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Introduction: Low birth weight (LBW), under 2,500 g, poses health risks, though
not always requiring treatment. Early detection of high-risk pregnancies enables
preventive care, improving outcomes for mother and baby. This study aimed
to establish cause-and-effect relationships using Causal Deep Learning (CDL)
models that reduce bias and estimate heterogeneous treatment effects on LBW
in the Midwife-Led Continuity Care (MLCC) intervention.

Methods: This study used a quasi-experimental study design (August 2019-
September 2020) in North Shoa, Ethiopia, and enrolled 1,166 women divided
into two groups: one receiving MLCC and the other receiving other professional
groups for comprehensive antenatal/postnatal care. The dataset and code
are provided in data availability section. Our model combines counterfactual
convolutional neural networks to analyze time-based patterns and Bayesian
Ridge regression to reduce bias in propensity scores. We use Counterfactual
Regression with Wasserstein Distance (CFR-WASS) and Counterfactual
Regression with Maximum Mean Discrepancy (CFR-MMD) to balance patient
characteristics and improve counterfactual estimates of treatment effects. This
approach strengthens causal insights into how MLCC interventions affect LBW
outcomes.

Result: The Deep neural networks (DNN) model showed strong predictive
accuracy for LBW, with 81.3% training and 81.4% testing performance, an area
under the curve (AUC) of 0.88, enabling the reliable early identification of high-
risk pregnancies. The study found a strong link between meconium aspiration
syndrome (MAS) and LBW (p = 0.002), but this does not mean MAS directly causes
LBW. MAS likely results from fetal distress or other pregnancy complications
that may independently affect LBW. While statistical associations exist, clinical
causation remains unproven; therefore, the counterfactual analysis showed
MLCC could help reduce LBW risk. CFR-WASS achieved high accuracy (84%)
while the precision in heterogeneous treatment effect (PEHE = 1.006) and the
average treatment effect (ATE = 0.24), and CFR-MMD PEHE of 1.02, ATE of 0.45,
demonstrating potential for tailored treatment strategies. DNN and multilayer

01 frontiersin.org


https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1484299&domain=pdf&date_stamp=2025-09-24
https://www.frontiersin.org/articles/10.3389/frai.2025.1484299/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1484299/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1484299/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1484299/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1484299/full
mailto:wudnehketema@gmail.com
https://doi.org/10.3389/frai.2025.1484299
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1484299

Moges et al.

10.3389/frai.2025.1484299

perceptrons uniquely identified key neural weights and biases favoring normal
birth weight while suppressing LBW predictions, offering interpretable insights
for clinical risk assessment.

Conclusion: The CFR-WASS/CFR-MMD model strengthens LBW prediction by
identifying crucial factors like MAS and healthcare access, while accurate PEHE
and ATE estimates support data-driven prenatal care and targeted interventions
for healthier outcomes.

KEYWORDS

causal deep learning, low birth weight, precision in estimating heterogeneous
treatment effects, average treatment effect, midwife-led continuity care

Introduction

Low birth weight (LBW), defined as a birth weight below 2,500
grams, is a major global public health issue linked to higher neonatal
mortality and long-term adverse health outcomes (Desta, 2019;
Endalamaw et al., 2018). Despite existing interventions aimed at
reducing LBW, there remains a critical gap in understanding how
these strategies differentially affect subpopulations of pregnant
women, particularly in low-resource settings (Park et al., 2020; Koivu
etal., 2023).

Antenatal care (ANC) has been widely recognized as a key factor
in reducing LBW risk. Studies consistently show that inadequate
ANC, often defined as fewer than four visits during pregnancy, is
strongly associated with higher LBW incidence. For example, (Roslina,
2020) found that mothers receiving fewer than four ANC visits had a
1.9 times greater risk of delivering LBW infants compared to those
with adequate care. Similarly, (Sunarni et al., 2018) demonstrated that
regular ANC attendance significantly improves birth weight outcomes,
reinforcing the need for targeted maternal healthcare policies.

This gap relates to the concept of heterogeneous treatment effects.
Heterogeneous treatment effects occur when the effectiveness of an
intervention varies across different groups of individuals (Kent et al.,
2018). In the context of LBW prevention, reduction-specific
Midwife-Led Continuity Care (MLCC) is highly effective for one
sub-group of pregnant women. It has a minimal or negative effect on
another subgroup (Sandall et al., 2024). Unfortunately, most studies
on LBW prevention have focused on average treatment effects (ATE)
and neglected the potential for heterogeneous treatment effects. This
limitation hinders the development of precisely targeted interventions
to conduct the current study, which contributes to filling a critical
knowledge or awareness gap regarding the adverse treatment effect.

In healthcare research, observational studies estimate causal effects,
specifically the impact of MLCCs or interventions on medical outcomes.
However, quasi-experimental studies are the gold standard for
establishing cause-and-effect relationships, and practical constraints such

Abbreviations: ATE, Average treatment effect; CATE, Conditional average treatment;
CCNN, Counterfactual convolutional neural network; CDL, Causal deep learning;
CFR-MMD, Counterfactual regression with maximum mean discrepancy;
CFR-WASS, Counterfactual Regression with Wasserstein distance; DNN, Deep
neural network; FFDNN, Feed-forward deep neural network; ITE, Individual
treatment effect; LBW, Low birth weight; MAS, Meconium aspiration syndrome;
MLCC, Midwife-led continuity care; NBW, Normal birth weight; PEHE, Precision

of estimation heterogeneous effect; PIH, Pregnancy-induced hypertension.
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as ethical, logistical, or financial limitations may make them infeasible.
In such situations, researchers rely on quasi-experimental studies to
explore causal effects. These studies address potential bias by considering
confounders, although both approaches rely on untestable assumptions
(Zawadzki et al., 2023). Deep learning (DL) is a subset of machine
learning (ML) that uses deep neural networks (DNNs) to recognize
patterns in large, complex datasets, achieving state-of-the-art results in
fields such as computer vision and health sciences (Keles and Bagci,
2023). In neonatology, DL has proven revolutionary, particularly in tasks
such as survival analysis, neuroimaging, and diagnosis of conditions such
as retinopathy of prematurity (Keles and Bagci, 2023). Furthermore, DL
models are complex networks that learn independently without human
intervention. These models have multiple layers, enabling them to
process information without explicit human guidance (Taye, 2023).

Deep learning is preferred over the existing methods for causal
inference in LBW due to its ability to model complex and non-linear
relationships. DL models, such as neural networks, can capture
intricate interactions and confounding factors, providing more
accurate causal effect estimates (Fan et al., 2023). Frameworks such as
Counterfactual Regression with Wasserstein Distance (CFR-WASS)
and Counterfactual Regression with Maximum Mean Discrepancy
(CFR-MMD) integrate causal inference techniques, enhancing
robustness and generalizability (Meinshausen, 2018; Shalit et al.,
2017). While the existing methods are somehow more interpretable,
DLs superior predictive performance and flexibility make it a powerful
tool for identifying causal factors in LBW studies, going beyond
prediction to uncover actionable insights (Uauy et al., 2013).

Recent research highlights the integration of causal inference with
DL to enhance model robustness, interpretability, and generalizability.
This approach addresses limitations in existing DL, which may capture
spurious correlations and lack interpretability (Jiao et al., 2024). By
integrating causal effects into DL models, analysts have enhanced
predictive performance and the interpretability of results in complex
domains such as electronic health records (Ghosh et al., 2018). The
combination of ML and causal inference methods has also shown
promise in system dynamics modeling, enabling better forecasting
and understanding of complex interactions across various disciplines
(Koch et al., 2025). To facilitate adoption, researchers have developed
frameworks and tutorials for implementing DL-based causal inference
methods, focusing on observational causal estimation and extending
causal inference to settings with non-linear confounding and diverse
data types (Koch et al., 2025). This emerging field offers significant
potential for advancing our understanding of cause-and-effect
relationships in complex systems. Therefore, DL models augmented
with causal inference techniques are better equipped to address
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confounding variables and biases, resulting in more precise and
dependable predictions. This approach helps to detect targeted
interventions to prevent LBW, leading to better health outcomes for
mothers and babies, and it also helps to connect causal inference and
DL within quasi-experimental settings (Zhang et al., 2022; Samek
et al., 2021). Causal Deep Learning (CDL) leverages partial causal
knowledge among some and not necessarily all variables of interest
and quantitatively characterizes the functional form among variables
of interest and decision-makers (Berrevoets et al., 2024). Despite
strong evidence supporting MLCC, diverse stakeholder interests and
power dynamics hinder its implementation (Simmelink et al., 2025).
This study was to address these challenges by leveraging CDL to
evaluate MLCC’s impact on LBW outcomes.

Related work

Some existing studies are as follows: We used an ML approach to
predict the weight range of infants in studies conducted in Belihuloya,
Balangoda, Sri Lanka. The study was conducted in the
United Arab Emirates (Khan et al., 2022) to estimate infant birth
weight and LBW using ML algorithms. The authors conducted their
study in Shanghai, China, using an ML approach to estimate fetal birth
weight in high-risk pregnancies (Moreira et al., 2019).

Studies in the USA (Lu et al., 2019) investigated fetal weight at
varying gestational ages using an ML approach. Studies conducted in
Mexico (Campos Trujillo et al., 2020) predict early fetal weight using
a support vector machine (SVM). Furthermore, the study conducted
in China (Tao et al., 2021) used hybrid data from electronic medical
records with the B-ultrasonic examinations of pregnant women to
build a predicted birth weight classifier based on extended short-term
memory networks.

Previous studies have employed ML and DL algorithms to predict
LBW but have not sufficiently addressed causal inference. For instance,
research in Iran (Arayeshgari et al., 2023) compared multiple ML
models, including decision trees, random forests, artificial neural
networks (ANNs), SVM, and logistic regression, to predict LBW risk
factors. Similarly, another study in Iran evaluated eight ML and DL
algorithms (XGBoost, Light GBM, and K-nearest neighbors) for LBW
prediction but focused solely on predictive accuracy rather than causal
effects (Alam et al., 2023). In the United States, ML approaches have
been applied to LBW prediction. Yet, these studies also lacked rigorous
causal analysis, such as estimating ATE or addressing the precision in
heterogeneous treatment effect (PEHE) (Jiao et al., 2024).

A critical gap in these studies is their reliance on associative
models rather than causal frameworks, which limits their utility for
policy and intervention design. Recent advancements in CDL and
doubly robust methods (Bayesian additive regression trees for
propensity score estimation) have improved bias reduction and PEHE
estimation in observational health data (Jiao et al., 2024; Mbogu,
2023). While ML and DL have been applied to neonatal outcomes,
most studies focus on associative predictions rather than causal
inference. For instance, (Keles and Bagci, 2023) systematically
reviewed 106 Al studies in neonatology and found that primary
applications included survival analysis and diagnosis, but few
addressed causal relationships or heterogeneous treatment effects.
This gap highlights the need for methods such as CDL to move beyond
correlation and quantify intervention impacts, such as MLCC on
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LBW. Therefore, this study aimed to establish cause-and-effect
relationships using CDL models that reduce bias and estimate
heterogeneous treatment effects on LBW in the MLCC intervention.

The novelty of this work lies in its innovative application of CDL
models, specifically CFR-WASS and CFR-MMD, to estimate
heterogeneous treatment effects of MLCC on LBW outcomes in a
low-resource setting. Unlike previous studies focusing solely on
predictive accuracy, this research integrates counterfactual analysis
with DL to reduce bias and provide interpretable causal insights. The
study uniquely combines causal inference with DNNs to improve
propensity score estimation, enabling tailored intervention strategies.
Additionally, it offers robust metrics such as PEHE, ATE, and
individualized treatment effect (ITE), advancing precision in maternal
healthcare decision-making.

Propensity Score Matching (PSM) offers valuable insights for
improving maternal healthcare by creating comparable groups from
observational data. This approach helps clinicians determine which
care strategies prove most effective for particular patient populations
by matching women with similar medical histories and risk factors.
For health policymakers, PSM serves as a powerful tool to assess real-
world program impacts, such as evaluating community health worker
initiatives by comparing health outcomes between equivalent groups
who did and did not receive the MLCC. The method generates
practical evidence to expand successful programs and modify less
effective ones, particularly important in settings with limited
healthcare resources where data-driven decisions. While PSM
provides crucial evidence when clinical trials aren’t feasible, our
advanced CDL methods overcome PSM’s constraints by modeling
intricate relationships in maternal health data, leading to more
nuanced policy recommendations and clinical guidelines. Our CDL
framework builds on PSM by addressing its limitations, capturing
complex relationships to further improve precision in maternal health
strategies (Yu and Kang, 2019).

Methods and participants
Data sources

A quasi-experimental study was conducted between August 2019
and September 2020 in the North Shoa Zone in the Amhara Regional
State of Ethiopia. This region is home to over two million people, with
approximately 2,393,877 individuals residing within its boundaries.
Among these residents, 1,207,839 are males, and 1,186,038 are females.

There are a total of nine hospitals in the region. One hospital is a
referral center specifically equipped to provide comprehensive
emergency obstetric care. The North Shoa Zone boasts 95 health
centers. These centers serve as essential points of access to primary
healthcare services. In addition to hospitals and health centers, the
region has 389 health posts. These health posts are strategically
distributed across rural and urban areas, ensuring that even remote
communities can access basic healthcare services. Overall, the North
Shoa Zone’s healthcare infrastructure strives to address its population’s
diverse healthcare needs, emphasizing maternal and child health,
emergency care, and community-based services.

A total of 1,166 mothers visiting prenatal and antenatal care
clinics during the study period were included. Four primary
hospitals in the study area, Shoa Robit, Ataye, Mehal Meda, and
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Alem Ketema Enat Hospital, were randomly selected using a
two-stage stratified cluster sampling technique. These hospitals
serve both urban and rural populations and provide delivery
services. Samples were equally distributed, and participants were
selected using systematic random sampling with an interval of
two. Shoa Robit and Ataye hospitals were designated as
intervention sites offering MLCC, while Mehal Meda and Alem
Ketema Enat hospitals served as control sites. Eligible pregnant
women were approached and enrolled until the target sample size
was achieved.

Data collection

Midwives recorded participants’ baseline characteristics, including
socio-demographics and obstetric, gynecologic, medical, and surgical
histories, using a standard tool via face-to-face interviews and
maternal antenatal cards. An independent, blinded data collector from
the birth registry collected post-birth outcomes. Intervention
exposure and continuity of care data were obtained from medical
records and postnatal interviews. To avoid the Hawthorne effect,
healthcare providers were blinded to outcome data. Eight midwife
data collectors and four supervisors underwent a three-day training
program for data collection and extraction.

Eligibility criteria

The study included pregnant women who were less than 24 weeks’
gestational age at their first antenatal care visit, had a singleton
pregnancy, and were classified as low obstetric risk. Women with
multiple pregnancies, those planning to seek care from a different
provider, or those with a history of medical or obstetric complications
were excluded from the study.

Quasi-experimental setup

Treatment group (MLCC)

Antenatal care plays a pivotal role in preventing LBW, with the
effectiveness often influenced by the model of care provided. MLCC
is increasingly recognized for its positive impact on birth outcomes,
including a reduced risk of LBW. This model fosters a strong, trusting
relationship between a woman and her consistent midwife or small
team of midwives throughout pregnancy, birth, and the postnatal
period (Moges et al., 2025). This continuity facilitates early and
comprehensive risk identification, allowing for prompt interventions
such as nutritional counseling, vigilant monitoring for conditions such
as pre-eclampsia, and timely referrals for complications, all of which
directly mitigate LBW risk (Sandall et al., 2024). Furthermore, MLCC
promotes health education and supports physiological pregnancy and
birth processes. By avoiding potentially harmful interventions such as
routine episiotomies, elective labor inductions without medical
indication, or unnecessary cesarean sections, MLCC helps maintain
optimal conditions for fetal growth (Mayberry et al., 2017). This
approach reduces interruptions to a natural pregnancy, which can
negatively affect birth weight. Studies indicate that MLCC protects
against preterm birth and LBW, especially for at-risk women, by
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improving their access to and engagement with community-
based care.

Control (other professional)

In contrast, antenatal care models led by other professional
groups, such as obstetricians or those involving fragmented standard
care, while essential for high-risk pregnancies, may sometimes face
challenges in optimizing factors related to LBW prevention for all
women. Obstetrician-led care is critical for managing complex
medical conditions and severe complications that directly threaten
fetal growth and contribute to LBW. However, in lower-risk
pregnancies, a more medicalized approach might lead to higher
intervention rates without a corresponding benefit in LBW reduction
compared to MLCC (Voon et al., 2017).

Continuous care is crucial for preventing LBW. When pregnant
women see different providers, it breaks down trust and causes
inconsistent health advice, making it harder to spot complications
early and leading to poor adherence to medical advice. This lack of
consistent care can increase the risk of LBW, so clinical practices
should focus on building strong, ongoing relationships between
women and their healthcare providers (Fernandez Turienzo
etal., 2021).

Variables in the study

This study analyzed binary outcome variables, categorizing
newborns into two groups: LBW (<2,499 grams) and normal birth
weight (NBW) (>2,500 grams). This research framework focused on
the causal relationship between MLCC and other professional groups
while controlling demographic characteristics, obstetric history,
medical factors, and neonatal outcomes influenced LBW risk across
these care models (Reza and Salma, 2024), as shown in Figure 1.

Variable selection

In this study, we initially examined a comprehensive set of over
200 variables encompassing demographic, obstetric, medical, and
neonatal factors to investigate their association with LBW, as shown
in Figure 1 below. We employed CML techniques combined with
feature selection methods to identify the most predictive features
while minimizing redundancy and multicollinearity (Moges
etal., 2025).

First, we applied univariate analysis to assess the preliminary
relevance of each variable. Next, we utilized regularized regression to
penalize non-influential predictors, shrinking their coefficients to zero
and retaining only the most significant ones. We implemented
recursive feature elimination to further refine our selection, which
iteratively removes the least important features while optimizing
model performance (Moges et al., 2025).

Causal deep learning algorithms

This study employed TensorFlow 2 and PyTorch to develop CDL
models for estimating heterogeneous treatment effects across
subgroups. Custom neural networks were designed for specific causal
inference tasks, while Scikit-learn handled existing ML. Data
processing relied on NumPy and Pandas, with visualizations generated
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Age of mother |
Demographic )
srep Place of delivery |
Residence
Gest. Age |
Obstetric Parity |
ANC |
NBW >2500g PIH |
LBW <2500g
Medical Episiotomy
Eclampsia
MAS
Birth status
Apgar score
FIGURE 1
Key factors associated with low birth weight. ANC, antenatal care visit; PIH, pregnancy-induced hypertension; MAS, meconium aspiration syndrome;
Gest.Age, gestational age.

using Matplotlib and Seaborn. Bootstrapping ensured reproducibility,
and causal analysis was supported by PyWhy and CausalML.

These models adapt well to non-linear confounding and dynamic
factors, addressing the limitations of traditional linear approaches
(Pattanayak et al., 2017). The study investigates the use of CDL
methods, including DNNs, Counterfactual Convolutional Neural
Network (CCNNGs), Bayesian Ridge, Bagging Regressor, Treatment
Agnostic Representation Network (TARNet), Balancing Neural
Networks, CFR-WASS, Causal Effect Variational Autoencoder, and
CFR-MMD), to estimate propensity scores in causal inference (Whata
and Chimedza, 2022; Ramachandra, 1803).

These advanced CDL models significantly improve treatment
effect estimation from real-world clinical data. DNNs and CCNNs
excel at analyzing complex patient characteristics for precise treatment
comparisons. Bayesian methods incorporate medical expertise into
analyses, while ensemble approaches such as Bagging Regressor
produce stable results. TARNet and balancing-focused networks
(CFR-WASS/MMD) rigorously control for confounding factors in
quasi-experimental studies. Most innovatively, the Causal Effect
Variational Autoencoder predicts how individual patients would
respond to different treatments, enabling truly personalized care
recommendations. Together, these methods provide clinicians with
more reliable evidence about treatment effectiveness while accounting
for real-world data limitations (Keles and Bagci, 2023).

Counterfactual convolutional neural
networks

The PEHE and ATE for CCNNs depend on factors like

architecture, training data, and hyperparameters (Kong et al., 2022).
While CCNNs excel in image-based tasks, adapting them for causal

Frontiers in Artificial Intelligence

inference requires careful design. To estimate PEHE and ATE using
CCNNs, we have created an architecture that takes covariates and
MLCC as input, predicting LBW; this is well-suited for handling
sequential data like pregnancy stages and their influence on LBW.

Bayesian ridge

We have trained our model on the data to estimate PEHE and
ATE using Bayesian Ridge, incorporating covariates and MLCC as
features. PEHE compares predicted outcomes for MLCC and other
professional groups. At the same time, ATE is computed based on
average outcomes for MLCC and other professional groups. Therefore,
the mathematical expression for Bayesian ridge regression can
be represented as follows:

y=Xw+e

Where: y represents the target variable, X is the design matrix
(features), w represents the weight vector (coefficients), and €
represents the noise.

Counterfactual regression with Wasserstein
distance

The CFR-WASS improves causal effect estimation by balancing
covariate distributions between treatment groups, addressing selection
bias, and non-overlapping support (Shalit et al., 2017). Unlike
conventional methods like PSM, it minimizes distributional
discrepancies using the Wasserstein distance, enhancing accuracy in
effects. CFR-WASS  excels in

heterogeneous  treatment
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quasi-experimental data, particularly for complex relationships and
confounding variables, providing reliable Conditional Average
Treatment Effect (CATE) estimates. Its robustness makes it especially
valuable for evaluating interventions like MLCC compared to standard
care models.

Counterfactual regression with maximum
mean discrepancy

Counterfactual Regression (CFR) estimates ITE by predicting
potential outcomes under different treatments, such as MLCC. While
useful for quasi-experimental data, CFR faces selection bias when
comparing MLCC groups to other care providers. CFR-MMD
overcomes this by incorporating Maximum Mean Discrepancy to
balance covariate distributions in representation space, reducing bias
(Shalit et al., 2017). This approach improves I'TE accuracy, particularly
in complex scenarios such as MLCC evaluation, where covariate
balance is crucial for reliable causal inference. CFR-MMD thus
strengthens traditional CFR by addressing key limitations in quasi-
experimental analysis (Kallus, 2020).

The CFR-MMD improves causal effect estimation by reducing
selection bias through distributional alignment. The Gromov-
Wasserstein Information Bottleneck framework enhances its precision
in evaluating MLCC interventions compared to standard care models
(Shi et al., 2019).

Model training and evaluation

In CDL, rigorous evaluation metrics are essential for validating
model performance in estimating treatment effects. The PEHE
quantifies accuracy in individual-level effect estimation, with lower
values indicating better performance (Lin et al, 2020). The ATE
measures bias in population-level effect estimation, where values
closer to zero reflect unbiased estimation. Mean Squared Error (MSE)
and R-squared (R?) assess predictive accuracy, though they alone
cannot guarantee correct causal identification (Kiriakidou and Diou,
2022). These metrics must be evaluated collectively, as models may
achieve strong prediction (high R*) while failing to recover true causal
relationships (high ATE error). Recent methodological work
emphasizes the necessity of combining these metrics with robustness
checks and out-of-sample validation to ensure strong causal inference,
particularly when applying CDL methods to high-stakes domains like
clinical decision-making. The optimal model should simultaneously
minimize PEHE and ATE error while maintaining reasonable
predictive performance (MSE, R?), with preference given to methods
demonstrating stability across different experimental conditions
(Huang, 2022).

Beyond these causal-specific metrics, the existing classification
measures, accuracy, precision, recall, and area under the curves (AUC),
can offer additional insights, particularly when evaluating propensity
score models or binary outcomes. Accuracy indicates overall correctness
but may be unreliable in imbalanced datasets, such as those with rare
treatments. Precision (the proportion of true positives among predicted
positives) and recall (the ability to capture all true positives) are especially
useful in clinical settings where false treatment recommendations or
missed interventions carry significant consequences. AUC evaluates a

Frontiers in Artificial Intelligence

10.3389/frai.2025.1484299

model’s ability to distinguish between treated and control groups, with
higher values suggesting better separation. However, while these metrics
help assess model reliability, they do not directly validate causal effects
and should always be paired with causal-specific evaluations such as
PEHE and ATE. Recent methodological work emphasizes the necessity
of combining these metrics with robustness checks and out-of-sample
validation to ensure strong causal inference, particularly when applying
CDL methods to high-stakes domains, such as clinical decision-making.
The optimal model should simultaneously minimize PEHE and ATE
error while maintaining reasonable predictive performance (MSE, R?),
with preference given to methods that demonstrate stability across
different experimental conditions.

Learning process of artificial neural
networks

Artificial neural networks, particularly multilayer perceptron’s
(MLPs), excel at identifying complex patterns in clinical data, such as
predicting pregnancy risks or birth outcomes. By analyzing
relationships between variables such as maternal health indicators and
fetal growth, ANNs can uncover subtle, non-linear associations that
existing statistical methods might miss. For clinicians, this means more
accurate risk stratification and personalized care plans, for example,
flagging high-risk pregnancies for LBW or preterm birth based on
nuanced interactions between factors such as pregnancy-induced
hypertension (PIH) and ANC adherence (Nahatkar et al., 2025).

Figure 2 shows a schematic representation of the mathematical
model of an artificial neuron, i.e., a processing element, highlighting
input X;, weights (wg, wy,w,_1, and w,), constant [bias (b)], > is the
summation function, f is the activation function, and Out (y) is the
output signal.

This Figure shows how a simple neural network processes medical
data to support clinical decisions. Inputs (such as PIH) are assigned
importance weights, combined into a weighted sum, and transformed
through a step function to produce an output. For clinicians, this
mirrors how we intuitively weigh multiple risk factors such as PIH,
prenatal death, or meconium aspiration syndrome (MAS) to assess a
patient’s risk of complications. The model quantifies this decision-
making process, helping to standardize predictions for outcomes such
as LBW or preeclampsia based on the combined influence of key
clinical variables.

Furthermore, based on the above Figure 2, an ANN is a
computational model inspired by the brain’s structure, made up of an
input layer, one or more hidden layers, and an output layer (Bland
et al., 2020). A DNN is a type of ANN with many hidden layers,
allowing it to handle more complex learning tasks. Essentially, all
DNNs are ANNGs, but not all ANNs are DNNs; only those with
multiple hidden layers qualify as DNNs (Goodfellow et al., 2016). In
our work, since we use multiple hidden layers, we refer to our model
as a DNN rather than a basic ANN.

Estimating the ATE/CATE, deep learning
estimation

Deep learning methods estimate CATE to reveal how MLCC
differentially impacts birth outcomes across patient subgroups. ATE
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FIGURE 2
Neural network node diagram (Pang et al.,, 2020), each node represents a neuron in the figure. The input data flows into the neural network from the
input layer. Specifically, the input data values are connected to all neurons in the first layer. Then, each neuron in a layer passes its output to all neurons
in the subsequent layer. Finally, the network’s output is on the image’s right side. In regression tasks, this output corresponds to the dependent variable
that needs to be estimated.

quantifies MLCC’s average causal effect on LBW compared to other
professionals, guiding targeted maternal interventions (Curth
etal., 2024).

It provides an overall estimate of the MLCC effect across the
entire population.

ATE=E[Y;(1)-Y;(0)]=E[#]

Where Y; (1) and Y; (0) are the potential outcomes, which means
NBW and LBW had the unit MLCC or did not receive the treatment,
respectively.

The CATE is defined as:

CATE=E[Y(1)-Y(0))X =x]

Where: X is the set of selected covariates, and x € X. The ATE
measures an intervention’s overall impact across a population, guiding
evidence-based clinical decisions. In contrast, PEHE assesses how
accurately models predict ITE responses, enabling personalized care
strategies when PEHE values are sufficiently low. Together, these
metrics help clinicians balance population-level recommendations
with patient-specific interventions (Kent et al., 2018; Ling et al., 2023).

The distinction between ITE and ATE is crucial for clinical
interpretation. The ATE represents the average difference in outcomes
between a treated group and a control group, providing an overall
measure of a treatment’s effectiveness across a population. In clinical
practice, the ATE informs decisions about whether a treatment is
beneficial on average for a broad patient population, typically guiding
policy-level decisions, treatment guidelines for general conditions,
and public health interventions (assessing the average impact of
allocation of mothers for MLCC and other professionals). However,
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the ATE can mask significant heterogeneity in treatment response,
meaning some individuals may benefit greatly, some may experience
no effect, and others may even be harmed. This is where ITE becomes
vital. The ITE, on the other hand, quantifies the specific effect of a
treatment for a single individual, taking into account their unique
characteristics and comorbidities. In clinical practice, ITE is
increasingly sought for personalized medicine, enabling clinicians to
tailor treatment decisions to individual patients. This approach allows
clinicians to predict who is most likely to benefit from a particular
therapy, who might experience adverse effects, and who may respond
better to alternative treatments (Gopalkrishnan, 2020). Recent
advancements in machine learning and causal inference are enabling
better estimation of ITEs, facilitating more nuanced clinical decision-
making, and optimizing patient outcomes by moving beyond a
one-size-fits-all approach to treatment.

Results

When investigating heterogeneous treatment effects, it is essential
to account for confounding variables that may impact both MLCC
and LBW. CDL models can integrate these variables, yielding more
reliable estimates of the actual MLCC effect.

Several antenatal factors show significant associations with LBW
outcomes. Iron/folic acid supplementation demonstrates a protective
effect, with unsupplemented mothers showing higher LBW rates
(95%, CI: 0.34-0.67, p = 0.007). The timing of the first antenatal care
visit matters significantly; mothers with delayed initiation have
increased LBW risk (p = 0.044). PIH emerges as a strong risk factor,
with affected mothers having 58% higher LBW rates (7.45% versus
4.72%, p =0.036). While nutrition counseling coverage was high
(>94%), the counterintuitive finding of higher LBW among counseled
mothers (p = 0.0275) warrants further investigation. The allocation of
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TABLE 1 Association between antenatal care and low birth weight outcomes, in north Shoa zone, Amhara Region, Ethiopia.

Variables Category

>2,500 g

Birth Weight, n, %, (95% Cl)

<2,500¢g Chi-square

Maternal Age <20 years 86,16.92, (45.3-48.4) 106,16.11, (14.3-16.4) 0.340 0.044
20-29 years 339,66.73, (55.2-67.4) 437,66.41, (8.3-10.3)
>30 years 83,16.33, (42.1-53.2) 115,17.47, (12.2-15.4)

Residence Urban 397,78.15, (23.3-33.7) 533,81.01, (0.81-0.90) 1.446 0.229
Rural 111,21.85, (26.3-45.2) 125,18.9, (0.77-0.82)

Folic acid /Iron Given 483,95.1,(74.9-78.7) 639,97.12, (1.4-2.8) 3.265 0.0071
No given 25,4.9, (23.5-28.3) 19,2.88, (0.34-0.67)

Antenatal Care Visit First ANC visit 36,7.08, (6.7-7.1) 44,6.68, (2.4-4.5) 4.160 0.044
2 to 3 visits 209,41.2, (41.2-41.7) 275,41.79, (12.3-14.7)
>4 visit 263,51.77, (51.5-51.7) 339,51.52, (21.3-26.6)

Nutrition Counseling Yes 482, 94.9, (94.9-96.2) 633,96.2, (34.8-42.4) 1.192 0.0275

During Pregnancy No 26,5.12, (3.8-5.2) 25,379, (0.34-0.56)

Allocated group of mothers | Other groups 250,49.22, (49.2-50.8) 334,50.75, (15.2-16.1) 0.275 0.0054
Midwife-led 258,50.78, (49.3-50.8) 324,49.24, (13.5-15.4)

Pregnancy-Induced No 484,95.27, (92.6-95.3) 609,92.55, (45.8-58.6) 3.62 0.036

Hypertension Yes 24,472, (4.7-7.5) 49,7.45, (1.3-1.7)

mothers (MLCC compared to other groups) shows a small but
significant difference in LBW distribution (p = 0.0054). These findings
showed that targeted micronutrient supplementation, early antenatal
care initiation, and proper management of hypertensive disorders
could effectively reduce LBW incidence, as shown in Table 1.

The postnatal outcomes reveal several significant associations
with LBW. Newborns with MAS showed markedly higher LBW rates
[7.3% (0.34-0.78)] versus 3.14% (3.2-7.3), p = 0.002, indicating this
complication nearly doubles LBW risk. Low Apgar scores (<7 at
5 min) were significantly more common among LBW infants [27.5%
(2.5-3.4)] versus 22.64% (27.5-27.8), p = 0.034. Vacuum-assisted
deliveries also showed higher LBW prevalence [11.09% (4.6-5.8)]
versus 8.27% (8.3-11.1), p = 0.045. Postnatal care patterns differed
significantly (p = 0.03), with LBW infants more likely to receive only
one visit (44.8% versus 41.92%). These findings suggest that LBW
infants face greater neonatal complications and require more intensive
postnatal monitoring, particularly after instrumental deliveries. The
increased MAS risk specifically highlights the vulnerability of LBW
newborns to birth-related complications (Table 2).

Performance metrics of the causal deep
learning model for birth weight
classification

The DNN model attained a training accuracy of 81.3% and a
testing accuracy of 81.4%. When analyzing the dataset composition,
NBW conditions accounted for 5.1% of the training and 5.4% of the
testing sets. Conversely, LBW constituted 94.9% of the training set and
94.6% of the testing set. Remarkably, the classification accuracy for
both normal and LBW conditions exceeded 80% in both datasets. In
the training set, 28 NBW cases were correctly classified, resulting in a
sensitivity of 86.8%. However, 139 NBW instances were misclassified.
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For LBW, 636 cases were accurately classified, yielding a specificity of
97.8%. Unfortunately, 14 LBW instances were misclassified. In the
testing sample, 8 NBW conditions were accurately classified, achieving
82.9% sensitivity. However, 54 NBW instances were misclassified. For
LBW, 276 cases were accurately classified, resulting in a specificity of
96.2%. Regrettably, 11 LBW instances were misclassified. These
metrics provide valuable insights into the performance across different
birth weight categories in training and testing scenarios presented in
Table 3.

Figure 3 presents the normalized importance of key predictors of
LBW identified through the feature engineering process analysis. MAS
emerged as the strongest predictor, followed by perinatal mortality
and gestational age category, with PIH, previous surgery, mother’s
allocation, and vacuum-assisted delivery showing progressively lower
predictive importance. Our analysis initially identified the top 10
variables linked to LBW. However, after validation with ensemble
methods including Random Forest and XGBoost feature importance
rankings along with stability selection, only seven key predictors
remained consistently significant. These final variables were chosen
based on statistical strength, biological relevance, and agreement
across multiple causal machine learning models, balancing
interpretability and generalizability, as shown in Figure 3. This ranking
is associational, not causal, and guides the subsequent causal
estimation of ATE, PEHE, and ITE (Moges et al., 2025).

The receiver operating characteristic (ROC) curves depict the
performance of the model for both values of the dependent variable.
Notably, all data points lie above the diagonal, signifying effective
classification. Furthermore, the AUC, calculated from both the
training and testing samples, the AUC quantifies the overall
performance of the model; an AUC of 1.0 indicates a perfect model,
while an AUC of 0.5 suggests random guessing. Therefore, in this
study, the model's ROC curve yielded an AUC of 0.88, indicating
strong classification performance, which indicates better model
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TABLE 2 association between postnatal care and low birth weight outcomes, in north Shoa zone, Amhara Region, Ethiopia.

Variables Category

>2,500 ¢

Birth weight, n, %, (95% Cl)

<2,500 ¢ Chi-square

Initiation of breastfeeding After 1 h 121,23.82, (23.8-26.3) 173,26.29, (17.6-18.3) 0.930 0.335
Within 1h 387,76.18, (73.7-76.2) 485,73.708, (1.9-2.3)

Meconium aspiration No 492,96.85, (92.7-96.9) 610,92.7, (73.4-80.5) 9.496 0.002

(newborn health Status) Yes 16,3.14, (3.2-7.3) 48,73, (0.34-0.78)

Apgar score <7 at 5 min No 393,77.36, (22.6-27.5) 477,72.49, (26.4-29.6) 3.589 0.034

(newborn health Status) Yes 115,22.64, (27.5-27.8) 181,27.5, (2.5-3.4)

Vacuum-assisted delivery No 466,91.73, (88.9-91.3) 585,88.91, (19.4-20.5) 2.576 0.045
Yes 42,827, (8.3-11.1) 73,11.09,(4.6-5.8)

Postnatal Care 1 visit 213,41.92, (37.7-46.3) 295,44.8, (41.1-48.6) 1.020 0.03
2 visit 163,32.08, (28.1-36.3) 200,30.39, (26.9-34.1)
3 visit 119,23.43, (19.8-27.3) 148,22.49, (19.3-25.9)
4visit 13,2.55, (1.4-4.3) 15227, (1.3-3.7)

TABLE 3 Classification accuracy for low birth weight prediction in
training and testing datasets.

Sample Observed Predicted Percent
No Yes Correct
Training No 28 139 86.8%
Yes 14 636 97.8%
Overall Percent 5.1% 94.9% 81.3%
Testing No 8 54 82.9%
Yes 11 276 96.2%
Overall Percent 5.4% 94.6% 81.4%

performance. This substantial AUC underscores the model’s high
classification accuracy rate, given in Figure 4.

Learning mechanism of deep neural
networks

This DNN and MLP model uses seven input variables such as
MAS, perinatal death, PIH, vacuum baby in need of resuscitation,
gestational age category, mother allocation, and previous surgery to
predict two output outcomes (LBW = 0) or (NBW = 1). The model’s
single hidden layer, comprising five nodes [H(1:1) to H(1:5)],
introduces crucial nonlinearity, allowing it to capture complex
relationships within the data that a simple linear model could not.
Connections between layers are defined by positive and negative
synaptic weights, indicating the influence of each input on hidden
layer nodes and, subsequently, the final output, as shown in
Figure 5. The study revealed a significant association between MAS
and LBW, as evidenced by the neural network’s strong positive
weight (0.728) connecting MAS to hidden neuron H(1:2). However,
this statistical association does not imply direct causation. MAS
typically occurs secondary to fetal distress or other perinatal
complications (placental insufficiency or intrauterine hypoxia),
which themselves are established risk factors for LBW. The model’s

Frontiers in Artificial Intelligence

09

inhibitory weight (—0.345) between perinatal mortality and H(1:3)
further suggests complex mediating pathways, where adverse
perinatal outcomes may influence birth weight through multiple
biological mechanisms rather than through simple direct effects.
These findings emphasize that while MAS serves as a clinically
useful predictor in the model, it likely represents a marker of
underlying pathological processes that independently contribute to
restricted fetal growth, rather than functioning as a direct causal
agent of LBW. The model’s architecture supports this interpretation,
with hidden neurons H(1:1) and H(1:3) showing positive weights
(0.165 and 0.166, respectively) for NBW outcomes, while nearly all
hidden neurons exhibit negative weights for LBW predictions. So,
this captures a nuanced relationship without asserting causal
directionality between the observed variables.

Overall, the network architecture transforms input features
through hidden layers to predict birth outcomes, with connection
weights quantifying each variable’s influence. MAS and gestational age
emerge as predictors, demonstrating the model’s ability to identify
clinically significant risk factors for LBW.

This interpretation showed the DNN’s ability to capture complex,
non-linear relationships between predictors and outcomes (Table 4).

p(y)=(Bias)+(0.310%input1) —(0.155*input 2)+...+(-0.261)

Figure 6's comparative density plot for CATE estimation offers key
insights into the impact of MLCC on individual LBW outcomes. The red
curve, representing prediction errors, peaks near zero, suggesting the
model generally aligns with true effects. However, its spread showed that
the challenge of precisely estimating ITEs. The blue curve illustrates the
CATE, showing the diverse benefits individuals might gain from MLCC;
its broader distribution emphasizes significant variability in individual
responses. Ideally, the green curve, depicting the true impact, would
reveal a bimodal distribution, indicating distinct subgroups: those who
benefit substantially from MLCC and those who experience minimal or
no effect. This collective view underscores the necessity of considering
heterogeneity and subgroup differences to refine causal inference and
tailor MLCC interventions for maximum impact.
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FIGURE 3
Normalized importance of variables. MecoAsp, meconium aspiration; PerinatalDeath, perinatal death; GestAge_cat, gestational age category;
GestHypert, pregnancy-induced hypertension; VacResusc, vacuum baby in need of resuscitation; PrevSurg, previous surgery; MotherAlloc, mother
allocation.
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FIGURE 4
Power of receiver operating characteristic curves.
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FIGURE 5

resuscitation; PrevSurg, previous surgery; MotherAlloc, mother allocation.

Navigating the neural network unraveling the mysteries of a three-layer multilayer perceptron. MecoAsp, meconium aspiration; PerinatalDeath,
perinatal death; GestAge_cat, gestational age category; GestHypert, pregnancy-induced hypertension; VacResusc, vacuum baby in need of
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Performance comparison of CDL models
for PEHE, MSE, and ATE estimation in LBW
analysis

In a comparative analysis of CDL models, CFR-WASS emerges
as the top performer, demonstrating superior PEHE (lowest PEHE
of 0.35) and strong classification performance across the board
(84% accuracy, 82% precision, 85% recall, 0.88 AUC). This robust
performance suggests its potential for accurately identifying
individuals most likely to benefit from specific medical
interventions, thus enabling more personalized treatment strategies.
While CFR-MMD also performs well in causal effect estimation
(PEHE 0.36, lowest ATE Bias 0.13), CFR-WASS combined strength
in both causal and classification metrics makes it particularly
promising for clinical applications where both accurate predictions
and precise causal inference are critical. For scenarios with
moderate-sized datasets where computational efliciency is a
priority, Bayesian Ridge Regression and Bayesian Neural Networks
offer a practical balance of competitive performance (PEHE 0.42,
ATE Bias 0.15, and AUC 0.84-0.86) and significantly faster training
times. This makes them viable options for rapid prototyping or
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deployment in resource-constrained medical environments (Shalit
etal., 2017).

Conversely, simpler models such as Lasso Regression show
limitations in causal effect estimation (higher ATE Bias 0.23),
potentially due to their linear constraints. Hybrid methods, such as
Sequential Feature Selection-KNN (PEHE 0.55, AUC 0.75) and
Convolutional- KNN (PEHE 0.48, AUC 0.80),
underperformed, indicating that their presumed advantages for

generally

smaller sample sizes might not hold in this context. The notable poor
performance of Generative Adversarial Net for Individualized
Treatment Effects (PEHE 0.60, ATE Bias 0.30, and AUC 0.71) is
attributed to training instability and data inefficiency with the dataset
size of 1,166, showing their unsuitability for direct causal inference in
such settings. The consistent minimal precision-recall gaps among
top-performing models further underscore their balanced predictive
capabilities, which are vital for reliable medical decision support, as
shown in Table 5.

Given the evaluation metrics in Table 5, the next step involves
estimating the causal effects of MLCC on LBW compared to other care
models. This will entail quantifying the PEHE to gauge individual-
level causal accuracy, the ATE error to assess population-level bias,
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TABLE 4 Parameter estimates hidden layers and output layers.

Predictor

Hidden Layer 1

10.3389/frai.2025.1484299

Predicted
Output Layer

H(1:2) H(1:3) H(1:4) H(1:5) Normal Low birth
birth weight
weight
Input Layer Bias 0.310 —0.155 0.370 0.093 —0.261
Gestational age 0.087 —0.022 0.415 0.085 0.471
Category
Mother Allocation 0.352 0.072 0.227 —0.281 0.261
Perinatal Death ~0.049 ~0.029 —0.345 ~0.060 —0.181
Meconium 0.284 0.728 ~0.536 0.760 —0.173
Aspiration
Pregnancy- 0.144 —0.034 0.249 0.115 —0.002
induced
hypertension
Previous surgery 0.399 —0.045 0.051 0.314 —0.221
Vacuum baby in 0.292 —0.067 0.017 0.056 —0.250
need of
resuscitation
Hidden Layer 1 Bias 0.152 0.853
H(1:1) 0.165 —0.150
H(1:2) 0.004 -0.219
H(1:3) 0.166 —0.197
H(1:4) 0.281 -0.193
H(1:5) 0278 0.144
signifies the model’s excellent ability to predict ITE, allowing for
07 highly personalized interventions. Conversely, a low ATE of
0.24 + 0.21 with high variability suggests that while there might be a
0.6+ small average benefit across a population, the effect on individual
054 patients can differ significantly. Therefore, prioritizing a low PEHE is
crucial for clinicians to tailor interventions precisely to each patient,
2 moving beyond generalized averages to truly optimize care. Therefore,
g o5l the proposed CFR-WASS achieved good performance and
outperformed state-of-the-art models, and the model tuning or
027 ensemble methods may enhance performance (Shi et al., 2019).
011 The CFR-MMD’s precise estimates (ITE 0.34 +0.12, ATE
0.24 + 0.01) help clinicians identify which mothers would benefit most
0.0
: . ; ; . ; . : from interventions while assessing overall treatment impact. Though
-75 -50 -25 00 25 50 75 100 125 . a . ]
results are consistent, real-world validation remains important. This
FIGURE 6 N . .
Comparative density plots for CATE estimations. Red indicates the apPrf)ach enablles targeted .C.are forhigh-risk pregnar.1c1es while
estimated Error CATE, Blue indicates the individualized CATE, and guiding population-level decisions about resource allocation.
green indicates the individualized CATE True. CEVAE’s higher lepegr (3.21+£0.32) and ATE (1.23 +0.23)
indicate broader variability in its predictions, suggesting better capture

and the ITE for personalized causal insights for each mother.
Additionally, we will incorporate classification measures such as
accuracy, precision, recall, and AUC to further evaluate the
model’s performance.

For clinicians, CFR-WASS, the /e pgyg , and the ATE measures
are vital for effective decision-making. A low PEHE of 1.006 + 0.03
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of individual patient differences but with less precision. While this
helps identify nuanced treatment responses, the wider ranges mean
clinical decisions should be cautious, prioritizing high-risk cases
where personalized benefits outweigh uncertainty.

The CCNN model shows moderate precision (y/€peyg
2.25+0.25, ATE 2.65 + 1.45), making it suitable for identifying
general treatment trends but requiring cautious interpretation for
individual cases. In contrast, Bayesian Ridge delivers more reliable
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TABLE 5 Evaluation of causal deep learning models (n = 1,166, 80% training, 20% testing).

Methods

Training

Precision

Accuracy

TIME

Counterfactual
Convolutional

Neural Network

Very slow

Bayesian Ridge 0.42 0.15 1.08 0.82 Fast

Regression

0.80 0.77 0.82 0.84

Lasso Regression 0.42 1.14 Slow

0.79

1. Convolutional 0.48 0.20 1.15 0.78 Fast

Neural Network-
K-Nearest
Neighbors

0.77 0.74 0.79 0.80

2. Sequential 0.55 0.26 1.30 0.72 Slow

Feature Selection-
K-Nearest
Neighbors

0.72 0.70 0.74 0.75

3. Bagging 0.45 1.12

Regressor

Moderate

4. Treatment 0.39 0.18 1.16
Agnostic
Representation

Network

Moderate

0.80 0.78 0.82 0.75

5. Bayesian Neural 0.42 0.15 1.08 0.81 Slow

Network

0.81 0.78 0.83 0.86

6. Counterfactual 0.11 1.02
Regression-
Wasserstein

Distance

Moderate

7. Conditional 0.52 0.24 1.25

Variational

Autoencoder

Moderate

0.74 0.72 0.76 0.77

8. Generative
Adversarial Net for
Individualized

Treatment Effects

Extreme

9. Counterfactual 0.36 0.13 1.16
Regression-
Maximum Mean

Discrepancy

Moderate

0.83 0.81 0.84 0.87

Deep neural Slow

network

| = shows decrease in value, 1 = shows increase in value.

estimates (PEHE 1.12 + 0.021, ATE 1.32 +0.75), supporting both
personalized and population-level decisions. Clinically, this means
Bayesian Ridge is better suited for guiding interventions, while CCNN
may help screen broader risk patterns, though both benefit from
further refinement for high-stakes prenatal care.

These findings indicate that our proposed model can extract deep,
representative, and discriminative features related to the assigned
MLCC, leading to improved ITE estimation performance. The Bayesian
ridge stands out due to its high PEHE and reasonable ATE estimation.
The bagging regressor performs well in ATE estimation but has
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moderate precision. Consider the trade-offs between PEHE and ATE
estimation when choosing the best method for your specific use case.

In conclusion, the proposed CFR-WASS and CFR-MMD models
demonstrated superior performance in terms of +/€pgyg,
outperforming state-of-the-art models in estimating causal effects for
LBW outcomes. Based on their CFR-WASS and CFR-MMD outperform
other CDL models in estimating PEHE, ATE, and ITE, as evidenced by
lower Mean * Standard Error values in comparisons (Table 6).

A feed-forward deep neural network (FFDNN) facilitates causal

inference by modeling intricate, non-linear relationships between
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TABLE 6 Causal deep learning algorithm for estimating (mean + standard
error) on maternal and neonatal dataset.

Counterfactual 2.25+0.25 2.15+1.23 2.65+ 1.45
Convolutional

Neural Network

Bayesian Ridge 1.12 + 0.021 2.45+0.75 1.32£0.75

Regression

Lasso Regression 6.65+0.45 5.25+0.43 0.92 +0.06

Convolutional 3.54+0.52 24+03 0.85+0.35

Neural Network-K-

Nearest Neighbors

Sequential Feature 29+041 2.6 +0.02 0.75+£0.25

Selection-K-Nearest

Neighbors

Bagging Regressor 5.35+1.47 4.14+0.27 5.35+1.32

Treatment Agnostic 1.23 £ 0.52 1.53 £0.49 0.65 £ 0.16

Representation

Network

Bayesian Neural 1.21+0.12 1.09 £ 0.13 0.59 £ 0.01

Network

Counterfactual 1.006 + 0.03 0.25 £ 0.01 0.24£0.21
Regression-
Wasserstein

Distance

Conditional 3.21+£0.32 2.15+0.64 123+0.23

Variational

Autoencoder

Generative 2.44 +0.08 1.24 + 0.56 0.67 +£0.14
Adversarial Net for
Individualized

Treatment Effects

Counterfactual 1.012 + 0.001 0.34+0.12 0.45+0.01
Regression-
Maximum Mean

Discrepancy

Deep Neural 1.45 +0.051 2.3+0.32 0.78 £0.63

Network

Bold values indicate the algorithm with the best performance (lowest mean) for each causal
estimation metric. The mean shows the performance, while the standard error reflects its
precision.

treatment, such as MLCC, and LBW, all while accounting for
confounding factors. The network’s structure allows it to generate
counterfactual predictions by estimating potential outcomes for each
observation under both MLCC and other professional scenarios.
Through its internal layers, the FFDNN can identify varied treatment
effects across different groups, offering predictions for both ITE and
ATE effects. Its ability to approximate complex functions helps
address the core challenge of causal inference: that only one potential
outcome is ever observed for a given subject. Careful regularization
and architectural design are crucial for the FFDNN to yield
dependable  causal rather

predictions, than  just

correlational associations.
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To solve a binary classification problem, we combine sigmoid
output units with maximum likelihood. A sigmoid output unit has 2
components; one is which uses a linear layer to compute.

z=w*h+b,and then it uses an activation function to convert z
into a probability

ZIZW11+W12 + W13 +Wig +Wi5 + Wi +wry +W0 +01

7y =—0.738+0.568+(—0.245) +(—0.8149) +(—0.897) +(—0.581)
+0.1489+0.99+0.156 = —1.413

Now the sigmoid function

. P P
f(znPul) l+e_(i"17”t1)

1

Lo 71413)

ZZ =Wi1 T Wy + W33 +Wyy +Wss +W66+W77+02

f (z) = =0.1956, the predicted value of LBW

Z5 =0.1229+(—0.1538)+(—0.1694) +0.3538 +0.3494 +0.34939
+(—0.3857)+0.556+0.9875=2.01009.

S (imputy) =——-
1+ 6—(1nput2)
- . 1 .
The logistics function f (z) =— 01009 = 0882 predicts an

1+e

88.2% probability of NBW when mothers receive MLCC, well above
the 0.5 classification threshold. This demonstrates MLCC’s strong
protective effect against LBW, as the model consistently associates
MLCC adherence with higher probabilities of normal birth outcomes.
The results quantitatively confirm that structured ANC significantly
reduces LBW risk, showing the MLCC'’s clinical importance. These
findings underscore the need to expand MLCC access to improve
neonatal health outcomes, as shown in Figure 7.

Discussion

Low birth weight babies face health complications, but not all
require interventions (Chen et al., 2013); the impact of LBW was
associated with infant mortality and long-term health issues. The
prediction of LBW at birth is based on the analysis of different
characteristics of newborn babies and mothers. Some characteristics
classified as the most important features include MAS, perinatal death,
PIH, vacuum babies in need of resuscitation, gestational age category,
mother allocation, and previous surgery. This study indicates that
higher maternal weight was associated with larger birth weights in
babies, which is consistent with (Alabbad et al., 2024). Our study
found significant differences in folic acid/iron supplementation
(97.1% versus 95.1%, p = 0.007) and PIH (7.5% versus 4.7%, p = 0.036)
between LBW and normal birth weight groups. These findings align
with current evidence showing iron-folate supplementation reduces
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Feed-forward deep neural network. MecoAsp, meconium aspiration; PerinatalDeath perinatal death; GestAge_cat, gestational age category;
GestHypert, pregnancy-induced hypertension; VacResusc, vacuum baby in need of resuscitation; PrevSurg, previous surgery; MotherAlloc, mother

LBW risk by 19% (0.81, 0.71-0.93) (Zenebe et al., 2021), while PIH
increases LBW risk 2-3 fold (Yang et al., 2022). These preventable risk
factors appear to play a significant role in low birth weight outcomes,
underscoring the need for enhanced prenatal care strategies.

Our findings, supported by CDL feature selection methods,
identified MAS as the strongest predictive factor for adverse neonatal
outcomes compared to other features (Moges et al., 2025). However,
while MAS is highly associated with complications in LBW infants, it
does not causally precede LBW. Instead, existing literature suggests that
MAS is a consequence of intrapartum events rather than a direct cause
of LBW. The MAS was a significant cause of respiratory distress in
newborns, occurring in about 10-15% of infants born through
meconium-stained amniotic fluid (Uniyal et al., 2021). Studies have
shown that MAS is more common in term babies and those with LBW
(Uniyal et al., 2021). However, it can also affect post-mature and small-
for-date infants and those weighing over 2,500 g (Jain et al., 2020).
Critically, recent research showed that when MAS develops in infants
with LBW, it is associated with a significantly increased risk of severe
outcomes and mortality. Although LBW does not cause meconium
passage, the physiological vulnerabilities of LBW infants, such as
immature lungs, compromise their ability to cope with MAS, leading
to a higher incidence of complications such as birth asphyxia, hypoxic—
ischemic encephalopathy, seizures, septicemia, and persistent
pulmonary hypertension (Jain et al, 2020). Consequently, MAS
substantially contributes to neonatal morbidity and mortality, with
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birth asphyxia being a common cause of death, particularly in
vulnerable groups such as LBW infants. The WHO underscores the
importance of universal, high-quality perinatal care, including vigilant
monitoring and appropriate resuscitation for all newborns, irrespective
of gestational age or birth weight, to mitigate adverse neonatal
outcomes and address the heightened risks faced by LBW infants with
MAS. Early diagnosis and prompt treatment are crucial for improving
outcomes (Uniyal et al., 2021; Widiyaningrum et al., 2020).

The findings of this study align with recent research that showed
the importance of maternal and neonatal interventions in reducing
LBW. The acid/iron
supplementation and reduced LBW (p = 0.0071) is consistent with

significant association between folic
studies demonstrating the critical role of micronutrients in improving
birth outcomes (Hunter et al., 2023; Johnson, 2022). Similarly, the
protective effect of MLCC (p = 0.0054) corroborates evidence from
recent trials showing that continuity of care models, particularly
MLCC approaches, significantly reduce adverse neonatal outcomes
(Fikre et al., 2023; Mose et al., 2023). The association between
adequate ANC visits and reduced LBW (p = 0.044) further supports
global recommendations emphasizing the importance of regular ANC
visits in improving maternal and neonatal health (World Health
Organization, 2021; Dandona et al., 2022).

The findings of this study indicate that ANC visits have a significant
effect on the risk of LBW, which contrasts with a previous study
conducted in Adwa General Hospital, Northern Ethiopia, which
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reported no significant association between ANC attendance and LBW
among term newborns (Gebregzabiherher et al., 2017; Hailu and
Kebede, 2018). This discrepancy may be attributed to differences in
study populations, quality of ANC, or healthcare infrastructure. While
our results align with global evidence emphasizing the protective role
of ANC in reducing LBW (Neupane et al., 2023; Katiso et al., 20205
Wachamo et al,, 2019), further context-specific research is needed to
explore these variations and optimize maternal care strategies.

Similarly, a 2022 systematic review published in Frontiers in
Public Health demonstrated that increased ANC utilization was
associated with a 20-30% reduction in LBW incidence, particularly in
low- and middle-income countries where access to quality ANC
remains a challenge (Engdaw et al., 2023). Another study in (Kassaw
etal,, 2023) emphasized that ANC visits facilitate early detection and
management of conditions such as hypertension and anemia, which
are known contributors to LBW. Furthermore, a 2020 WHO multi-
country analysis reiterated that at least eight ANC contacts, as per the
updated WHO guidelines, further reduce LBW risks by ensuring
continuous maternal health monitoring and interventions. The
findings highlight that ANC visits are a key modifiable factor in
reducing LBW. These results align with existing research and support
the need for stronger ANC policies and programs worldwide.

The identification of PIH (p =0.036) and MAS (p =0.002) as
significant risk factors for LBW aligns with existing literature, which
highlights their detrimental impact on fetal growth and neonatal
outcomes (Gomez-Lumbreras et al., 2024; Adugna et al., 2025). However,
unlike some prior studies, this study did not find a significant association
between ANC attendance and LBW (p > 0.05), contrasting with evidence
suggesting that adequate ANC reduces LBW risk through early detection
and management of complications such as PIH (Tekeba et al., 2024).
Additionally, while some studies report protective effects of urban
residence and timely breastfeeding initiation against LBW, our findings
showed no significant associations (residence: p = 0.229; breastfeeding
initiation: p = 0.335). These discrepancies may stem from variations in
healthcare access, ANC quality, or population characteristics,
underscoring the need for context-specific interventions to optimize
maternal and neonatal health outcomes (Basile Ibrahim et al., 2022;
D’Hollander et al., 2025). In this study, we conducted a methodology
scoping review, which identified DL causal predictive modeling for
MLCC, with the main differences between the methods being the source
of data from which the causal effects are estimated. We identified that
when the causal effects required for the predictions were fully estimated
from the quasi-experimental data, methods were available for predictions
under MLCC. We developed a guide for the predictive analysis of PEHE
in a quasi-experimental study. Predictive precision of heterogeneity
treatment analysis aims at MLCC effects (Lin et al., 2021).

Significant efforts have recently been made to utilize ML
techniques for causal inference problems. One notable application is
estimating heterogeneous treatment effects. These efforts aim to
enhance our understanding and improve outcomes in various
domains (Athey and Imbens, 2016), propensity score modeling, and
neighbor matching for ITE. DL, a subset of AL is crucial in estimating
MLCC effects (Ren et al., 2023; Davidson and Boland, 2021).

The findings align with (Simmelink et al., 2025), who showed the
role of leadership and collaborative efforts in successfully
implementing MLCC. Our results further demonstrate that MLCC,
when supported by robust policies and interdisciplinary collaboration,
can significantly reduce adverse neonatal outcomes such as LBW.
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The DNN has been employed to estimate heterogeneous treatment
effects within the causal inference framework. DLs ability to handle
complex confounding factors is valuable for understanding LBW and
enhancing outcomes (Koch et al., 2025). In this paper, we built a DNN
classifier, Propensity Net, for propensity score-based matching to
estimate ITE and ATE (Ramachandra, 1803).

The results show that CFR-WASS achieves the best performance
with the highest accuracy (84%), precision (82%), recall (85%), and
AUC (0.88), along with the lowest PEHE (0.34) and ATE bias (0.11).
This aligns with recent findings by (Shalit et al., 2017), who demonstrated
that Wasserstein-based methods excel in causal inference by effectively
balancing covariate distributions. Similarly, the strong performance of
CFR-MMD (AUC = 0.87) supports (Hakansson et al., 2020) work on
distribution matching for unbiased treatment effect estimation. In
contrast, simpler models such as Lasso Regression (AUC = 0.79) and
Generative Adversarial Net (AUC = 0.71) underperform, consistent
with (Koch et al., 2024), who showed their limitations in handling
complex causal relationships. These findings reinforce the superiority of
advanced CDL methods in precision medicine applications. The high
AUC scores(>0.86) for top models validate their discriminative power,
supporting their use in precision healthcare applications.

The DNN model’s performance (81.3% accuracy) aligns with
findings from (Keles and Bagci, 2023), who reported that DL models
in neonatology achieve high accuracy (95% for Retinopathy of
Prematurity diagnosis) but often lack interpretability. Our use of neural
network weight analysis (e.g., H(1:2) for MAS) addresses this limitation
by providing clinically actionable insights, a direction recommended
for future AT applications in neonatal care (Keles and Bagci, 2023).

In a DNN, parameter estimates serve as independent variables.
These estimates typically correspond to weights and biases associated
with neuron connections. In DNN architecture, a single hidden layer is
utilized. Models with additional layers did not perform well (Montesinos
Lopez et al.,, 2022; Hassoun, 1995). Hidden layers play a crucial role in
capturing non-linear patterns within the data. Without hidden layers, the
DNN behaves similarly to a linear regression model, unable to detect
nonlinearity (Hussain et al., 2019). In our chosen model, the hidden layer
consists of five nodes (neurons). Each node represents a specific
combination of input features. The DNN exhibits nonlinearity because
the effects at each node vary. Some independent variables have positive
effects for one set of observations while having adverse effects for another
set. This dynamic behavior results in mean scores near zero, reflecting
the intricate interplay of variables (Alzubaidi et al., 2021).

The MLCC model demonstrates better clinical outcomes than
standard care, with lower rates of medical interventions (epidurals,
forceps delivery, episiotomies) and higher rates of natural births and
patient satisfaction (Sandall et al., 2016). Patient outcomes under
MLCC were assessed by clinicians using standardized protocols,
ensuring reliable validation. A structured medical records system was
essential for tracking care continuity, enabling consistent evaluations
and data-driven improvements in maternal and neonatal health
(Hailemeskel et al., 2022).

Strengths, limitations, and future work

This study contributes to the growing body of literature on causal
inference using DNN. Its primary strength lies in addressing causal
inference through the potential outcome framework, building and
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optimizing custom DL models for causal estimation, and adapting
these models to predict PEHE effects on LBW. DL models offer
significant advantages, such as automatically extracting relevant
features from data, reducing the need for manual feature selection,
and effectively capturing non-linear relationships. However, the study
focuses on quasi-experimental designs, which inherently face
limitations due to confounding and uncontrolled variables. While DL
models excel in handling complex data, they struggle with complex
confounding structures and often lack interpretability, making it
challenging to understand the underlying causal mechanisms.
Quasi-experimental designs are particularly prone to selection
bias due to non-random assignment, leading to imbalances between
MLCC and other professional groups and potentially compromising
the validity of results. Additionally, unmeasured confounders can
obscure causal relationships, further complicating accurate effect
estimation. To address these challenges, we recommend future
research to explore Double/Debiased Machine Learning (DML), a
state-of-the-art algorithm that provides unbiased, root-n-consistent
estimators for ATE, heterogeneous treatment effects, and their
confidence intervals. DML enhances adjustments for non-linear
confounding relationships, offering a more robust approach to causal
inference in complex datasets. By integrating DML, future studies can
improve the accuracy and reliability of causal estimates, advancing the
intersection of DL and causal inference in healthcare and beyond.

Conclusion

In this study, we employed DL causal inference techniques, such
as CCNN, CFR-WASS, causal effect variational autoencoder, and
balancing neural network, for measuring the effectiveness of PEHE,
ITE, and ATE of LBW predictions for capturing more complex
patterns and relationships of the given data. The analysis revealed that
MAS was the strongest predictor, but other factors such as gestational
age and perinatal mortality also played a role.

In this study, the DNN model delivered reliable results, reaching
81.3% accuracy on the training set and 81.4% on the test set, indicating
stable predictive performance. Its impressive AUC score of 0.88
further validates its ability to accurately predict LBW. The analysis of
the hidden layer identified H (1 : 1) for the allocation of the mother,
H (1 : 2) for the allocation of the mother, H (1 : 3) for perinatal death,
and H (1 : 3) for MAS with positive and negative influences on LBW,
respectively. Therefore, this indicated that, hidden layer provided
insights into the specific influences of various factors on LBW.

CFR-WASS outperformed all other models, achieving the highest
accuracy (84%), precision (82%), recall (85%), and AUC (0.88). It also
had the lowest errors, with a PEHE of 0.34 and ATE bias of 0.11. In
predicting LBW, CFR-WASS maintained strong performance with a
PEHE of 1.006 and an ATE of 0.24, surpassing competing methods.
Both CFR-WASS and CFR-MMD effectively estimated causal effects,
showing that their potential to enhance maternal and neonatal
healthcare interventions, particularly by evaluating the impact of ANC
visits on LBW risk. In Addition, the FFDNN model, using a sigmoid
function, predicted a higher probability of 0.882 of NBW for newborns
whose mothers followed MLCC compared to a lower probability of
0.1956 for LBW, reinforcing the importance of adequate ANC in
improving birth outcomes. These findings showed that a critical role of

Frontiers in Artificial Intelligence

10.3389/frai.2025.1484299

MLCC in reducing LBW, particularly in resource-limited settings. By
ensuring consistent antenatal monitoring, timely folic acid/iron
supplementation, and adherence to ANC visits, MLCC models
demonstrate promise in improving maternal and neonatal outcomes.
Future research should prioritize cost-effectiveness analyses and
implementation strategies to scale MLCC programs, informing policies
aimed at LBW prevention and maternal-infant health equity.
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