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Introduction: Low birth weight (LBW), under 2,500 g, poses health risks, though 
not always requiring treatment. Early detection of high-risk pregnancies enables 
preventive care, improving outcomes for mother and baby. This study aimed 
to establish cause-and-effect relationships using Causal Deep Learning (CDL) 
models that reduce bias and estimate heterogeneous treatment effects on LBW 
in the Midwife-Led Continuity Care (MLCC) intervention.
Methods: This study used a quasi-experimental study design (August 2019–
September 2020) in North Shoa, Ethiopia, and enrolled 1,166 women divided 
into two groups: one receiving MLCC and the other receiving other professional 
groups for comprehensive antenatal/postnatal care. The dataset and code 
are provided in data availability section. Our model combines counterfactual 
convolutional neural networks to analyze time-based patterns and Bayesian 
Ridge regression to reduce bias in propensity scores. We  use Counterfactual 
Regression with Wasserstein Distance (CFR-WASS) and Counterfactual 
Regression with Maximum Mean Discrepancy (CFR-MMD) to balance patient 
characteristics and improve counterfactual estimates of treatment effects. This 
approach strengthens causal insights into how MLCC interventions affect LBW 
outcomes.
Result: The Deep neural networks (DNN) model showed strong predictive 
accuracy for LBW, with 81.3% training and 81.4% testing performance, an area 
under the curve (AUC) of 0.88, enabling the reliable early identification of high-
risk pregnancies. The study found a strong link between meconium aspiration 
syndrome (MAS) and LBW (p = 0.002), but this does not mean MAS directly causes 
LBW. MAS likely results from fetal distress or other pregnancy complications 
that may independently affect LBW. While statistical associations exist, clinical 
causation remains unproven; therefore, the counterfactual analysis showed 
MLCC could help reduce LBW risk. CFR-WASS achieved high accuracy (84%) 
while the precision in heterogeneous treatment effect (PEHE = 1.006) and the 
average treatment effect (ATE = 0.24), and CFR-MMD PEHE of 1.02, ATE of 0.45, 
demonstrating potential for tailored treatment strategies. DNN and multilayer 
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perceptrons uniquely identified key neural weights and biases favoring normal 
birth weight while suppressing LBW predictions, offering interpretable insights 
for clinical risk assessment.
Conclusion: The CFR-WASS/CFR-MMD model strengthens LBW prediction by 
identifying crucial factors like MAS and healthcare access, while accurate PEHE 
and ATE estimates support data-driven prenatal care and targeted interventions 
for healthier outcomes.

KEYWORDS

causal deep learning, low birth weight, precision in estimating heterogeneous 
treatment effects, average treatment effect, midwife-led continuity care

Introduction

Low birth weight (LBW), defined as a birth weight below 2,500 
grams, is a major global public health issue linked to higher neonatal 
mortality and long-term adverse health outcomes (Desta, 2019; 
Endalamaw et  al., 2018). Despite existing interventions aimed at 
reducing LBW, there remains a critical gap in understanding how 
these strategies differentially affect subpopulations of pregnant 
women, particularly in low-resource settings (Park et al., 2020; Koivu 
et al., 2023).

Antenatal care (ANC) has been widely recognized as a key factor 
in reducing LBW risk. Studies consistently show that inadequate 
ANC, often defined as fewer than four visits during pregnancy, is 
strongly associated with higher LBW incidence. For example, (Roslina, 
2020) found that mothers receiving fewer than four ANC visits had a 
1.9 times greater risk of delivering LBW infants compared to those 
with adequate care. Similarly, (Sunarni et al., 2018) demonstrated that 
regular ANC attendance significantly improves birth weight outcomes, 
reinforcing the need for targeted maternal healthcare policies.

This gap relates to the concept of heterogeneous treatment effects. 
Heterogeneous treatment effects occur when the effectiveness of an 
intervention varies across different groups of individuals (Kent et al., 
2018). In the context of LBW prevention, reduction-specific 
Midwife-Led Continuity Care (MLCC) is highly effective for one 
sub-group of pregnant women. It has a minimal or negative effect on 
another subgroup (Sandall et al., 2024). Unfortunately, most studies 
on LBW prevention have focused on average treatment effects (ATE) 
and neglected the potential for heterogeneous treatment effects. This 
limitation hinders the development of precisely targeted interventions 
to conduct the current study, which contributes to filling a critical 
knowledge or awareness gap regarding the adverse treatment effect.

In healthcare research, observational studies estimate causal effects, 
specifically the impact of MLCCs or interventions on medical outcomes. 
However, quasi-experimental studies are the gold standard for 
establishing cause-and-effect relationships, and practical constraints such 

as ethical, logistical, or financial limitations may make them infeasible. 
In such situations, researchers rely on quasi-experimental studies to 
explore causal effects. These studies address potential bias by considering 
confounders, although both approaches rely on untestable assumptions 
(Zawadzki et  al., 2023). Deep learning (DL) is a subset of machine 
learning (ML) that uses deep neural networks (DNNs) to recognize 
patterns in large, complex datasets, achieving state-of-the-art results in 
fields such as computer vision and health sciences (Keles and Bagci, 
2023). In neonatology, DL has proven revolutionary, particularly in tasks 
such as survival analysis, neuroimaging, and diagnosis of conditions such 
as retinopathy of prematurity (Keles and Bagci, 2023). Furthermore, DL 
models are complex networks that learn independently without human 
intervention. These models have multiple layers, enabling them to 
process information without explicit human guidance (Taye, 2023).

Deep learning is preferred over the existing methods for causal 
inference in LBW due to its ability to model complex and non-linear 
relationships. DL models, such as neural networks, can capture 
intricate interactions and confounding factors, providing more 
accurate causal effect estimates (Fan et al., 2023). Frameworks such as 
Counterfactual Regression with Wasserstein Distance (CFR-WASS) 
and Counterfactual Regression with Maximum Mean Discrepancy 
(CFR-MMD) integrate causal inference techniques, enhancing 
robustness and generalizability (Meinshausen, 2018; Shalit et  al., 
2017). While the existing methods are somehow more interpretable, 
DL’s superior predictive performance and flexibility make it a powerful 
tool for identifying causal factors in LBW studies, going beyond 
prediction to uncover actionable insights (Uauy et al., 2013).

Recent research highlights the integration of causal inference with 
DL to enhance model robustness, interpretability, and generalizability. 
This approach addresses limitations in existing DL, which may capture 
spurious correlations and lack interpretability (Jiao et al., 2024). By 
integrating causal effects into DL models, analysts have enhanced 
predictive performance and the interpretability of results in complex 
domains such as electronic health records (Ghosh et al., 2018). The 
combination of ML and causal inference methods has also shown 
promise in system dynamics modeling, enabling better forecasting 
and understanding of complex interactions across various disciplines 
(Koch et al., 2025). To facilitate adoption, researchers have developed 
frameworks and tutorials for implementing DL-based causal inference 
methods, focusing on observational causal estimation and extending 
causal inference to settings with non-linear confounding and diverse 
data types (Koch et al., 2025). This emerging field offers significant 
potential for advancing our understanding of cause-and-effect 
relationships in complex systems. Therefore, DL models augmented 
with causal inference techniques are better equipped to address 

Abbreviations: ATE, Average treatment effect; CATE, Conditional average treatment; 

CCNN, Counterfactual convolutional neural network; CDL, Causal deep learning; 

CFR-MMD, Counterfactual regression with maximum mean discrepancy; 

CFR-WASS, Counterfactual Regression with Wasserstein distance; DNN, Deep 

neural network; FFDNN, Feed-forward deep neural network; ITE, Individual 

treatment effect; LBW, Low birth weight; MAS, Meconium aspiration syndrome; 
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confounding variables and biases, resulting in more precise and 
dependable predictions. This approach helps to detect targeted 
interventions to prevent LBW, leading to better health outcomes for 
mothers and babies, and it also helps to connect causal inference and 
DL within quasi-experimental settings (Zhang et al., 2022; Samek 
et al., 2021). Causal Deep Learning (CDL) leverages partial causal 
knowledge among some and not necessarily all variables of interest 
and quantitatively characterizes the functional form among variables 
of interest and decision-makers (Berrevoets et  al., 2024). Despite 
strong evidence supporting MLCC, diverse stakeholder interests and 
power dynamics hinder its implementation (Simmelink et al., 2025). 
This study was to address these challenges by leveraging CDL to 
evaluate MLCC’s impact on LBW outcomes.

Related work

Some existing studies are as follows: We used an ML approach to 
predict the weight range of infants in studies conducted in Belihuloya, 
Balangoda, Sri  Lanka. The study was conducted in the 
United Arab Emirates (Khan et al., 2022) to estimate infant birth 
weight and LBW using ML algorithms. The authors conducted their 
study in Shanghai, China, using an ML approach to estimate fetal birth 
weight in high-risk pregnancies (Moreira et al., 2019).

Studies in the USA (Lu et al., 2019) investigated fetal weight at 
varying gestational ages using an ML approach. Studies conducted in 
Mexico (Campos Trujillo et al., 2020) predict early fetal weight using 
a support vector machine (SVM). Furthermore, the study conducted 
in China (Tao et al., 2021) used hybrid data from electronic medical 
records with the B-ultrasonic examinations of pregnant women to 
build a predicted birth weight classifier based on extended short-term 
memory networks.

Previous studies have employed ML and DL algorithms to predict 
LBW but have not sufficiently addressed causal inference. For instance, 
research in Iran (Arayeshgari et al., 2023) compared multiple ML 
models, including decision trees, random forests, artificial neural 
networks (ANNs), SVM, and logistic regression, to predict LBW risk 
factors. Similarly, another study in Iran evaluated eight ML and DL 
algorithms (XGBoost, LightGBM, and K-nearest neighbors) for LBW 
prediction but focused solely on predictive accuracy rather than causal 
effects (Alam et al., 2023). In the United States, ML approaches have 
been applied to LBW prediction. Yet, these studies also lacked rigorous 
causal analysis, such as estimating ATE or addressing the precision in 
heterogeneous treatment effect (PEHE) (Jiao et al., 2024).

A critical gap in these studies is their reliance on associative 
models rather than causal frameworks, which limits their utility for 
policy and intervention design. Recent advancements in CDL and 
doubly robust methods (Bayesian additive regression trees for 
propensity score estimation) have improved bias reduction and PEHE 
estimation in observational health data (Jiao et  al., 2024; Mbogu, 
2023). While ML and DL have been applied to neonatal outcomes, 
most studies focus on associative predictions rather than causal 
inference. For instance, (Keles and Bagci, 2023) systematically 
reviewed 106 AI studies in neonatology and found that primary 
applications included survival analysis and diagnosis, but few 
addressed causal relationships or heterogeneous treatment effects. 
This gap highlights the need for methods such as CDL to move beyond 
correlation and quantify intervention impacts, such as MLCC on 

LBW. Therefore, this study aimed to establish cause-and-effect 
relationships using CDL models that reduce bias and estimate 
heterogeneous treatment effects on LBW in the MLCC intervention.

The novelty of this work lies in its innovative application of CDL 
models, specifically CFR-WASS and CFR-MMD, to estimate 
heterogeneous treatment effects of MLCC on LBW outcomes in a 
low-resource setting. Unlike previous studies focusing solely on 
predictive accuracy, this research integrates counterfactual analysis 
with DL to reduce bias and provide interpretable causal insights. The 
study uniquely combines causal inference with DNNs to improve 
propensity score estimation, enabling tailored intervention strategies. 
Additionally, it offers robust metrics such as PEHE, ATE, and 
individualized treatment effect (ITE), advancing precision in maternal 
healthcare decision-making.

Propensity Score Matching (PSM) offers valuable insights for 
improving maternal healthcare by creating comparable groups from 
observational data. This approach helps clinicians determine which 
care strategies prove most effective for particular patient populations 
by matching women with similar medical histories and risk factors. 
For health policymakers, PSM serves as a powerful tool to assess real-
world program impacts, such as evaluating community health worker 
initiatives by comparing health outcomes between equivalent groups 
who did and did not receive the MLCC. The method generates 
practical evidence to expand successful programs and modify less 
effective ones, particularly important in settings with limited 
healthcare resources where data-driven decisions. While PSM 
provides crucial evidence when clinical trials aren’t feasible, our 
advanced CDL methods overcome PSM’s constraints by modeling 
intricate relationships in maternal health data, leading to more 
nuanced policy recommendations and clinical guidelines. Our CDL 
framework builds on PSM by addressing its limitations, capturing 
complex relationships to further improve precision in maternal health 
strategies (Yu and Kang, 2019).

Methods and participants

Data sources

A quasi-experimental study was conducted between August 2019 
and September 2020 in the North Shoa Zone in the Amhara Regional 
State of Ethiopia. This region is home to over two million people, with 
approximately 2,393,877 individuals residing within its boundaries. 
Among these residents, 1,207,839 are males, and 1,186,038 are females.

There are a total of nine hospitals in the region. One hospital is a 
referral center specifically equipped to provide comprehensive 
emergency obstetric care. The North Shoa Zone boasts 95 health 
centers. These centers serve as essential points of access to primary 
healthcare services. In addition to hospitals and health centers, the 
region has 389 health posts. These health posts are strategically 
distributed across rural and urban areas, ensuring that even remote 
communities can access basic healthcare services. Overall, the North 
Shoa Zone’s healthcare infrastructure strives to address its population’s 
diverse healthcare needs, emphasizing maternal and child health, 
emergency care, and community-based services.

A total of 1,166 mothers visiting prenatal and antenatal care 
clinics during the study period were included. Four primary 
hospitals in the study area, Shoa Robit, Ataye, Mehal Meda, and 

https://doi.org/10.3389/frai.2025.1484299
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Moges et al.� 10.3389/frai.2025.1484299

Frontiers in Artificial Intelligence 04 frontiersin.org

Alem Ketema Enat Hospital, were randomly selected using a 
two-stage stratified cluster sampling technique. These hospitals 
serve both urban and rural populations and provide delivery 
services. Samples were equally distributed, and participants were 
selected using systematic random sampling with an interval of 
two. Shoa Robit and Ataye hospitals were designated as 
intervention sites offering MLCC, while Mehal Meda and Alem 
Ketema Enat hospitals served as control sites. Eligible pregnant 
women were approached and enrolled until the target sample size 
was achieved.

Data collection

Midwives recorded participants’ baseline characteristics, including 
socio-demographics and obstetric, gynecologic, medical, and surgical 
histories, using a standard tool via face-to-face interviews and 
maternal antenatal cards. An independent, blinded data collector from 
the birth registry collected post-birth outcomes. Intervention 
exposure and continuity of care data were obtained from medical 
records and postnatal interviews. To avoid the Hawthorne effect, 
healthcare providers were blinded to outcome data. Eight midwife 
data collectors and four supervisors underwent a three-day training 
program for data collection and extraction.

Eligibility criteria

The study included pregnant women who were less than 24 weeks’ 
gestational age at their first antenatal care visit, had a singleton 
pregnancy, and were classified as low obstetric risk. Women with 
multiple pregnancies, those planning to seek care from a different 
provider, or those with a history of medical or obstetric complications 
were excluded from the study.

Quasi-experimental setup

Treatment group (MLCC)
Antenatal care plays a pivotal role in preventing LBW, with the 

effectiveness often influenced by the model of care provided. MLCC 
is increasingly recognized for its positive impact on birth outcomes, 
including a reduced risk of LBW. This model fosters a strong, trusting 
relationship between a woman and her consistent midwife or small 
team of midwives throughout pregnancy, birth, and the postnatal 
period (Moges et  al., 2025). This continuity facilitates early and 
comprehensive risk identification, allowing for prompt interventions 
such as nutritional counseling, vigilant monitoring for conditions such 
as pre-eclampsia, and timely referrals for complications, all of which 
directly mitigate LBW risk (Sandall et al., 2024). Furthermore, MLCC 
promotes health education and supports physiological pregnancy and 
birth processes. By avoiding potentially harmful interventions such as 
routine episiotomies, elective labor inductions without medical 
indication, or unnecessary cesarean sections, MLCC helps maintain 
optimal conditions for fetal growth (Mayberry et  al., 2017). This 
approach reduces interruptions to a natural pregnancy, which can 
negatively affect birth weight. Studies indicate that MLCC protects 
against preterm birth and LBW, especially for at-risk women, by 

improving their access to and engagement with community-
based care.

Control (other professional)
In contrast, antenatal care models led by other professional 

groups, such as obstetricians or those involving fragmented standard 
care, while essential for high-risk pregnancies, may sometimes face 
challenges in optimizing factors related to LBW prevention for all 
women. Obstetrician-led care is critical for managing complex 
medical conditions and severe complications that directly threaten 
fetal growth and contribute to LBW. However, in lower-risk 
pregnancies, a more medicalized approach might lead to higher 
intervention rates without a corresponding benefit in LBW reduction 
compared to MLCC (Voon et al., 2017).

Continuous care is crucial for preventing LBW. When pregnant 
women see different providers, it breaks down trust and causes 
inconsistent health advice, making it harder to spot complications 
early and leading to poor adherence to medical advice. This lack of 
consistent care can increase the risk of LBW, so clinical practices 
should focus on building strong, ongoing relationships between 
women and their healthcare providers (Fernandez Turienzo 
et al., 2021).

Variables in the study
This study analyzed binary outcome variables, categorizing 

newborns into two groups: LBW (≤2,499 grams) and normal birth 
weight (NBW) (≥2,500 grams). This research framework focused on 
the causal relationship between MLCC and other professional groups 
while controlling demographic characteristics, obstetric history, 
medical factors, and neonatal outcomes influenced LBW risk across 
these care models (Reza and Salma, 2024), as shown in Figure 1.

Variable selection

In this study, we initially examined a comprehensive set of over 
200 variables encompassing demographic, obstetric, medical, and 
neonatal factors to investigate their association with LBW, as shown 
in Figure 1 below. We employed CML techniques combined with 
feature selection methods to identify the most predictive features 
while minimizing redundancy and multicollinearity (Moges 
et al., 2025).

First, we  applied univariate analysis to assess the preliminary 
relevance of each variable. Next, we utilized regularized regression to 
penalize non-influential predictors, shrinking their coefficients to zero 
and retaining only the most significant ones. We  implemented 
recursive feature elimination to further refine our selection, which 
iteratively removes the least important features while optimizing 
model performance (Moges et al., 2025).

Causal deep learning algorithms

This study employed TensorFlow 2 and PyTorch to develop CDL 
models for estimating heterogeneous treatment effects across 
subgroups. Custom neural networks were designed for specific causal 
inference tasks, while Scikit-learn handled existing ML. Data 
processing relied on NumPy and Pandas, with visualizations generated 
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using Matplotlib and Seaborn. Bootstrapping ensured reproducibility, 
and causal analysis was supported by PyWhy and CausalML.

These models adapt well to non-linear confounding and dynamic 
factors, addressing the limitations of traditional linear approaches 
(Pattanayak et  al., 2017). The study investigates the use of CDL 
methods, including DNNs, Counterfactual Convolutional Neural 
Network (CCNNs), Bayesian Ridge, Bagging Regressor, Treatment 
Agnostic Representation Network (TARNet), Balancing Neural 
Networks, CFR-WASS, Causal Effect Variational Autoencoder, and 
CFR-MMD, to estimate propensity scores in causal inference (Whata 
and Chimedza, 2022; Ramachandra, 1803).

These advanced CDL models significantly improve treatment 
effect estimation from real-world clinical data. DNNs and CCNNs 
excel at analyzing complex patient characteristics for precise treatment 
comparisons. Bayesian methods incorporate medical expertise into 
analyses, while ensemble approaches such as Bagging Regressor 
produce stable results. TARNet and balancing-focused networks 
(CFR-WASS/MMD) rigorously control for confounding factors in 
quasi-experimental studies. Most innovatively, the Causal Effect 
Variational Autoencoder predicts how individual patients would 
respond to different treatments, enabling truly personalized care 
recommendations. Together, these methods provide clinicians with 
more reliable evidence about treatment effectiveness while accounting 
for real-world data limitations (Keles and Bagci, 2023).

Counterfactual convolutional neural 
networks

The PEHE and ATE for CCNNs depend on factors like 
architecture, training data, and hyperparameters (Kong et al., 2022). 
While CCNNs excel in image-based tasks, adapting them for causal 

inference requires careful design. To estimate PEHE and ATE using 
CCNNs, we have created an architecture that takes covariates and 
MLCC as input, predicting LBW; this is well-suited for handling 
sequential data like pregnancy stages and their influence on LBW.

Bayesian ridge

We have trained our model on the data to estimate PEHE and 
ATE using Bayesian Ridge, incorporating covariates and MLCC as 
features. PEHE compares predicted outcomes for MLCC and other 
professional groups. At the same time, ATE is computed based on 
average outcomes for MLCC and other professional groups. Therefore, 
the mathematical expression for Bayesian ridge regression can 
be represented as follows:

	 = +∈y Xw

Where: y represents the target variable, X  is the design matrix 
(features), w represents the weight vector (coefficients), and ∈ 
represents the noise.

Counterfactual regression with Wasserstein 
distance

The CFR-WASS improves causal effect estimation by balancing 
covariate distributions between treatment groups, addressing selection 
bias, and non-overlapping support (Shalit et  al., 2017). Unlike 
conventional methods like PSM, it minimizes distributional 
discrepancies using the Wasserstein distance, enhancing accuracy in 
heterogeneous treatment effects. CFR-WASS excels in 

NBW ≥2500g
LBW <2500g 

Demographic 

Obstetric

Medical

Neonatal

Age of mother

Place of delivery

Residence

Gest. Age

Parity

ANC

PIH

Episiotomy

Eclampsia

MAS

Birth status 

Apgar score

FIGURE 1

Key factors associated with low birth weight. ANC, antenatal care visit; PIH, pregnancy-induced hypertension; MAS, meconium aspiration syndrome; 
Gest.Age, gestational age.
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quasi-experimental data, particularly for complex relationships and 
confounding variables, providing reliable Conditional Average 
Treatment Effect (CATE) estimates. Its robustness makes it especially 
valuable for evaluating interventions like MLCC compared to standard 
care models.

Counterfactual regression with maximum 
mean discrepancy

Counterfactual Regression (CFR) estimates ITE by predicting 
potential outcomes under different treatments, such as MLCC. While 
useful for quasi-experimental data, CFR faces selection bias when 
comparing MLCC groups to other care providers. CFR-MMD 
overcomes this by incorporating Maximum Mean Discrepancy to 
balance covariate distributions in representation space, reducing bias 
(Shalit et al., 2017). This approach improves ITE accuracy, particularly 
in complex scenarios such as MLCC evaluation, where covariate 
balance is crucial for reliable causal inference. CFR-MMD thus 
strengthens traditional CFR by addressing key limitations in quasi-
experimental analysis (Kallus, 2020).

The CFR-MMD improves causal effect estimation by reducing 
selection bias through distributional alignment. The Gromov-
Wasserstein Information Bottleneck framework enhances its precision 
in evaluating MLCC interventions compared to standard care models 
(Shi et al., 2019).

Model training and evaluation

In CDL, rigorous evaluation metrics are essential for validating 
model performance in estimating treatment effects. The PEHE 
quantifies accuracy in individual-level effect estimation, with lower 
values indicating better performance (Lin et  al., 2020). The ATE 
measures bias in population-level effect estimation, where values 
closer to zero reflect unbiased estimation. Mean Squared Error (MSE) 
and R-squared (R2) assess predictive accuracy, though they alone 
cannot guarantee correct causal identification (Kiriakidou and Diou, 
2022). These metrics must be evaluated collectively, as models may 
achieve strong prediction (high R2) while failing to recover true causal 
relationships (high ATE error). Recent methodological work 
emphasizes the necessity of combining these metrics with robustness 
checks and out-of-sample validation to ensure strong causal inference, 
particularly when applying CDL methods to high-stakes domains like 
clinical decision-making. The optimal model should simultaneously 
minimize PEHE and ATE error while maintaining reasonable 
predictive performance (MSE, R2), with preference given to methods 
demonstrating stability across different experimental conditions 
(Huang, 2022).

Beyond these causal-specific metrics, the existing classification 
measures, accuracy, precision, recall, and area under the curves (AUC), 
can offer additional insights, particularly when evaluating propensity 
score models or binary outcomes. Accuracy indicates overall correctness 
but may be unreliable in imbalanced datasets, such as those with rare 
treatments. Precision (the proportion of true positives among predicted 
positives) and recall (the ability to capture all true positives) are especially 
useful in clinical settings where false treatment recommendations or 
missed interventions carry significant consequences. AUC evaluates a 

model’s ability to distinguish between treated and control groups, with 
higher values suggesting better separation. However, while these metrics 
help assess model reliability, they do not directly validate causal effects 
and should always be paired with causal-specific evaluations such as 
PEHE and ATE. Recent methodological work emphasizes the necessity 
of combining these metrics with robustness checks and out-of-sample 
validation to ensure strong causal inference, particularly when applying 
CDL methods to high-stakes domains, such as clinical decision-making. 
The optimal model should simultaneously minimize PEHE and ATE 
error while maintaining reasonable predictive performance (MSE, R2), 
with preference given to methods that demonstrate stability across 
different experimental conditions.

Learning process of artificial neural 
networks

Artificial neural networks, particularly multilayer perceptron’s 
(MLPs), excel at identifying complex patterns in clinical data, such as 
predicting pregnancy risks or birth outcomes. By analyzing 
relationships between variables such as maternal health indicators and 
fetal growth, ANNs can uncover subtle, non-linear associations that 
existing statistical methods might miss. For clinicians, this means more 
accurate risk stratification and personalized care plans, for example, 
flagging high-risk pregnancies for LBW or preterm birth based on 
nuanced interactions between factors such as pregnancy-induced 
hypertension (PIH) and ANC adherence (Nahatkar et al., 2025).

Figure 2 shows a schematic representation of the mathematical 
model of an artificial neuron, i.e., a processing element, highlighting 
input iX , weights ( 0w , −1 1, nw w , and nw ), constant [bias ( )b ], ∑  is the 
summation function, f is the activation function, and Out (y) is the 
output signal.

This Figure shows how a simple neural network processes medical 
data to support clinical decisions. Inputs (such as PIH) are assigned 
importance weights, combined into a weighted sum, and transformed 
through a step function to produce an output. For clinicians, this 
mirrors how we intuitively weigh multiple risk factors such as PIH, 
prenatal death, or meconium aspiration syndrome (MAS) to assess a 
patient’s risk of complications. The model quantifies this decision-
making process, helping to standardize predictions for outcomes such 
as LBW or preeclampsia based on the combined influence of key 
clinical variables.

Furthermore, based on the above Figure  2, an ANN is a 
computational model inspired by the brain’s structure, made up of an 
input layer, one or more hidden layers, and an output layer (Bland 
et al., 2020). A DNN is a type of ANN with many hidden layers, 
allowing it to handle more complex learning tasks. Essentially, all 
DNNs are ANNs, but not all ANNs are DNNs; only those with 
multiple hidden layers qualify as DNNs (Goodfellow et al., 2016). In 
our work, since we use multiple hidden layers, we refer to our model 
as a DNN rather than a basic ANN.

Estimating the ATE/CATE, deep learning 
estimation

Deep learning methods estimate CATE to reveal how MLCC 
differentially impacts birth outcomes across patient subgroups. ATE 
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quantifies MLCC’s average causal effect on LBW compared to other 
professionals, guiding targeted maternal interventions (Curth 
et al., 2024).

It provides an overall estimate of the MLCC effect across the 
entire population.

	
( ) ( ) τ = − =    1 0i i iATE E Y Y E

Where ( )1iY  and ( )0iY  are the potential outcomes, which means 
NBW and LBW had the unit MLCC or did not receive the treatment, 
respectively.

The CATE is defined as:

	 ( ) ( ) = − = 1 0 |CATE E Y Y X x

Where: X is the set of selected covariates, and ∈x X . The ATE 
measures an intervention’s overall impact across a population, guiding 
evidence-based clinical decisions. In contrast, PEHE assesses how 
accurately models predict ITE responses, enabling personalized care 
strategies when PEHE values are sufficiently low. Together, these 
metrics help clinicians balance population-level recommendations 
with patient-specific interventions (Kent et al., 2018; Ling et al., 2023).

The distinction between ITE and ATE is crucial for clinical 
interpretation. The ATE represents the average difference in outcomes 
between a treated group and a control group, providing an overall 
measure of a treatment’s effectiveness across a population. In clinical 
practice, the ATE informs decisions about whether a treatment is 
beneficial on average for a broad patient population, typically guiding 
policy-level decisions, treatment guidelines for general conditions, 
and public health interventions (assessing the average impact of 
allocation of mothers for MLCC and other professionals). However, 

the ATE can mask significant heterogeneity in treatment response, 
meaning some individuals may benefit greatly, some may experience 
no effect, and others may even be harmed. This is where ITE becomes 
vital. The ITE, on the other hand, quantifies the specific effect of a 
treatment for a single individual, taking into account their unique 
characteristics and comorbidities. In clinical practice, ITE is 
increasingly sought for personalized medicine, enabling clinicians to 
tailor treatment decisions to individual patients. This approach allows 
clinicians to predict who is most likely to benefit from a particular 
therapy, who might experience adverse effects, and who may respond 
better to alternative treatments (Gopalkrishnan, 2020). Recent 
advancements in machine learning and causal inference are enabling 
better estimation of ITEs, facilitating more nuanced clinical decision-
making, and optimizing patient outcomes by moving beyond a 
one-size-fits-all approach to treatment.

Results

When investigating heterogeneous treatment effects, it is essential 
to account for confounding variables that may impact both MLCC 
and LBW. CDL models can integrate these variables, yielding more 
reliable estimates of the actual MLCC effect.

Several antenatal factors show significant associations with LBW 
outcomes. Iron/folic acid supplementation demonstrates a protective 
effect, with unsupplemented mothers showing higher LBW rates 
(95%, CI: 0.34–0.67, p = 0.007). The timing of the first antenatal care 
visit matters significantly; mothers with delayed initiation have 
increased LBW risk (p = 0.044). PIH emerges as a strong risk factor, 
with affected mothers having 58% higher LBW rates (7.45% versus 
4.72%, p = 0.036). While nutrition counseling coverage was high 
(>94%), the counterintuitive finding of higher LBW among counseled 
mothers (p = 0.0275) warrants further investigation. The allocation of 

FIGURE 2

Neural network node diagram (Pang et al., 2020), each node represents a neuron in the figure. The input data flows into the neural network from the 
input layer. Specifically, the input data values are connected to all neurons in the first layer. Then, each neuron in a layer passes its output to all neurons 
in the subsequent layer. Finally, the network’s output is on the image’s right side. In regression tasks, this output corresponds to the dependent variable 
that needs to be estimated.
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mothers (MLCC compared to other groups) shows a small but 
significant difference in LBW distribution (p = 0.0054). These findings 
showed that targeted micronutrient supplementation, early antenatal 
care initiation, and proper management of hypertensive disorders 
could effectively reduce LBW incidence, as shown in Table 1.

The postnatal outcomes reveal several significant associations 
with LBW. Newborns with MAS showed markedly higher LBW rates 
[7.3% (0.34–0.78)] versus 3.14% (3.2–7.3), p = 0.002, indicating this 
complication nearly doubles LBW risk. Low Apgar scores (≤7 at 
5 min) were significantly more common among LBW infants [27.5% 
(2.5–3.4)] versus 22.64% (27.5–27.8), p = 0.034. Vacuum-assisted 
deliveries also showed higher LBW prevalence [11.09% (4.6–5.8)] 
versus 8.27% (8.3–11.1), p = 0.045. Postnatal care patterns differed 
significantly (p = 0.03), with LBW infants more likely to receive only 
one visit (44.8% versus 41.92%). These findings suggest that LBW 
infants face greater neonatal complications and require more intensive 
postnatal monitoring, particularly after instrumental deliveries. The 
increased MAS risk specifically highlights the vulnerability of LBW 
newborns to birth-related complications (Table 2).

Performance metrics of the causal deep 
learning model for birth weight 
classification

The DNN model attained a training accuracy of 81.3% and a 
testing accuracy of 81.4%. When analyzing the dataset composition, 
NBW conditions accounted for 5.1% of the training and 5.4% of the 
testing sets. Conversely, LBW constituted 94.9% of the training set and 
94.6% of the testing set. Remarkably, the classification accuracy for 
both normal and LBW conditions exceeded 80% in both datasets. In 
the training set, 28 NBW cases were correctly classified, resulting in a 
sensitivity of 86.8%. However, 139 NBW instances were misclassified. 

For LBW, 636 cases were accurately classified, yielding a specificity of 
97.8%. Unfortunately, 14 LBW instances were misclassified. In the 
testing sample, 8 NBW conditions were accurately classified, achieving 
82.9% sensitivity. However, 54 NBW instances were misclassified. For 
LBW, 276 cases were accurately classified, resulting in a specificity of 
96.2%. Regrettably, 11 LBW instances were misclassified. These 
metrics provide valuable insights into the performance across different 
birth weight categories in training and testing scenarios presented in 
Table 3.

Figure 3 presents the normalized importance of key predictors of 
LBW identified through the feature engineering process analysis. MAS 
emerged as the strongest predictor, followed by perinatal mortality 
and gestational age category, with PIH, previous surgery, mother’s 
allocation, and vacuum-assisted delivery showing progressively lower 
predictive importance. Our analysis initially identified the top  10 
variables linked to LBW. However, after validation with ensemble 
methods including Random Forest and XGBoost feature importance 
rankings along with stability selection, only seven key predictors 
remained consistently significant. These final variables were chosen 
based on statistical strength, biological relevance, and agreement 
across multiple causal machine learning models, balancing 
interpretability and generalizability, as shown in Figure 3. This ranking 
is associational, not causal, and guides the subsequent causal 
estimation of ATE, PEHE, and ITE (Moges et al., 2025).

The receiver operating characteristic (ROC) curves depict the 
performance of the model for both values of the dependent variable. 
Notably, all data points lie above the diagonal, signifying effective 
classification. Furthermore, the AUC, calculated from both the 
training and testing samples, the AUC quantifies the overall 
performance of the model; an AUC of 1.0 indicates a perfect model, 
while an AUC of 0.5 suggests random guessing. Therefore, in this 
study, the model’s ROC curve yielded an AUC of 0.88, indicating 
strong classification performance, which indicates better model 

TABLE 1  Association between antenatal care and low birth weight outcomes, in north Shoa zone, Amhara Region, Ethiopia.

Variables Category Birth Weight, n, %, (95% CI)

≥2,500 g <2,500 g Chi-square p-value

Maternal Age < 20 years 86,16.92, (45.3–48.4) 106,16.11, (14.3–16.4) 0.340 0.044

20–29 years 339,66.73, (55.2–67.4) 437,66.41, (8.3–10.3)

≥30 years 83,16.33, (42.1–53.2) 115,17.47, (12.2–15.4)

Residence Urban 397, 78.15, (23.3–33.7) 533,81.01, (0.81–0.90) 1.446 0.229

Rural 111,21.85, (26.3–45.2) 125,18.9, (0.77–0.82)

Folic acid /Iron Given 483,95.1,(74.9–78.7) 639,97.12, (1.4–2.8) 3.265 0.0071

No given 25,4.9, (23.5–28.3) 19,2.88, (0.34–0.67)

Antenatal Care Visit First ANC visit 36,7.08, (6.7–7.1) 44,6.68, (2.4–4.5) 4.160 0.044

2 to 3 visits 209,41.2, (41.2–41.7) 275,41.79, (12.3–14.7)

≥4 visit 263,51.77, (51.5–51.7) 339,51.52, (21.3–26.6)

Nutrition Counseling 

During Pregnancy

Yes 482, 94.9, (94.9–96.2) 633,96.2, (34.8–42.4) 1.192 0.0275

No 26,5.12, (3.8–5.2) 25,3.79, (0.34–0.56)

Allocated group of mothers Other groups 250,49.22, (49.2–50.8) 334,50.75, (15.2–16.1) 0.275 0.0054

Midwife-led 258,50.78, (49.3–50.8) 324,49.24, (13.5–15.4)

Pregnancy-Induced 

Hypertension

No 484,95.27, (92.6–95.3) 609,92.55, (45.8–58.6) 3.62 0.036

Yes 24,4.72, (4.7–7.5) 49,7.45, (1.3–1.7)
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performance. This substantial AUC underscores the model’s high 
classification accuracy rate, given in Figure 4.

Learning mechanism of deep neural 
networks

This DNN and MLP model uses seven input variables such as 
MAS, perinatal death, PIH, vacuum baby in need of resuscitation, 
gestational age category, mother allocation, and previous surgery to 
predict two output outcomes (LBW = 0) or (NBW = 1). The model’s 
single hidden layer, comprising five nodes [H(1:1) to H(1:5)], 
introduces crucial nonlinearity, allowing it to capture complex 
relationships within the data that a simple linear model could not. 
Connections between layers are defined by positive and negative 
synaptic weights, indicating the influence of each input on hidden 
layer nodes and, subsequently, the final output, as shown in 
Figure 5. The study revealed a significant association between MAS 
and LBW, as evidenced by the neural network’s strong positive 
weight (0.728) connecting MAS to hidden neuron H(1:2). However, 
this statistical association does not imply direct causation. MAS 
typically occurs secondary to fetal distress or other perinatal 
complications (placental insufficiency or intrauterine hypoxia), 
which themselves are established risk factors for LBW. The model’s 

inhibitory weight (−0.345) between perinatal mortality and H(1:3) 
further suggests complex mediating pathways, where adverse 
perinatal outcomes may influence birth weight through multiple 
biological mechanisms rather than through simple direct effects. 
These findings emphasize that while MAS serves as a clinically 
useful predictor in the model, it likely represents a marker of 
underlying pathological processes that independently contribute to 
restricted fetal growth, rather than functioning as a direct causal 
agent of LBW. The model’s architecture supports this interpretation, 
with hidden neurons H(1:1) and H(1:3) showing positive weights 
(0.165 and 0.166, respectively) for NBW outcomes, while nearly all 
hidden neurons exhibit negative weights for LBW predictions. So, 
this captures a nuanced relationship without asserting causal 
directionality between the observed variables.

Overall, the network architecture transforms input features 
through hidden layers to predict birth outcomes, with connection 
weights quantifying each variable’s influence. MAS and gestational age 
emerge as predictors, demonstrating the model’s ability to identify 
clinically significant risk factors for LBW.

This interpretation showed the DNN’s ability to capture complex, 
non-linear relationships between predictors and outcomes (Table 4).

	 ( ) ( ) ( ) ( ) ( )= + ∗ − ∗ +…+ −0.310 1 0.155 2 0.261p y Bias input input

Figure 6’s comparative density plot for CATE estimation offers key 
insights into the impact of MLCC on individual LBW outcomes. The red 
curve, representing prediction errors, peaks near zero, suggesting the 
model generally aligns with true effects. However, its spread showed that 
the challenge of precisely estimating ITEs. The blue curve illustrates the 
CATE, showing the diverse benefits individuals might gain from MLCC; 
its broader distribution emphasizes significant variability in individual 
responses. Ideally, the green curve, depicting the true impact, would 
reveal a bimodal distribution, indicating distinct subgroups: those who 
benefit substantially from MLCC and those who experience minimal or 
no effect. This collective view underscores the necessity of considering 
heterogeneity and subgroup differences to refine causal inference and 
tailor MLCC interventions for maximum impact.

TABLE 2  association between postnatal care and low birth weight outcomes, in north Shoa zone, Amhara Region, Ethiopia.

Variables Category Birth weight, n, %, (95% CI)

≥2,500 g <2,500 g Chi-square p-value

Initiation of breastfeeding After 1 h 121,23.82, (23.8–26.3) 173,26.29, (17.6–18.3) 0.930 0.335

Within 1 h 387,76.18, (73.7–76.2) 485,73.708, (1.9–2.3)

Meconium aspiration 

(newborn health Status)

No 492,96.85, (92.7–96.9) 610,92.7, (73.4–80.5) 9.496 0.002

Yes 16,3.14, (3.2–7.3) 48,7.3, (0.34–0.78)

Apgar score ≤7 at 5 min 

(newborn health Status)

No 393,77.36, (22.6–27.5) 477,72.49, (26.4–29.6) 3.589 0.034

Yes 115,22.64, (27.5–27.8) 181,27.5, (2.5–3.4)

Vacuum-assisted delivery No 466,91.73, (88.9–91.3) 585,88.91, (19.4–20.5) 2.576 0.045

Yes 42,8.27, (8.3–11.1) 73,11.09,(4.6–5.8)

Postnatal Care 1 visit 213,41.92, (37.7–46.3) 295,44.8, (41.1–48.6) 1.020 0.03

2 visit 163,32.08, (28.1–36.3) 200,30.39, (26.9–34.1)

3 visit 119,23.43, (19.8–27.3) 148,22.49, (19.3–25.9)

4 visit 13,2.55, (1.4–4.3) 15,2.27, (1.3–3.7)

TABLE 3  Classification accuracy for low birth weight prediction in 
training and testing datasets.

Sample Observed Predicted Percent 
Correct

No Yes

Training No 28 139 86.8%

Yes 14 636 97.8%

Overall Percent 5.1% 94.9% 81.3%

Testing No 8 54 82.9%

Yes 11 276 96.2%

Overall Percent 5.4% 94.6% 81.4%
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FIGURE 3

Normalized importance of variables. MecoAsp, meconium aspiration; PerinatalDeath, perinatal death; GestAge_cat, gestational age category; 
GestHypert, pregnancy-induced hypertension; VacResusc, vacuum baby in need of resuscitation; PrevSurg, previous surgery; MotherAlloc, mother 
allocation.

FIGURE 4

Power of receiver operating characteristic curves.
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Performance comparison of CDL models 
for PEHE, MSE, and ATE estimation in LBW 
analysis

In a comparative analysis of CDL models, CFR-WASS emerges 
as the top performer, demonstrating superior PEHE (lowest PEHE 
of 0.35) and strong classification performance across the board 
(84% accuracy, 82% precision, 85% recall, 0.88 AUC). This robust 
performance suggests its potential for accurately identifying 
individuals most likely to benefit from specific medical 
interventions, thus enabling more personalized treatment strategies. 
While CFR-MMD also performs well in causal effect estimation 
(PEHE 0.36, lowest ATE Bias 0.13), CFR-WASS combined strength 
in both causal and classification metrics makes it particularly 
promising for clinical applications where both accurate predictions 
and precise causal inference are critical. For scenarios with 
moderate-sized datasets where computational efficiency is a 
priority, Bayesian Ridge Regression and Bayesian Neural Networks 
offer a practical balance of competitive performance (PEHE 0.42, 
ATE Bias 0.15, and AUC 0.84–0.86) and significantly faster training 
times. This makes them viable options for rapid prototyping or 

deployment in resource-constrained medical environments (Shalit 
et al., 2017).

Conversely, simpler models such as Lasso Regression show 
limitations in causal effect estimation (higher ATE Bias 0.23), 
potentially due to their linear constraints. Hybrid methods, such as 
Sequential Feature Selection-KNN (PEHE 0.55, AUC 0.75) and 
Convolutional-KNN (PEHE 0.48, AUC 0.80), generally 
underperformed, indicating that their presumed advantages for 
smaller sample sizes might not hold in this context. The notable poor 
performance of Generative Adversarial Net for Individualized 
Treatment Effects (PEHE 0.60, ATE Bias 0.30, and AUC 0.71) is 
attributed to training instability and data inefficiency with the dataset 
size of 1,166, showing their unsuitability for direct causal inference in 
such settings. The consistent minimal precision-recall gaps among 
top-performing models further underscore their balanced predictive 
capabilities, which are vital for reliable medical decision support, as 
shown in Table 5.

Given the evaluation metrics in Table 5, the next step involves 
estimating the causal effects of MLCC on LBW compared to other care 
models. This will entail quantifying the PEHE to gauge individual-
level causal accuracy, the ATE error to assess population-level bias, 

FIGURE 5

Navigating the neural network unraveling the mysteries of a three-layer multilayer perceptron. MecoAsp, meconium aspiration; PerinatalDeath, 
perinatal death; GestAge_cat, gestational age category; GestHypert, pregnancy-induced hypertension; VacResusc, vacuum baby in need of 
resuscitation; PrevSurg, previous surgery; MotherAlloc, mother allocation.
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and the ITE for personalized causal insights for each mother. 
Additionally, we  will incorporate classification measures such as 
accuracy, precision, recall, and AUC to further evaluate the 
model’s performance.

For clinicians, CFR-WASS, the ∈PEHE , and the ATE measures 
are vital for effective decision-making. A low PEHE of 1.006 ± 0.03 

signifies the model’s excellent ability to predict ITE, allowing for 
highly personalized interventions. Conversely, a low ATE of 
0.24 ± 0.21 with high variability suggests that while there might be a 
small average benefit across a population, the effect on individual 
patients can differ significantly. Therefore, prioritizing a low PEHE is 
crucial for clinicians to tailor interventions precisely to each patient, 
moving beyond generalized averages to truly optimize care. Therefore, 
the proposed CFR-WASS achieved good performance and 
outperformed state-of-the-art models, and the model tuning or 
ensemble methods may enhance performance (Shi et al., 2019).

The CFR-MMD’s precise estimates (ITE 0.34 ± 0.12, ATE 
0.24 ± 0.01) help clinicians identify which mothers would benefit most 
from interventions while assessing overall treatment impact. Though 
results are consistent, real-world validation remains important. This 
approach enables targeted care for high-risk pregnancies while 
guiding population-level decisions about resource allocation.

CEVAE’s higher ∈PEHE  (3.21 ± 0.32) and ATE (1.23 ± 0.23) 
indicate broader variability in its predictions, suggesting better capture 
of individual patient differences but with less precision. While this 
helps identify nuanced treatment responses, the wider ranges mean 
clinical decisions should be  cautious, prioritizing high-risk cases 
where personalized benefits outweigh uncertainty.

The CCNN model shows moderate precision ( ∈PEHE  
2.25 ± 0.25, ATE 2.65 ± 1.45), making it suitable for identifying 
general treatment trends but requiring cautious interpretation for 
individual cases. In contrast, Bayesian Ridge delivers more reliable 

TABLE 4  Parameter estimates hidden layers and output layers.

Predictor Predicted

Hidden Layer 1 Output Layer

H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) Normal 
birth 

weight

Low birth 
weight

Input Layer Bias 0.310 −0.155 0.370 0.093 −0.261

Gestational age 

Category

0.087 −0.022 0.415 0.085 0.471

Mother Allocation 0.352 0.072 0.227 −0.281 0.261

Perinatal Death −0.049 −0.029 −0.345 −0.060 −0.181

Meconium 

Aspiration

0.284 0.728 −0.536 0.760 −0.173

Pregnancy-

induced 

hypertension

0.144 −0.034 0.249 0.115 −0.002

Previous surgery 0.399 −0.045 0.051 0.314 −0.221

Vacuum baby in 

need of 

resuscitation

0.292 −0.067 0.017 0.056 −0.250

Hidden Layer 1 Bias 0.152 0.853

H(1:1) 0.165 −0.150

H(1:2) 0.004 −0.219

H(1:3) 0.166 −0.197

H(1:4) 0.281 −0.193

H(1:5) 0.278 0.144

FIGURE 6

Comparative density plots for CATE estimations. Red indicates the 
estimated Error CATE, Blue indicates the individualized CATE, and 
green indicates the individualized CATE True.
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estimates (PEHE 1.12 ± 0.021, ATE 1.32 ± 0.75), supporting both 
personalized and population-level decisions. Clinically, this means 
Bayesian Ridge is better suited for guiding interventions, while CCNN 
may help screen broader risk patterns, though both benefit from 
further refinement for high-stakes prenatal care.

These findings indicate that our proposed model can extract deep, 
representative, and discriminative features related to the assigned 
MLCC, leading to improved ITE estimation performance. The Bayesian 
ridge stands out due to its high PEHE and reasonable ATE estimation. 
The bagging regressor performs well in ATE estimation but has 

moderate precision. Consider the trade-offs between PEHE and ATE 
estimation when choosing the best method for your specific use case.

In conclusion, the proposed CFR-WASS and CFR-MMD models 
demonstrated superior performance in terms of ∈PEHE , 
outperforming state-of-the-art models in estimating causal effects for 
LBW outcomes. Based on their CFR-WASS and CFR-MMD outperform 
other CDL models in estimating PEHE, ATE, and ITE, as evidenced by 
lower Mean ± Standard Error values in comparisons (Table 6).

A feed-forward deep neural network (FFDNN) facilitates causal 
inference by modeling intricate, non-linear relationships between 

TABLE 5  Evaluation of causal deep learning models (n = 1,166, 80% training, 20% testing).

Methods PEHE ↓ ATE 
Bias ↓

MSE ↓ R2 ↑ Training 
TIME

Accuracy Precision Recall AUC

Counterfactual 

Convolutional 

Neural Network

0.43 0.17 1.11 0.81 Very slow 0.78 0.75 0.80 0.82

Bayesian Ridge 

Regression

0.42 0.15 1.08 0.82 Fast 0.80 0.77 0.82 0.84

Lasso Regression 0.42 0.23 1.14 0.75 Slow 0.76 0.73 0.78 0.79

1. Convolutional 

Neural Network-

K-Nearest 

Neighbors

0.48 0.20 1.15 0.78 Fast 0.77 0.74 0.79 0.80

2. Sequential 

Feature Selection-

K-Nearest 

Neighbors

0.55 0.26 1.30 0.72 Slow 0.72 0.70 0.74 0.75

3. Bagging 

Regressor

0.45 0.18 1.12 0.80 Moderate 0.79 0.76 0.81 0.83

4. Treatment 

Agnostic 

Representation 

Network

0.39 0.18 1.16 Moderate 0.80 0.78 0.82 0.75

5. Bayesian Neural 

Network

0.42 0.15 1.08 0.81 Slow 0.81 0.78 0.83 0.86

6. Counterfactual 

Regression-

Wasserstein 

Distance

0.34 0.11 1.02 0.83 Moderate 0.84 0.82 0.85 0.88

7. Conditional 

Variational 

Autoencoder

0.52 0.24 1.25 Moderate 0.74 0.72 0.76 0.77

8. Generative 

Adversarial Net for 

Individualized 

Treatment Effects

0.60 0.30 1.40 0.68 Extreme 0.68 0.65 0.70 0.71

9. Counterfactual 

Regression-

Maximum Mean 

Discrepancy

0.36 0.13 1.16 Moderate 0.83 0.81 0.84 0.87

Deep neural 

network

0.37 0.13 1.04 Slow 0.82 0.80 0.83 0.87

↓ = shows decrease in value, ↑ = shows increase in value.
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treatment, such as MLCC, and LBW, all while accounting for 
confounding factors. The network’s structure allows it to generate 
counterfactual predictions by estimating potential outcomes for each 
observation under both MLCC and other professional scenarios. 
Through its internal layers, the FFDNN can identify varied treatment 
effects across different groups, offering predictions for both ITE and 
ATE effects. Its ability to approximate complex functions helps 
address the core challenge of causal inference: that only one potential 
outcome is ever observed for a given subject. Careful regularization 
and architectural design are crucial for the FFDNN to yield 
dependable causal predictions, rather than just 
correlational associations.

To solve a binary classification problem, we combine sigmoid 
output units with maximum likelihood. A sigmoid output unit has 2 
components; one is which uses a linear layer to compute.

= ∗ + ,z w h b and then it uses an activation function to convert z 
into a probability

	 θ= + + + + + + + +1 11 12 13 14 15 16 17 0 1Z w w w w w w w W

	

( ) ( ) ( ) ( )= − + + − + − + − + −
+ + + = −

1 0.738 0.568 0.245 0.8149 0.897 0.581
0.1489 0.99 0.156 1.413

Z

Now the sigmoid function

	
( ) ( )−

=
+ 1

1
1

1 input
f input

e

( ) ( )− −
= =

+ 1.413
1 0.1956

1
f z

e
, the predicted value of LBW

	 θ= + + + + + + +2 11 22 33 44 55 66 77 2Z w w w w w w w

	

( ) ( )
( )

= + − + − + + +
+ − + + =

2 0.1229 0.1538 0.1694 0.3538 0.3494 0.34939
0.3857 0.556 0.9875 2.01009.
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( ) ( )−

=
+ 2

2
1

1 input
f input

e

The logistics function ( ) −
= =

+ 2.01009
1 0.882

1
f z

e
, predicts an 

88.2% probability of NBW when mothers receive MLCC, well above 
the 0.5 classification threshold. This demonstrates MLCC’s strong 
protective effect against LBW, as the model consistently associates 
MLCC adherence with higher probabilities of normal birth outcomes. 
The results quantitatively confirm that structured ANC significantly 
reduces LBW risk, showing the MLCC’s clinical importance. These 
findings underscore the need to expand MLCC access to improve 
neonatal health outcomes, as shown in Figure 7.

Discussion

Low birth weight babies face health complications, but not all 
require interventions (Chen et al., 2013); the impact of LBW was 
associated with infant mortality and long-term health issues. The 
prediction of LBW at birth is based on the analysis of different 
characteristics of newborn babies and mothers. Some characteristics 
classified as the most important features include MAS, perinatal death, 
PIH, vacuum babies in need of resuscitation, gestational age category, 
mother allocation, and previous surgery. This study indicates that 
higher maternal weight was associated with larger birth weights in 
babies, which is consistent with (Alabbad et al., 2024). Our study 
found significant differences in folic acid/iron supplementation 
(97.1% versus 95.1%, p = 0.007) and PIH (7.5% versus 4.7%, p = 0.036) 
between LBW and normal birth weight groups. These findings align 
with current evidence showing iron-folate supplementation reduces 

TABLE 6  Causal deep learning algorithm for estimating (mean ± standard 
error) on maternal and neonatal dataset.

Methods ∈PEHE ∈ITE ∈ATE

Counterfactual 

Convolutional 

Neural Network

2.25 ± 0.25 2.15 ± 1.23 2.65 ± 1.45

Bayesian Ridge 

Regression

1.12 ± 0.021 2.45 ± 0.75 1.32 ± 0.75

Lasso Regression 6.65 ± 0.45 5.25 ± 0.43 0.92 ± 0.06

Convolutional 

Neural Network-K-

Nearest Neighbors

3.54 ± 0.52 2.4 ± 0.3 0.85 ± 0.35

Sequential Feature 

Selection-K-Nearest 

Neighbors

2.9 ± 0.41 2.6 ± 0.02 0.75 ± 0.25

Bagging Regressor 5.35 ± 1.47 4.14 ± 0.27 5.35 ± 1.32

Treatment Agnostic 

Representation 

Network

1.23 ± 0.52 1.53 ± 0.49 0.65 ± 0.16

Bayesian Neural 

Network

1.21 ± 0.12 1.09 ± 0.13 0.59 ± 0.01

Counterfactual 

Regression-

Wasserstein 

Distance

1.006 ± 0.03 0.25 ± 0.01 0.24 ± 0.21

Conditional 

Variational 

Autoencoder

3.21 ± 0.32 2.15 ± 0.64 1.23 ± 0.23

Generative 

Adversarial Net for 

Individualized 

Treatment Effects

2.44 ± 0.08 1.24 ± 0.56 0.67 ± 0.14

Counterfactual 

Regression-

Maximum Mean 

Discrepancy

1.012 ± 0.001 0.34 ± 0.12 0.45 ± 0.01

Deep Neural 

Network

1.45 ± 0.051 2.3 ± 0.32 0.78 ± 0.63

Bold values indicate the algorithm with the best performance (lowest mean) for each causal 
estimation metric. The mean shows the performance, while the standard error reflects its 
precision.
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LBW risk by 19% (0.81, 0.71–0.93) (Zenebe et al., 2021), while PIH 
increases LBW risk 2–3 fold (Yang et al., 2022). These preventable risk 
factors appear to play a significant role in low birth weight outcomes, 
underscoring the need for enhanced prenatal care strategies.

Our findings, supported by CDL feature selection methods, 
identified MAS as the strongest predictive factor for adverse neonatal 
outcomes compared to other features (Moges et al., 2025). However, 
while MAS is highly associated with complications in LBW infants, it 
does not causally precede LBW. Instead, existing literature suggests that 
MAS is a consequence of intrapartum events rather than a direct cause 
of LBW. The MAS was a significant cause of respiratory distress in 
newborns, occurring in about 10–15% of infants born through 
meconium-stained amniotic fluid (Uniyal et al., 2021). Studies have 
shown that MAS is more common in term babies and those with LBW 
(Uniyal et al., 2021). However, it can also affect post-mature and small-
for-date infants and those weighing over 2,500 g (Jain et al., 2020). 
Critically, recent research showed that when MAS develops in infants 
with LBW, it is associated with a significantly increased risk of severe 
outcomes and mortality. Although LBW does not cause meconium 
passage, the physiological vulnerabilities of LBW infants, such as 
immature lungs, compromise their ability to cope with MAS, leading 
to a higher incidence of complications such as birth asphyxia, hypoxic–
ischemic encephalopathy, seizures, septicemia, and persistent 
pulmonary hypertension (Jain et  al., 2020). Consequently, MAS 
substantially contributes to neonatal morbidity and mortality, with 

birth asphyxia being a common cause of death, particularly in 
vulnerable groups such as LBW infants. The WHO underscores the 
importance of universal, high-quality perinatal care, including vigilant 
monitoring and appropriate resuscitation for all newborns, irrespective 
of gestational age or birth weight, to mitigate adverse neonatal 
outcomes and address the heightened risks faced by LBW infants with 
MAS. Early diagnosis and prompt treatment are crucial for improving 
outcomes (Uniyal et al., 2021; Widiyaningrum et al., 2020).

The findings of this study align with recent research that showed 
the importance of maternal and neonatal interventions in reducing 
LBW. The significant association between folic acid/iron 
supplementation and reduced LBW (p = 0.0071) is consistent with 
studies demonstrating the critical role of micronutrients in improving 
birth outcomes (Hunter et al., 2023; Johnson, 2022). Similarly, the 
protective effect of MLCC (p = 0.0054) corroborates evidence from 
recent trials showing that continuity of care models, particularly 
MLCC approaches, significantly reduce adverse neonatal outcomes 
(Fikre et  al., 2023; Mose et  al., 2023). The association between 
adequate ANC visits and reduced LBW (p = 0.044) further supports 
global recommendations emphasizing the importance of regular ANC 
visits in improving maternal and neonatal health (World Health 
Organization, 2021; Dandona et al., 2022).

The findings of this study indicate that ANC visits have a significant 
effect on the risk of LBW, which contrasts with a previous study 
conducted in Adwa General Hospital, Northern Ethiopia, which 

FIGURE 7

Feed-forward deep neural network. MecoAsp, meconium aspiration; PerinatalDeath perinatal death; GestAge_cat, gestational age category; 
GestHypert, pregnancy-induced hypertension; VacResusc, vacuum baby in need of resuscitation; PrevSurg, previous surgery; MotherAlloc, mother 
allocation.
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reported no significant association between ANC attendance and LBW 
among term newborns (Gebregzabiherher et  al., 2017; Hailu and 
Kebede, 2018). This discrepancy may be attributed to differences in 
study populations, quality of ANC, or healthcare infrastructure. While 
our results align with global evidence emphasizing the protective role 
of ANC in reducing LBW (Neupane et al., 2023; Katiso et al., 2020; 
Wachamo et al., 2019), further context-specific research is needed to 
explore these variations and optimize maternal care strategies.

Similarly, a 2022 systematic review published in Frontiers in 
Public Health demonstrated that increased ANC utilization was 
associated with a 20–30% reduction in LBW incidence, particularly in 
low- and middle-income countries where access to quality ANC 
remains a challenge (Engdaw et al., 2023). Another study in (Kassaw 
et al., 2023) emphasized that ANC visits facilitate early detection and 
management of conditions such as hypertension and anemia, which 
are known contributors to LBW. Furthermore, a 2020 WHO multi-
country analysis reiterated that at least eight ANC contacts, as per the 
updated WHO guidelines, further reduce LBW risks by ensuring 
continuous maternal health monitoring and interventions. The 
findings highlight that ANC visits are a key modifiable factor in 
reducing LBW. These results align with existing research and support 
the need for stronger ANC policies and programs worldwide.

The identification of PIH (p  = 0.036) and MAS (p  = 0.002) as 
significant risk factors for LBW aligns with existing literature, which 
highlights their detrimental impact on fetal growth and neonatal 
outcomes (Gomez-Lumbreras et al., 2024; Adugna et al., 2025). However, 
unlike some prior studies, this study did not find a significant association 
between ANC attendance and LBW (p > 0.05), contrasting with evidence 
suggesting that adequate ANC reduces LBW risk through early detection 
and management of complications such as PIH (Tekeba et al., 2024). 
Additionally, while some studies report protective effects of urban 
residence and timely breastfeeding initiation against LBW, our findings 
showed no significant associations (residence: p = 0.229; breastfeeding 
initiation: p = 0.335). These discrepancies may stem from variations in 
healthcare access, ANC quality, or population characteristics, 
underscoring the need for context-specific interventions to optimize 
maternal and neonatal health outcomes (Basile Ibrahim et al., 2022; 
D’Hollander et al., 2025). In this study, we conducted a methodology 
scoping review, which identified DL causal predictive modeling for 
MLCC, with the main differences between the methods being the source 
of data from which the causal effects are estimated. We identified that 
when the causal effects required for the predictions were fully estimated 
from the quasi-experimental data, methods were available for predictions 
under MLCC. We developed a guide for the predictive analysis of PEHE 
in a quasi-experimental study. Predictive precision of heterogeneity 
treatment analysis aims at MLCC effects (Lin et al., 2021).

Significant efforts have recently been made to utilize ML 
techniques for causal inference problems. One notable application is 
estimating heterogeneous treatment effects. These efforts aim to 
enhance our understanding and improve outcomes in various 
domains (Athey and Imbens, 2016), propensity score modeling, and 
neighbor matching for ITE. DL, a subset of AI, is crucial in estimating 
MLCC effects (Ren et al., 2023; Davidson and Boland, 2021).

The findings align with (Simmelink et al., 2025), who showed the 
role of leadership and collaborative efforts in successfully 
implementing MLCC. Our results further demonstrate that MLCC, 
when supported by robust policies and interdisciplinary collaboration, 
can significantly reduce adverse neonatal outcomes such as LBW.

The DNN has been employed to estimate heterogeneous treatment 
effects within the causal inference framework. DL’s ability to handle 
complex confounding factors is valuable for understanding LBW and 
enhancing outcomes (Koch et al., 2025). In this paper, we built a DNN 
classifier, Propensity Net, for propensity score-based matching to 
estimate ITE and ATE (Ramachandra, 1803).

The results show that CFR-WASS achieves the best performance 
with the highest accuracy (84%), precision (82%), recall (85%), and 
AUC (0.88), along with the lowest PEHE (0.34) and ATE bias (0.11). 
This aligns with recent findings by (Shalit et al., 2017), who demonstrated 
that Wasserstein-based methods excel in causal inference by effectively 
balancing covariate distributions. Similarly, the strong performance of 
CFR-MMD (AUC = 0.87) supports (Håkansson et al., 2020) work on 
distribution matching for unbiased treatment effect estimation. In 
contrast, simpler models such as Lasso Regression (AUC = 0.79) and 
Generative Adversarial Net (AUC = 0.71) underperform, consistent 
with (Koch et  al., 2024), who showed their limitations in handling 
complex causal relationships. These findings reinforce the superiority of 
advanced CDL methods in precision medicine applications. The high 
AUC scores(≥0.86) for top models validate their discriminative power, 
supporting their use in precision healthcare applications.

The DNN model’s performance (81.3% accuracy) aligns with 
findings from (Keles and Bagci, 2023), who reported that DL models 
in neonatology achieve high accuracy (95% for Retinopathy of 
Prematurity diagnosis) but often lack interpretability. Our use of neural 
network weight analysis (e.g., H(1:2) for MAS) addresses this limitation 
by providing clinically actionable insights, a direction recommended 
for future AI applications in neonatal care (Keles and Bagci, 2023).

In a DNN, parameter estimates serve as independent variables. 
These estimates typically correspond to weights and biases associated 
with neuron connections. In DNN architecture, a single hidden layer is 
utilized. Models with additional layers did not perform well (Montesinos 
López et al., 2022; Hassoun, 1995). Hidden layers play a crucial role in 
capturing non-linear patterns within the data. Without hidden layers, the 
DNN behaves similarly to a linear regression model, unable to detect 
nonlinearity (Hussain et al., 2019). In our chosen model, the hidden layer 
consists of five nodes (neurons). Each node represents a specific 
combination of input features. The DNN exhibits nonlinearity because 
the effects at each node vary. Some independent variables have positive 
effects for one set of observations while having adverse effects for another 
set. This dynamic behavior results in mean scores near zero, reflecting 
the intricate interplay of variables (Alzubaidi et al., 2021).

The MLCC model demonstrates better clinical outcomes than 
standard care, with lower rates of medical interventions (epidurals, 
forceps delivery, episiotomies) and higher rates of natural births and 
patient satisfaction (Sandall et  al., 2016). Patient outcomes under 
MLCC were assessed by clinicians using standardized protocols, 
ensuring reliable validation. A structured medical records system was 
essential for tracking care continuity, enabling consistent evaluations 
and data-driven improvements in maternal and neonatal health 
(Hailemeskel et al., 2022).

Strengths, limitations, and future work

This study contributes to the growing body of literature on causal 
inference using DNN. Its primary strength lies in addressing causal 
inference through the potential outcome framework, building and 
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optimizing custom DL models for causal estimation, and adapting 
these models to predict PEHE effects on LBW. DL models offer 
significant advantages, such as automatically extracting relevant 
features from data, reducing the need for manual feature selection, 
and effectively capturing non-linear relationships. However, the study 
focuses on quasi-experimental designs, which inherently face 
limitations due to confounding and uncontrolled variables. While DL 
models excel in handling complex data, they struggle with complex 
confounding structures and often lack interpretability, making it 
challenging to understand the underlying causal mechanisms.

Quasi-experimental designs are particularly prone to selection 
bias due to non-random assignment, leading to imbalances between 
MLCC and other professional groups and potentially compromising 
the validity of results. Additionally, unmeasured confounders can 
obscure causal relationships, further complicating accurate effect 
estimation. To address these challenges, we  recommend future 
research to explore Double/Debiased Machine Learning (DML), a 
state-of-the-art algorithm that provides unbiased, root-n-consistent 
estimators for ATE, heterogeneous treatment effects, and their 
confidence intervals. DML enhances adjustments for non-linear 
confounding relationships, offering a more robust approach to causal 
inference in complex datasets. By integrating DML, future studies can 
improve the accuracy and reliability of causal estimates, advancing the 
intersection of DL and causal inference in healthcare and beyond.

Conclusion

In this study, we employed DL causal inference techniques, such 
as CCNN, CFR-WASS, causal effect variational autoencoder, and 
balancing neural network, for measuring the effectiveness of PEHE, 
ITE, and ATE of LBW predictions for capturing more complex 
patterns and relationships of the given data. The analysis revealed that 
MAS was the strongest predictor, but other factors such as gestational 
age and perinatal mortality also played a role.

In this study, the DNN model delivered reliable results, reaching 
81.3% accuracy on the training set and 81.4% on the test set, indicating 
stable predictive performance. Its impressive AUC score of 0.88 
further validates its ability to accurately predict LBW. The analysis of 
the hidden layer identified ( )1:1H  for the allocation of the mother, 
( )1: 2H  for the allocation of the mother, ( )1: 3H  for perinatal death, 

and ( )1: 3H  for MAS with positive and negative influences on LBW, 
respectively. Therefore, this indicated that, hidden layer provided 
insights into the specific influences of various factors on LBW.

CFR-WASS outperformed all other models, achieving the highest 
accuracy (84%), precision (82%), recall (85%), and AUC (0.88). It also 
had the lowest errors, with a PEHE of 0.34 and ATE bias of 0.11. In 
predicting LBW, CFR-WASS maintained strong performance with a 
PEHE of 1.006 and an ATE of 0.24, surpassing competing methods. 
Both CFR-WASS and CFR-MMD effectively estimated causal effects, 
showing that their potential to enhance maternal and neonatal 
healthcare interventions, particularly by evaluating the impact of ANC 
visits on LBW risk. In Addition, the FFDNN model, using a sigmoid 
function, predicted a higher probability of 0.882 of NBW for newborns 
whose mothers followed MLCC compared to a lower probability of 
0.1956 for LBW, reinforcing the importance of adequate ANC in 
improving birth outcomes. These findings showed that a critical role of 

MLCC in reducing LBW, particularly in resource-limited settings. By 
ensuring consistent antenatal monitoring, timely folic acid/iron 
supplementation, and adherence to ANC visits, MLCC models 
demonstrate promise in improving maternal and neonatal outcomes. 
Future research should prioritize cost-effectiveness analyses and 
implementation strategies to scale MLCC programs, informing policies 
aimed at LBW prevention and maternal–infant health equity.
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