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Magnetic resonance imaging (MRI) has played a crucial role in the diagnosis,

monitoring and treatment optimization ofmultiple sclerosis (MS). It is an essential

component of current diagnostic criteria for its ability to non-invasively visualize

both lesional and non-lesional pathology. Nevertheless, modern day usage of

MRI in the clinic is limited by lengthy protocols, error-prone procedures for

identifying disease markers (e.g., lesions), and the limited predictive value of

existing imaging biomarkers for key disability outcomes. Recent advances in

artificial intelligence (AI) have underscored the potential for AI to not only

improve, but also transform how MRI is being used in MS. In this short review,

we explore the role of AI in MS applications that span the entire life-cycle of

an MRI image, from data collection, to lesion segmentation, detection, and

volumetry, and finally to downstream clinical and scientific tasks. We conclude

with a discussion on promising future directions.
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1 Introduction

Multiple Sclerosis (MS) is a neuro-inflammatory disease of the central nervous
system characterized by a wide spectrum of inflammatory and neurodegenerative changes
(Compston and Coles, 2008), with clinical manifestations that vary greatly between
individuals. Since the 1980s, magnetic resonance imaging (MRI) has been a cornerstone
of MS diagnosis and management due to the ability to visualize demyelinating changes
and axonal loss resulting from focal inflammation, using a combination of T2 and T1-
weighted sequences (Hemond and Bakshi, 2018). The temporal evolution of lesions, which
may initially enhance (Filippi et al., 2019), and subsequently expand, remain static, or
decrease in size (Koopmans et al., 1989), can also be captured by MRI. A number of
MRI biomarkers of MS diagnosis, prognosis, and treatment response, have also been
described. These include T2-hyperintense white matter lesions, gadolinium-enhancing
lesions, slowly enlarging lesions, paramagnetic rim lesions, cortical/deep gray matter
lesions, and leptomeningeal enhancement (Filippi and Agosta, 2010; Filippi et al., 2020).
Some of these biomarkers have been found to correlate strongly with key clinical outcomes.
One example is the association between new/enlarging T2 lesions and clinical relapses
(Rudick et al., 2006; Sormani et al., 2009; Sormani and Bruzzi, 2013).

Despite these advances, MRI-analysis continues to face problems that limit its potential
(Maggi andAbsinta, 2024). The longer acquisition times and higher field strengths required
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to obtain measurements of many recently studied imaging
biomarkers introduces new headaches for resource-limited settings.
At many clinical sites, the evaluation of MRI continues to be done
manually, which is a lengthy, error-prone, and highly variable
procedure (Bozsik et al., 2022; Altay et al., 2013). A strongly
predictive imaging biomarker of disability progression, especially
progression which is independent of relapse activity (Müller et al.,
2023), has yet to be found (Filippi et al., 2020). At the therapeutic
level, the influx of disease modifying therapies has significantly
improved the ability to suppress lesion formation and relapse
risk (Amin and Hersh, 2023), but targeting disability progression
remains a major challenge. The use of MRI in predicting disease
course and facilitating treatment selection is still a work in progress.

The rapid pace of progress in artificial intelligence (AI) has
led to new opportunities for MRI-analysis in MS. In contrast to
classical statistical methods which focus on acquiring knowledge
about a population given data sampled from the same distribution,
the field of AI has developed machine learning (ML) methods
that focus on learning predictive patterns from a dataset with the
aim of making predictions (generalizing) on new data (Bzdok,
2017; Bzdok et al., 2018). Some of this work provides a different
perspective on—and a new set of solutions to—the current
limitations of MRI-analysis.

When using the MRI modality as part of an AI system,
practitioners often prefer to use a set of hand-crafted, image-
derived features, which are based on well established imagemarkers
(e.g., T2 lesion counts, brain volume). These are typically scalars
derived from the voxel-level data, either manually, or through a
semi-/fully-automated process. The values for these hand-crafted
features, which are easy to interpret, can be stored in tabular
form, and used to train a model for a specific task using a
variety of ML methods. Alternatively, the raw voxel-level data can
be provided directly as an input to ML models. Some types of
ML, in particular deep learning (DL), which uses deep artificial
neural networks (LeCun et al., 2015), can make use of the high
information content in voxel-level data to learn (automatically,
without explicit guidance from a human expert) abstract, lower-
dimensional features of the image that might not be captured by
traditional hand-crafted, image-derived features (e.g., the texture of
the white matter in a certain brain region). A specific type of deep
neural network called the convolutional neural network (CNN)
(LeCun et al., 1989; Li et al., 2022) has significantly advanced digital
image processing by automatically learning features from images,
sometimes leading to superior performance in tasks like image
classification and object detection. The theoretical benefits resulting
from ML on raw images come at the cost of greater computational
and dataset requirements (Berisha et al., 2021), and generally
require more expertise in model training. Traditional, hand-crafted
features therefore remain valuable, especially in scenarios with
limited data or specific constraints (Lin et al., 2020; Zare et al., 2018;
O’Mahony et al., 2019).

This review aims to introduce the reader to key areas in
which AI is transforming MRI-analysis in MS (see Figure 1 for an
overview). Given the vastness of the literature on this topic, this
review is meant to provide a high-level overview of selected areas
that are of interest to the MS community, showcasing published
work on MS-specific applications. As such, this does not represent

a comprehensive review of the literature. Where possible, we
refer the reader to more in depth, dedicated reviews, in specific
sections. First, we will explore how AI can be used for data
collection (Section 2), before discussing the traditional tasks of
lesion segmentation, detection, and volumetry (Section 3). Finally,
we will discuss downstream scientific and clinical tasks (Sections 4,
5, and 6). We end with a discussion on promising future directions
(Section 7).

2 Acquisition, pre-processing, and
harmonization

MRI has become essential for diagnosing MS and for
monitoring it’s evolution, primarily because of its higher sensitivity
compared to clinical outcome measures of disease activity
(McDonald et al., 1994). To reap the benefits of routine monitoring
with MRI while minimizing the inconvenience for patients,
caregivers, and resource utilization, many have turned to AI to
improve the efficiency of MRI data collection. In this section,
we will discuss three tasks pertaining to MRI collection: (1)
acquiring theMRI images (acquisition), (2) processing the acquired
images to improve their signal-to-noise ratio (pre-processing),
and (3) transforming the pre-processed images from different
scanners/sites to enable direct comparisons (harmonization).

Shortening the MRI acquisition time can be achieved by
decreasing the number of sequences in the acquisition protocol,
using generative models to synthesize the missing sequences. For
example, Wei et al. (2019) showed that it is indeed possible to
use a CNN to predict the FLAIR sequence from T1-weighted,
T2-weighted, proton density, T1 spin-echo, and double inversion
recovery (DIR) sequences. Others provided evidence to suggest
that Generative Adversarial Networks [GANs, Goodfellow et al.
(2014)] can synthesize DIR from the combination of T1 and
T2/FLAIR (Finck et al., 2020, 2022), and T1 from T2-weighted
FLAIR (Valencia et al., 2022). Although synthesis of gadolinium-
enhanced T1-weighted sequences from low or non-contrast images
is under-explored in MS, related work by Narayana et al. (2020)
found that the presence of gadolinium-enhancing lesions can be
predicted with moderate accuracy from non-contrast MRI.

Another strategy to speed data collection is to acquire lower
resolution images, or images with a higher signal-to-noise ratio, and
then use ML models in the post-processing phase to reconstruct
higher-quality images. Various DL frameworks based on GANs and
CNNs have been shown to produce higher-quality reconstructions
that can improve lesion visualization and segmentation (Shaul et al.,
2020; Zhao et al., 2019; Iwamura et al., 2023; Mani et al., 2021; Falvo
et al., 2019). DL has also been used to optimize the more complex
processing pipelines used for diffusion weighted imaging sequences
(Golkov et al., 2016).

Finally, ML-based harmonization strategies can be used to
address a frequently encountered problem in biomedical imaging
research: small dataset sizes. Aggregating data from different data
collection sites is complicated by the fact that each site may use
different scanners and acquisition protocols, resulting in images
that do not look alike. This is known to cause variability in
tasks such as volume estimation (Clark et al., 2023; Bakshi et al.,
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FIGURE 1

An overview of key areas in which AI is being used for MRI-analysis in MS.

2017). “Harmonization” is a solution to this problem that involves
transforming the images so they all appear to come from the
same distribution. Dewey et al. (2019) found benefits in the
downstream task of brain volume estimation when images were
first harmonized using DL. If direct visualization or comparisons
between images from different datasets is not strictly necessary,
one can also bypass the problem of harmonization by training
models that are agnostic to the specific combination of sequences
that is available for a particular patient (Havaei et al., 2016), or
by searching for a set of hyperparameters that lead to comparable
performance across a range of datasets (Gentile et al., 2023). It is
worth noting that fake images can also be synthesized using DL to
augment existing datasets. This is an open research problem and the
magnitude of benefit probably depends on the context (Van Tulder
and de Bruijne, 2015). Relatively little published research explores
MRI generation specifically for MS datasets, but some authors
have observed performance gains from augmentation with lesion-
containing MRI images that are synthetically generated from the
MRI images of healthy subjects (Salem et al., 2019; Basaran et al.,
2022).

In summary, AI has shown promise in reducing the time
taken to acquire and preprocess the MRI of MS patients, without

significantly compromising the quality and utility of the MRI
images. AI can also increase the ease with which data from different
sources can be pooled together for further analysis, or for increasing
the size of datasets which ML models use for training. Many of the
methods that were reviewed in this section are at an early stage of
development, and these tasks remain an active area of research.

3 Segmentation, lesion detection, and
volumetry

Once a patient’s MRI has been acquired and pre-processed, it
is then ready to be used for clinical management and scientific
research. Although the raw, voxel-level data can be fed directly
as input to a ML model that is specifically trained for one of
the downstream tasks described in Sections 4, 5, 6, there is
often added value to taking an intermediate step consisting of
identifying and quantifying established radiologic features in the
images. These tasks include segmenting radiologic markers of MS,
lesion detection, and the volumetric assessment of a variety of
brain structures.
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Current cross-sectional disease burden assessment typically
consists of some variant on lesion volume, lesion count, and
brain volume estimation. Monitoring of disease activity over time
additionally calls for comparing volume estimates between time-
points, and the detection of new or enlarging lesions. In most
settings where radiologists and neurologists are responsible for
performing these tasks, volume estimation is done qualitatively
with high-level descriptors, while lesion detection is done using
manual review of 2D slices. The process is lengthy, error-prone, and
subject to significant inter- and intra-rater variability (Bozsik et al.,
2022; Altay et al., 2013). For these reasons, there has been a growing
appetite for at least partially automating these tasks using AI.

The segmentation of T2 lesions is one of the most well studied
applications of ML in MS. The literature on automated MS lesion
segmentation methods is vast, and methods range from classical
ML to DL. We therefore refer the interested reader to several
dedicated reviews for more details (García-Lorenzo et al., 2013;
Danelakis et al., 2018; Spagnolo et al., 2023; Zeng et al., 2020; Doyle
et al., 2018). There has been relatively less work on new (and/or
enlarging) T2 lesion segmentation, but more emphasis has been
placed on this task during recent challenges (Commowick et al.,
2021). Beyond T2 hyper-intense lesions, DL has also been used
to segment and detect imaging markers which are not currently
integrated in most clinical settings. These include paramagnetic
rim lesions (Barquero et al., 2020; Lou et al., 2021; Zhang et al.,
2022), central vein sign on susceptibility-weighted images (Maggi
et al., 2020), cortical lesions on 7T images (Rosa et al., 2022;
La Rosa et al., 2020), gadolinium-enhancing lesions (Gaj et al.,
2021; Karimaghaloo et al., 2010; Durso-Finley et al., 2020), and
spinal cord lesions (Gros et al., 2019). The task of detecting lesions
(including the detection of new lesions on follow-up images) has
for the most part been studied in tandem with segmentation
(Kamraoui et al., 2022; Salem et al., 2020; McKinley et al., 2020).

Although brain (parenchymal) volumetry has received less
attention, DL has been used to segment the thalami of MS patients
for the purpose of estimating its volume (Dwyer et al., 2021). DL
methods have also been shown to perform well when compared
to traditional methods for brain atrophy estimation (Zhan et al.,
2023). Moreover, DL-based lesion-filling (or inpainting) has been
shown to improve the performance of volumetric estimation
methods that are usually sensitive to the presence of lesional tissue
(Zhang et al., 2020; Clèrigues et al., 2023). Unfortunately, the large
minimal detectable change in volume between clinically relevant
intervals and the high inter-scanner variability still limit the utility
of brain volume estimation in the clinic (Van Nederpelt et al.,
2023). It is worth noting that a number of software packages for
automated volumetric analysis and segmentation are available, and
some already include DL methods (Billot et al., 2023).

Several challenges have been organized, in which groups
compete for best performance on the same lesion segmentation
task (either T2 lesion or new T2 lesion segmentation). These
were hosted at the IEEE ISBI conference (Carass et al., 2017) and
at MICCAI conferences (Styner et al., 2008; Commowick et al.,
2018, 2021). In all cases, no model was found to be perfect, when
evaluated on the basis of voxel-level segmentation metrics (under
or over-segmentation) and lesion detection metrics (e.g., false
positive rate), in comparison to the ground-truth segmentation

obtained by human expert raters. Rather than indicative of a
failure of ML for automatic segmentation, we argue that this
finding should lead the community to rethink the way models are
evaluated. In all challenges, performance was measured against the
segmentation masks obtained from very few human experts, and
on relatively small datasets of at most one hundred participants.
Despite these challenge’s best attempts to address the intra and
inter-rater variability associated with the ground-truth lesionmasks
obtained from human experts (Bozsik et al., 2022; Altay et al., 2013),
there remains no accepted consensus on what should constitute
“ground truth”. Where should one draw the lesion border, given
that lesional tissue manifests as a continuous spectrum of intensity
on MRI? How do we differentiate an enlarging lesion from
confluent new lesions? How do we know if hyperintensities
smaller than 3 mm [which are typically disregarded by expert
raters (Filippi et al., 2019) to avoid false positive detections], are
pathologically significant or not? Without answers to all these
questions, finding that DL methods disagree with human experts
is arguably insufficient to determine if they are truly inferior.
To address this issue, some have proposed explicitly modeling
the “label-style” that might be associated with a certain dataset
or group of expert-raters (Nichyporuk et al., 2022). Others have
avoided the use of ground-truth lesion masks altogether by framing
lesion segmentation as an unsupervised anomaly detection task
(Behrendt et al., 2023; Castellano et al., 2022; Luo et al., 2023;
Pinaya et al., 2022). Training on soft-labels (as opposed to binary
labels) (Gros et al., 2021; Lemay et al., 2022) and probabilistic lesion
counting (Schroeter et al., 2022) are yet other possible solutions. In
recognition of the importance of the problem of model evaluation
in the case of image analysis, a large international consortium
has recently published recommendations for model evaluation
(Maier-Hein et al., 2024; Reinke et al., 2024). Still, more work
has to be done to obtain answers to the problems specific to MS
lesion segmentation.

To conclude, segmentation, lesion detection, and volumetry,
are some of the oldest and most studied ML application in MS. In
many cases, they reach performances that are acceptable for many
clinical and research settings. More work is needed to determine
how best to evaluate automated segmentation frameworks.

4 Improving our understanding of MS

With an increasing number of datasets containing MRI images
of MS patients, and the plethora of open questions in MS
research, one may ask: could AI help us uncover novel markers
of MS diagnosis, evolution, and treatment response? For years,
patients with MS have been categorized into a binary classification
system consisting of relapsing-remitting and progressive clinical
phenotypes (Lublin and Reingold, 1996). It was later found that
significant overlap exists in disease evolution across these subtypes,
prompting the introduction of subtype-agnostic evolution-focused
terminology such as “relapse-associated worsening (RAW)” and
“progression independent of relapse-activity (PIRA)” (Lublin
et al., 2022). The current most accepted perspective is that
individual differences in disease course can be traced back to
different combinations of inflammatory, neurodegenerative, and
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compensatory processes that lie along a continuous spectrum
(Lassmann, 2019; Pitt et al., 2022; Vollmer et al., 2021).

This paradigm-shift, coupled with the fact that none of the
existing MRI biomarkers have been particularly predictive of
the key clinical outcome of disability progression (Filippi et al.,
2020), has led researchers to search for alternative MRI-markers
that could better explain the observed heterogeneity in disease
evolution and treatment response. Notably, Eshaghi et al. (2021)
and Pontillo et al. (2022) used an unsupervisedML algorithm called
SuStaIn (Young, 2018) to identify disease subtypes characterized
by distinct temporal progression patterns on MRI. Both groups
found subtypes characterized by early cortical or deep gray matter
atrophy, early signal changes in normal appearing white matter,
and early T2 lesion accumulation. More work is needed to
externally validate these subtypes and better understand their
clinical correlates.

ML has also been used more directly to assist scientists in
uncovering novel MRI markers. One strategy involves taking
a pre-trained classifier (e.g., a model trained to predict MS
diagnosis, or future disease activity) and producing “saliency-
maps”. These allow researchers to visualize the features that are
thought to be “important” according to the classifier; for example,
features associated with a diagnosis of MS, poorer prognosis, or
specific phenotypes. By using heatmaps generated using layer-
wise relevance propagation, Eitel et al. (2019) found that a CNN
classifier pre-trained to predict MS diagnosis focused on T2-
lesions and their location, along with non-lesional or gray matter
areas that included the thalamus. Storelli et al. (2022) produced
heatmaps from a CNN that was trained to predict EDSS-worsening,
and identified differences in periventricular regions, white matter
lesions and the corpus callosum, for EDSS-worsened patients.
Zhang et al. (2021) interrogated different heatmap-generating
techniques to better understand crucial brain regions that could
help distinguish MS phenotypes, finding that the abnormalities
associated with SPMS were more extensive compared to RRMS,
the latter involving primarily the occipital region and, to a lesser
extent, the frontal region. Finally, Kumar et al. (2022) proposed to
identify candidate biomarkers of future new/enlarging T2 lesions in
an RRMS population through a process called counterfactual image
synthesis; specifically, by predicting how a patient’sMRI would look
like if they had a different future outcome (a counterfactual), and by
taking the difference between the real (factual) and counterfactual
images, markers that are predictive of future outcomes (in this case,
lesion activity) can be revealed.

AI can therefore be useful to better understand disease
evolution and heterogeneity. While exciting, this work remains
largely at the level of methodological development, and more
translational research will be needed.

5 Diagnosis

It is imperative that an MS diagnosis be confirmed rapidly,
and accurately, to ensure that patients receive the best possible
care. MS is currently diagnosed according to the 2017 McDonald
criteria, which combines historical, MRI, and laboratory data
(Thompson et al., 2018). While significant efforts have been made
to accelerate MS diagnosis, the heterogeneity of the disease and

broad differential diagnosis still continues to put the clinician at
risk of misdiagnoses, which can delay the initiation of an adequate
treatment (Solomon et al., 2019; Brownlee and Solomon, 2021).
Recent diagnostic criteria might provide increased sensitivity for
the diagnosis, but at the cost of reduced specificity (Mescheriakova
et al., 2018; Habek et al., 2018). In this section, we will discuss
the use of AI for improving the accuracy and reliability of MS
diagnosis. Note that there is some overlap with Section 3, since the
detection of MS lesions on MRI is an important component of the
diagnostic criteria (but not the only one). In the current section,
the focus will be on the classification task of MS diagnosis, with the
understanding that automated lesion segmentation and detection
methods could be used upstream to provide image-derived features
to an MS classifier.

Both classicalML andDLmethods have been applied to the task
of MS diagnosis, with MRI being the most common input modality
for the classifier [we refer the reader to dedicated reviews on this
topic for more details (Nabizadeh et al., 2022; Aslam et al., 2022;
Shoeibi et al., 2021)]. Reported diagnostic sensitivity, and especially
specificity, can be quite high [pooled sensitivity 92% (95%CI:
90%, 95%) and specificity 93% (95%CI: 90%, 96%), respectively,
according to a recent meta-analysis (Nabizadeh et al., 2023)]. Even
simple image-derived scalars such as the average of T1, T2*, and
the total/myelin bound water content, have been found to be highly
predictive (when used as input to train a supervised ML classifier)
of an MS diagnosis (Neeb et al., 2019).

Differentiating MS from other diseases that can mimic it’s
presentation is also an important task in the clinic. Rocca et al.
(2021) used a basic 3D-CNN with MRI as input to differentiate MS
from neuromyelitis optica spectrum disorder (NMOSD), central
nervous system vasculitis, and migraine, and found that the
diagnostic accuracy exceeded that of human experts. Similarly,
Kim et al. (2020) showed that MS could be differentiated from
NMOSD using a 3D-CNN based on the ResNet architecture
(He et al., 2016), as accurately as two neurologists. Huang
et al. (2022) found that a transformer-based image classifier (Xu
et al., 2021) could differentiate MS from NMOSD and myelin
oligodendrocyte glycoprotein antibody disease as accurately as two
neuroradiologists. MS could also be differentiated from hereditary
diffuse leukodystrophy with spheroids using linear discriminant
analysis (Mangeat et al., 2020), and from low grade tumors using
MR-spectroscopy-derived features as input to a variety of ML
models (Ekşi et al., 2021; Preul et al., 1996).

Overall, there is a growing amount of evidence supporting the
use of AI in MS diagnosis.

6 Prognostication and treatment
optimization

One of the main challenges for the clinician evaluating a patient
with a new diagnosis of MS is to predict long-term prognosis (the
evolution of the disease over time). The related task of treatment
optimization (predicting which treatment will have the most
beneficial effect) often depends on having an accurate prognosis.
This begs the question: can AI do any better? Many early research
efforts were focused on predicting the occurrence or timing of
clinically-defined MS subtype transitions, using these as surrogate

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1478068
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Falet et al. 10.3389/frai.2025.1478068

markers of poor prognosis. However, as discussed in Section 4,
there has been a tendency to de-emphasize these subtypes in the
diagnosis and management of MS. Prognostication tasks that we
will focus on in this section therefore involve the prediction of the
evolution of specific manifestations of the disease, which include
radiologic activity (new/enlarging T2 lesions), relapses, disability
accumulation, and patient-reported outcomes.

Prognostication with respect to disability outcomes turns
out to be a very challenging task, even for AI (Seccia et al.,
2021). When predicting disability progression from hand-crafted,
image-derived tabular features, Pellegrini et al. (2020) found that
a variety of classical ML models could achieve only modest
predictive performance (C-index ≤ 0.65). Nonetheless, predictive
performance can vary greatly depending on what features are used
as input, on the model, and on the optimization procedure. With
regards to the input, Zhao et al. (2017) found that classical ML
methods performed better when adding image-derived features
from a 1-year follow-up MRI visit to the set of inputs, which
otherwise consisted of data recorded at a baseline visit. The benefit
of longitudinal follow-up was also highlighted in work that used
SuStaIn (Young, 2018) for unsupervised temporal modeling of
imaging trajectories. Specifically, Pontillo et al. (2022) were able
to identify a “deep-gray-matter-first” subtype that was associated
with long-term cognitive impairment, and Eshaghi et al. (2021)
could identify a “lesion-led” subtype that was associated with both
confirmed disability progression and relapse rate. Using long term
clinical (non-imaging) follow-up data has also been shown to lead
to a considerable performance boost when predicting progression
(De Brouwer et al., 2021). All this evidence suggests that ML on
longer-term MRI data represents a promising, though challenging,
research direction.

With regards to the model type, Zhao et al. (2020) found
that ensembles of gradient-boosted trees such as XGBoost and
LightGBM performed better than alternative ML methods when
predicting 5-year EDSS worsening from logitudinal data collected
over 2 years, with an area under the curve (AUC) ranging from 0.79
to 0.83. Interestingly, their feature importance analysis [and that
of others (Law et al., 2019)] suggests that clinical disability metrics
(which includes the EDSS) might be more predictive than tabular
image-derived features for this particular task.

It is possible that voxel-level MRI data, which has been
understudied for the task of predicting clinical prognosis, could
harbor more predictive features of prognosis than traditional
image-derived features. In support of this hypothesis, Storelli et al.
(2022) were able to train a CNN to predict 2-year EDSS and
SDMT worsening with 75.0% sensitivity, and 87.5% specificity. It
is also possible that non-trivial implementation details, such as the
inclusion of a T2-lesion mask along with the raw MRI as input,
could further boost performance (Tousignant et al., 2019). These
studies hint at DL’s potential to improve upon tabular, hand-crafted,
image-derived features (e.g., T2 lesion volume). In an attempt to
elucidate the relative contribution of voxel-level data to predicting
disability progression Zhang et al. (2023) studied a dataset of 300
MS patients, with a very large feature set spanning numerous MRI
sequences, laboratory data, demographic information, disability
scores, and unstructured clinical notes. Imaging, tabular data,
and notes were encoded and fused using various neural network
architectures, and used for predicting EDSS milestones 3-years

later. While their best performing model made use of all three
modalities (AUC 0.8380), a model trained without the MRI
modality was only marginally worse (AUC 0.8078). Their study is
limited by a small dataset size, with a comparatively large feature
set, which could result in poor model optimization. More research
is therefore needed to explore this important question, but this will
require larger datasets, and additional methodological advances.

DL has also been used on radiologic markers of disease
activity, which in certain cases are more sensitive to disease
evolution than clinical measurements. A few studies have shown
promising preliminary results in predicting the future appearance
of new/enlarging T2 lesions from baseline MRI (Prabhakar et al.,
2023; Durso-Finley et al., 2023, 2022). Tabular, hand-crafted
image-derived features have also been used to classify a lesion
as active or inactive (Peng et al., 2021). Similar to the task of
predicting clinical prognosis (which focuses on predicting future
disability-related outcomes), there remains the possibility that
non-trivial methodological contributions may yield significant
performance gains.

AI tools that aid in prognostication can be used for treatment
optimization (for example, by favoring a more potent drug for
a patient predicted to have highly active disease); however, it
is also useful to consider the related task of estimating the
“treatment effect” of a medication on the disease course. The
most common treatment effect estimand that clinicians consider
as part of treatment-related decisions is the average treatment
effect, which typically is estimated using randomized clinical trials,
and represents the average effect of a treatment on a population
(compared to placebo or to a baseline drug). Some of the ML
research cited in previous sections have presented results pertaining
to treatment effect estimation. For example, the “lesion-led”
subtype discovered by Eshaghi et al. (2021) appears to be specify a
sub-group of individuals that experience a larger average treatment
effect. Another line of work in causal ML aims to personalize
treatment recommendations by predicting the treatment effect for a
particular individual given their unique characteristics (Curth et al.,
2024). For example, Durso-Finley et al. (2022) proposed a multi-
headed CNN to predict the individual treatment effect of several
treatments on new/enlarging T2-lesions, which used a person’s
MRI as input. Beyond treatment optimization, individual treatment
effect estimation could also play a role in improving the statistical
power of clinical trials by preferentially randomizing individuals
who are predicted to benefit from an experimental therapy (Falet
et al., 2022; Kanber et al., 2019).

In conclusion, although prognostication and treatment
optimization remain challenging tasks, MRI-based ML research
continues to improve upon previous baselines through diverse
methodological innovations. Some models appear to identify
subgroups of individuals that are more responsive to certain
disease modifying therapies. These results are therefore paving the
path toward precision medicine.

7 Discussion

In this review, we have presented several tasks where AI
systems might already reliably outperform human experts in
MS-specific applications. Indeed, a recent validation study by

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1478068
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Falet et al. 10.3389/frai.2025.1478068

Barnett et al. (2023) provided evidence supporting the use
of AI tools for lesion detection and volumetric analyses, in
both clinical settings and research studies. We also discussed
tasks which are hardly feasible without recent advances in
DL, such as MRI sequence synthesis and automated biomarker
discovery.

As the performance of AI tools continues to improve, we
will arguably see increasing interest in trustworthiness, because
these AI systems are expected to take part in high-risk human
decision-making. Trust in AI systems is built in numerous ways,
one of which is by giving them the ability to explain the rationale
behind a model’s predictions, resulting in “explainable” AI systems
(Došilović et al., 2018). Additionally, users should be aware of the
level of confidence that a model has in a particular prediction, and
how much this reflects the actual errors that a model might make.
This line of work, often referred to as “uncertainty” estimation
(and the related problem of calibration), allows users to know
when to trust a model’s predictions (Gawlikowski et al., 2023).
In addition, to trust that a model will behave well in practice,
there should be a good understanding of how it will generalize
to new data, and whether or not it will be robust to distribution
shifts (for example, if there is a change in acquisition protocol).
The field of causal machine learning (Sanchez et al., 2022), which
models the data generative process using causal models, promises
improved out-of-distribution generalization, and represents an
active field of research. MS researchers have begun to address all
three of these topics, specifically explainable methods (see examples
in Section 4), probabilistic modeling for uncertainty estimation
(Nair et al., 2020; Durso-Finley et al., 2023), and structural causal
models of MRI image generation (Reinhold et al., 2021), but
more work is needed to truly enable trustworthy AI-assisted MRI
analysis in MS.

Looking forward, it seems clear that highly capable AI systems
based on large foundation models (Brown et al., 2020; Devlin
et al., 2018; Touvron et al., 2023; Ramesh et al., 2021) will have
a major impact on biomedical imaging research, including in
MS. Certain chat-bots based on large language models (LLMs)
can now arguably pass the Turing test (Jannai et al., 2023), and
score higher than the average human on medical exams (Achiam,
2023). LLMs are increasingly being used in medical applications
(Agbavor and Liang, 2022; Patel and Lam, 2023; Singhal et al.,
2023; Jiang et al., 2023), and multi-modal inputs (which includes
biomedical imaging) are becoming more common (Moor et al.,
2023). Although foundation models remain understudied in MS
applications, interesting future directions include using foundation
models to improve generalization from small MS-specific datasets,
through in-context learning (Dong et al., 2024), or fine-tuning.
That said, in order to reap all the benefits of foundation models
for MS-specific applications, several open problems need to be
solved. These include sub-par reasoning capabilities (Rae et al.,
2021; McKenzie et al., 2023; Arkoudas, 2023) which could be
dangerous in high-stakes environments such as healthcare (Richens
et al., 2020; Fraser et al., 2018), broader concerns regarding AI

safety (Bommasani et al., 2021; Anderljung et al., 2023; Urbina
et al., 2022), and predictions that may be unacceptably skewed to
the detriment of a particular group of people (Mehrabi et al., 2021).
As more solutions to these problems are found, we can expect
an increasing focus on large foundation models in the coming
years, to help solve some of the most challenging tasks in MS
MRI-analysis.
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