.g.,

“DET,” “SUBJ,” “VERB,” “OBJ”) across sentences to ensure that

comparisons focused on equivalent linguistic elements within

each construction type, reducing the impact of positional

variability. Second, the dataset was carefully designed to minimize

variability in sentential structure within each construction type,

ensuring that patterns primarily reflect constructional properties.

Third, clustering analyses were conducted independently for

multiple token types, and consistent alignment with constructional

categories was observed across tokens, providing strong evidence

that the clusters are not merely a byproduct of sentence

structure. Furthermore, quantitative validation using GDV scores

demonstrated that clustering quality was tied to construction-

specific features. As an additional validation step, experiments

with randomized sentence structures within each construction type

resulted in significant degradation in clustering quality, further

confirming that the observed patterns are driven by constructional

distinctions. These findings underscore the robustness of our

approach and the validity of our conclusions about construction-

specific representations in BERT embeddings.

Our results revealed distinct patterns in how BERT processes

ASCs. Specifically, the CLS token embeddings exhibited clear

clustering in layers 2, 3, and 4, with clustering quality decreasing

in intermediate layers and improving again in later layers. This

suggests a complex, layered approach to representing ASCs within

BERT. The specific token analysis showed that DET and SUBJ

tokens maintained intermediate-level clustering consistently across

layers, while VERB and OBJ tokens displayed more dynamic

changes, with OBJ tokens showing a marked improvement in

clustering in deeper layers.

Among the four constructions we examined, distinguishing

between transitive and resultative constructions proved to be more

challenging for BERT. This similarity is evident in two primary

ways. First, the visualization of dimensionally reduced hidden layer

activity, particularly in MDS, shows significant overlap between the

data points for transitive and resultative constructions. Second, the

confusion matrix for the classification of the CLS token reveals

that most errors involve misclassifying these two constructions

as each other. This can be explained by noting that, in our

dataset, resultative sentences without their final state resemble

transitive sentences. For instance, “The artist painted the wall blue”

(resultative) becomes “The artist painted the wall” (transitive) when

the final state is removed.

At layer 0, representing the original input word embeddings

prior to any attention layers, we observed better-than-chance

accuracy and GDV for “VERB,” “SUBJ,” and “OBJ,” while

“CLS” and “DET” showed performance at chance levels. This

suggests that layer 0 embeddings inherently encode lexical and

semantic information, likely due to the pretraining process, which

captures statistical co-occurrences and syntactic patterns from

the training corpus. Verbs, subjects, and objects are central

to argument structure constructions and naturally carry richer

and more distinct information than determiners or the “[CLS]”

token. Consequently, achieving exact chance-level performance

for these tokens may not be feasible, as their embeddings

are not random but reflect structured, meaningful information.

Importantly, subsequent layers refine these initial representations

through attention mechanisms, enabling deeper contextualization

and encoding of constructional patterns. These findings highlight

the layered nature of BERT’s representational hierarchy, where each

layer builds on inherent lexical information to capture increasingly

complex relationships. These findings align with previous work

by Weissweiler et al. (2022), who demonstrated that lexical cues

in corpus data can significantly influence probe performance.

Their study underscores the importance of considering lexical

biases when interpreting probing classifier results, as such biases

may artificially inflate accuracy. By integrating these insights, our

analysis emphasizes that while lexical cues may play a role, the

observed transformations across layers provide critical evidence of

BERT’s capacity to encode constructional patterns beyond surface-

level lexical information.

However, from layer 1 to layer 12, all tokens achieved accuracies

above 90 percent. This indicates that latent information about

construction categories is embedded in token representations

early on and remains robust throughout the model’s layers. This

occurs because the embeddings are influenced not only by the

tokens themselves but also by the general understanding of the

sentences. Consequently, the performance of all tokens improves,

and interestingly, the accuracy of the CLS and DET tokens, which

was initially quite low, begins to increase.

Our analysis of token accuracy across layers revealed that

the initial embeddings encode lexical information, resulting in

low accuracy for context-dependent tokens like CLS and DET.

However, as we move to higher layers, token performance

improves, reflecting BERT’s increasing ability to leverage general

sentence understanding. This improvement underscores that

distinguishing constructions relies not only on lexical and syntactic

information but also on the broader semantic context.

In summary, we believe that the high accuracy and low GDV

observed in the first layer reflect the degree of specificity each token

has to a given construction. The results suggest that verbs are the

most specific, followed by subject and object tokens, which also

exhibit a notable degree of specificity to particular aspects of the

constructions.

The FDR analysis of attention weights highlighted that the

OBJ token had the highest FDR scores, suggesting it is key

to differentiating the four ASCs. The VERB token also showed

significant FDR scores, followed by the DET token, which, despite

its consistent form, captured contextually relevant information. In

contrast, the SUBJ and CLS tokens did not contribute significantly

to the differentiation of constructions.

The result of FDR analysis for attention heads shows that

different layers have slightly similar functions regarding attention

heads. Notably, the sum of weights for the Object token differs
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the most among all constructions. This finding contrasts with the

results of hidden layer activity, where the Verb token was the

most distinct. The second most distinct token in the FDR analysis

is the Verb, followed by DET, which maintains the same score

even in the first layer. After these, the CLS, and SUBJ tokens have

lower scores.

Furthermore, the FDR analysis of attention heads showed

that different layers have similar functions, with the Object token

displaying the most variability across constructions. This contrasts

with hidden layer activity, where the Verb token was most distinct.

The alignment of attention activity and hidden layer activity,

despite their independent functions, highlights BERT’s robust

performance in understanding constructions.

Implications and comparisons with
previous studies

Our findings align with previous studies on recurrent neural

networks (RNNs) like LSTMs, which demonstrated that simple,

brain-constrained models could effectively distinguish between

different linguistic constructions. However, BERT’s transformer-

based architecture provides a more nuanced and multi-layered

representation of ASCs, as evidenced by the dynamic changes in

clustering and probing accuracies across layers.

The role of the verb token in constructions has been discussed

in several studies. Some studies argue that verbs are construction-

specific; for example, the verb “visit” is lexically specified as being

transitive (FUJITA, 1989). Conversely, construction grammar

suggests that constructions do not depend on specific verbs

(Goldberg, 1995). For instance, the verb “cut” can be used in both

transitive constructions like “Bob cut the bread” and ditransitive

constructions like “Bob cut Joe the bread” (Li et al., 2022).

We believe that verbs are not strictly construction-specific, but

according to our dataset and analysis, constructions tend to have

slightly specific verbs. However, this does not mean they are limited

to just those verbs and our result is limited to the dataset we used.

Previous studies have explored the processing of constructions

in LLMs, but they often focused on specific types of constructions,

resulting in limitations. For instance, Weissweiler et al. (2023b)

concentrated solely on comparative correlative constructions,

Mahowald (2023) focused on Article + Adjective + Numeral

+ Noun (AANN) constructions, and Madabushi et al. (2020)

covered a broader range of constructions but did not specify which

constructions were examined or how they relate to each other.

Additionally, some studies used constructions with vastly different

structures, making it less challenging for BERT to cluster them, and

it is difficult to attribute this clustering to constructional differences

(Weissweiler et al., 2023a; Veenboer and Bloem, 2023; Xu et al.,

2023).

A recent study by Liu and Chersoni (2023) stands out in this

field, although its primary focus was on comparing verbs and

constructions in sentence meaning rather than analyzing BERT’s

behavior. Despite these contributions, there remains a gap in

comprehensively understanding how LLMs process various types

of constructions and how these constructions relate to each other.

Additionally, Li et al.’s study used a dataset generated by a template,

simplifying the clustering process. Consequently, the sentences

often lack meaningful context, making it challenging to assess the

behavior of natural language and the specificity of each token

within specific constructions.

In our study, we decided to focus on argument structure

constructions, as constructions in this family are similar, have

most of the lexical units in common, and allow us to concentrate

more on the constructional aspect of samples (Goldberg, 1995).

These studies delve into the construction of BERT’s hidden layer

activity. Complementary to these works, we examine the attention

heads in this model, as these heads are crucial components that

could offer more detailed insights into the model’s functionality.

Attention mechanisms are inherently interpretable, as they indicate

the extent to which a particular word influences the computation of

the representation for the current word (Clark et al., 2019).

Research on attention heads has revealed that they follow

limited patterns (Pande et al., 2021), with much of the literature

focused on defining the roles of these attention mechanisms (Pande

et al., 2021; Guan et al., 2020; Kovaleva et al., 2019). Given

our focus on extracting features from attention mechanisms to

understand how this system identifies constructions, our analysis

will concentrate on the role of tokens. Tokens are easily traceable

using multi-headed attention, making them an ideal focus for

this investigation.

Our study also underscores the potential of transformer-

based models to capture complex linguistic patterns in

a manner that mirrors certain aspects of human language

processing. The significant roles of the OBJ and VERB tokens

in distinguishing ASCs suggest that these elements are critical

in the syntactic and semantic parsing of sentences, a finding

that could inform future research in both computational and

cognitive neuroscience.

Possible limitations and future directions

A potential critique from a linguistic perspective might be

that our study examines how one machine (BERT) processes

language produced by another machine (GPT-4), which may not

yield insights into natural language or how language is processed

in the human brain. While this concern is valid, it is important

to highlight that computational modeling is the first step toward

understanding language processing in the brain. Using a controlled

dataset generated by GPT-4 allows for clear differentiation between

different Argument Structure Constructions (ASCs) and removes

confounding variables present in natural language, enabling a more

focused study of BERT’s processing capabilities.

While our analysis provides valuable insights, it is not without

limitations. The reliance on synthetic data generated by GPT-4,

while controlled, may not fully capture the complexities of natural

language use. Future studies should consider using more diverse

and naturally occurring datasets to validate these findings.

Furthermore, GPT-4 is trained on one of the largest and most

diverse language corpora ever assembled, making its generated

datasets equally valid as language corpora. This extensive training

allows GPT-4 to produce language that mirrors the statistical

properties of natural language, capturing a wide range of linguistic
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phenomena. As such, analyzing how BERT processes GPT-4-

generated language can still provide meaningful insights into the

fundamental principles of language processing.

Furthermore, the results obtained from our study align

with established linguistic theories and findings from studies

using natural language, suggesting that the underlying principles

captured by these models are relevant. Additionally, future work

will involve validating these findings with naturally occurring

datasets and comparing them with neuroimaging data to better

understand the parallels between computational models and

human brain processing. Thus, while recognizing the limitations,

our study provides a foundational step toward bridging the gap

between artificial and natural language processing, contributing

valuable insights to both computational linguistics and cognitive

neuroscience.

In this study, we utilized dimensionality reduction techniques

such as t-SNE andMDS to visualize the clustering of BERT’s hidden

representations for different argument structure constructions.

While these methods provide valuable qualitative insights, we

acknowledge their inherent limitations, particularly when applied

to high-dimensional spaces. To address this, we complemented

these visualizations with quantitative measures of cluster

separability, specifically the Geometric Density Variance (GDV),

which is calculated in the original high-dimensional space rather

than the reduced dimensionality projections. GDV offers a more

objective assessment of clustering quality and provides additional

evidence supporting the distinctiveness of the constructional

patterns identified in our analysis. We further emphasize that

t-SNE and MDS visualizations are exploratory tools and should

not be interpreted as definitive representations of the data. By

integrating qualitative visualizations with robust quantitative

metrics, we aim to present a balanced and reliable interpretation

of the clustering results, highlighting both their strengths and

limitations.

Additionally, while the FDR and GDV analyses offer

quantitative measures of clustering and differentiation, further

qualitative analysis is needed to understand the specific linguistic

features that contribute to these patterns. Investigating the impact

of different token types on ASC processing in more detail could

reveal deeper insights into the underlying mechanisms.

Attention-based analyses, while offering valuable insights, are

known to pose interpretability challenges, particularly for token-

level interpretations, as noted by Jain and Wallace (2019). In

this study, we approach attention analysis as a complementary

tool rather than a definitive measure of model behavior. Our

primary aim is to explore how attention mechanisms contribute to

constructional understanding, without treating attention patterns

as the sole indicator of linguistic comprehension. To strengthen

the reliability of our findings, we have triangulated attention

analysis results with probing classifiers and clustering methods,

ensuring that any observed patterns are supported by multiple

approaches. Additionally, we explicitly discuss the limitations of

attention-based analyses in the manuscript, situating our findings

within the broader discourse on attention interpretability. By

integrating attention analysis with other methods and addressing

its constraints, we provide a nuanced perspective on the role of

attention mechanisms in capturing constructional patterns.

In Table 3, we provide a detailed analysis of the relative

frequencies of verbs and other word types within each construction

to ensure transparency regarding potential lexical biases in

our dataset. While some words are highly specific to certain

constructions (e.g., “give” for the ditransitive), this specificity

does not contradict our findings or claims. Both large language

models (LLMs) and the human brain likely utilize such lexical

cues, among other features, to interpret and process argument

structure constructions. Furthermore, our clustering analyses

and visualizations reveal that the four construction types

consistently form distinct clusters, independent of individual

words or word types. This indicates that the observed patterns

are not merely driven by lexical associations but reflect

deeper structural and relational patterns that LLMs capture,

suggesting that the constructional understanding exhibited by

LLMs parallels mechanisms employed by the human brain in

processing constructions.

However, we acknowledge that lexical biases could influence

probing classifier results, as certain frequent and prototypical

lexical items may strongly cue specific constructions. This aligns

with the observations of Li et al. (2022), who demonstrated

that using nonce words or non-prototypical verbs can mitigate

the impact of such biases and better assess true constructional

understanding. While our results suggest that BERT encodes

constructional information, future work should further address

this issue by balancing lexical frequencies and incorporating

less predictable word types into the experimental design. These

measures would strengthen the validity of probing results and

provide more definitive insights into whether the observed

patterns reflect genuine constructional understanding or reliance

on lexical cues.

Conclusion

In conclusion, BERT effectively captures both the specific

and general aspects of grammatical constructions, with

its layers progressively integrating lexical, syntactic, and

semantic information. This study demonstrates BERT’s nuanced

understanding of linguistic structures, albeit with certain challenges

in differentiating closely related constructions like transitive and

resultative sentences.

Our study highlights the sophisticated capabilities of the

BERT language model in representing and differentiating between

various Argument Structure Constructions. The dynamic and

layered nature of BERT’s processing, as revealed through clustering,

probing, and attention weight analyses, underscores the model’s

potential to mirror human linguistic processing.

Future research aimed at comparing these computational

representations with neuroimaging data will be pivotal in

advancing our understanding of the computational and neural

mechanisms underlying language comprehension. In particular,

comparing our computational findings with neuroimaging data

during continuous speech perception will be crucial in bridging the

gap between computational models and the neural mechanisms of

language understanding. Such comparisons could validate whether

the patterns observed in BERT align with how the human brain
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processes different ASCs, offering a more comprehensive view of

language processing.
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