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Biomimicry as a decision-making
methodology in condition
monitoring

Hariom Dhungana*

Department of Mechanical Engineering and Maritime Studies, Western Norway University of Applied

Sciences, Bergen, Norway

In maintenance engineering, e�ective decision-making is critical to ensuring

system reliability and operational e�ciency. Modern industrial systems are

monitored by a multitude of sensors that generate large volumes of data.

However, traditional condition monitoring techniques face several limitations:

they rely heavily on high-quality, continuous sensor input, struggle with

adaptability to new fault scenarios, require significant computational resources,

and often provide limited decision support beyond fault detection. These

constraints hinder their practical utility in dynamic and resource-constrained

environments. This paper introduces a biomimetics-inspired framework for

condition management, drawing on principles observed in natural systems

to overcome the aforementioned challenges. Biomimetics, an emerging

interdisciplinary field, has shown significant promise in bridging gaps between

theoretical innovation and practical industrial application. However, its potential

remains underutilized inmaintenance decision-making systems. In response, our

study proposes a biologically inspired methodology that parallels the human

cognitive system, integrating multi-sensory data, adaptive learning, and energy-

e�cient sensing mechanisms to enhance fault diagnosis and decision-making.

The core contributions of this research are fourfold: (1) adaptive intelligence

through continuous learning that revises rules and cases over time; (2) multi-

sensory integration, inspired by animal sensory systems, to improve diagnostic

accuracy; (3) data augmentation techniques that address issues of incomplete or

noisy input; and (4) the introduction of energy-e�cient sensors and biomimetic

optimization strategies suitable for IoT and edge devices. To demonstrate the

practical applicability of our approach, we conducted empirical studies using

vibration data for procedural analytics, validating the framework’s e�ectiveness

in real-world fault diagnosis. It serves as a functional roadmap, inviting broader

discussion on the integration of biomimetics in maintenance engineering.
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biomimicry, cognition, condition monitoring, predictive maintenance, safety, security

1 Introduction

Maintenance is extensively established as an essential business task and a critical

element of asset management (de Jonge and Scarf, 2020). Maintenance actions can be

distinguished into two categories, preventive and corrective, based on the incidence of

failure. A preventive maintenance action is made before the failure of a unit; a corrective

maintenance action is undertaken after failure. Preventive maintenance actions should be

based on time, usage, or condition information. In maintenance engineering, decisions are

often categorized into three levels: operational, tactical, and strategic. These decisions are

made at different hierarchical levels within an organization and involve varying degrees of

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1485489
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1485489&domain=pdf&date_stamp=2025-05-30
mailto:hdhu@hvl.no
https://doi.org/10.3389/frai.2025.1485489
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1485489/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Dhungana 10.3389/frai.2025.1485489

planning and execution. Operational decisions deal with the

immediate tasks and activities required for ongoing maintenance,

tactical decisions translate these into actionable plans, and strategic

decisions set the overall direction for maintenance.

Condition-basedmaintenance (CBM) operates on the principle

of “if it’s not broken, don’t fix it.” The equipment’s status

is continuously monitored by systems or machinery based on

physical and process parameters to anticipate machine health,

forecast faults, identify fault types, and predict machine failure

timelines. The CBM system detects potential failures (PF) in

their early stages. The evolution of CBM systems involves four

levels: fault detection, fault identification, fault quantification, and

fault prognosis (Kandukuri et al., 2016). The CBM implements

a closed-loop maintenance strategy, wherein sensor data from

equipment is gathered and utilized to inform planned maintenance

decisions (Singh et al., 2024a). CBM aims to achieve optimum

system reliability and safety while using the least amount of

maintenance resources possible. The maintenance plan is based on

the observation of degradation or damage that can be measured

rather than a specific lifespan. The analysis can be split into

diagnosis and prognosis based on the timeline. Diagnosis focuses

on identifying the current condition using present observational

data, while prognosis involves forecasting the future trajectory of

the diagnosed fault, including its probability and consequences.

In brief, the diagnosis is rooted in assessing the current condition

evaluation, while prognosis relies on predicting future conditions

(Ahmad and Kamaruddin, 2012). However, both have limitations

in real industrial practice. For instance, the current condition

evaluation method may not allow enough time for maintenance

planning if the equipment condition has already reached or

exceeded failure limits when evaluation results are updated.

Combining diagnostics and prognostics enables the capture of

the essence of the CBM concept. However, the reliability of

future predictions remains uncertain. Short-term predictions are

generally more reliable than long-term ones, rendering future

condition prediction beneficial primarily for short-term planning

scenarios where anticipation is necessary (Dhungana, 2025).

Reliability-centered maintenance recommends implementing

CBM only when a sufficiently long potential failure interval exists.

To extend this interval, it’s essential to detect incipient faults

early and utilize this information for immediate decision-making

through procedural decision-making while considering safety and

security concerns. Mean time before failure, mean time to failure,

mean time to acknowledge, and mean time to repair are the most

common terms to reflect time in the industrial CBM process. The

time value of decision-making is a core principle of condition

monitoring (CM). Correct decision-making in the current time

has greater value than the same decision to be made in the

future. Maintenance cost, risk, and downtime can be reduced

only if a proper decision is made earlier. Despite advances in

CM processes, several critical challenges in existing techniques

remain unaddressed.

1. They are limited by their dependence on high-quality,

continuous sensor data and are prone to accuracy issues when

faced with missing, noisy, or incomplete inputs.

2. They have limited adaptability due to predefined

thresholds and rule-based systems that struggle to adjust

to changing operational environments or unknown

fault conditions.

3. They are limited by high computational complexity, making

advanced methods difficult to deploy in real-time or on edge

devices.

4. They often have a narrow focus, being specialized for specific

equipment or failures with limited predictive capability for early

fault detection.

5. They often lack decision-making intelligence, identifying faults

without providing sufficient guidance on optimal maintenance

actions such as when, what, or how to maintain.

Biomimicry helps to solve modern-day technological problems

using the solutions that were successfully evolved by bioorganisms

over billions of years (King et al., 2015). Hence, it may be

considered the most sustainable form of technology. Designing

decision-making systems for CM is often intricate, relying

on experience, intuition, and ongoing refinement. Bio-inspired

decision-making frameworks have evolved, encompassing three

primary types of decisions: procedural decisions, deliberate

decisions, and argumentative decisions (Singh et al., 2024a). The

procedural maintenance decision mainly depends on safety and

security, whereas the deliberate decision focuses on cost. The

deliberative maintenance decision is dependent on several factors,

including downtime cost, frequency, and item reliability. Therefore,

the balance between cost-cutting and CBM versus corrective

maintenance may differ from one organization to another based

on their assets and goals. However, the CBM system should

overcome difficulties and find effective solutions to improve a

situation or achieve a specific objective. These decisions hinge on

the equipment’s repairability and structure, whether it’s single or

multi-unit (Ahmad and Kamaruddin, 2012).

The integration of biomimicry into the cyber-physical system

holds the potential for innovative approaches and the rapid

adoption of new technologies, especially when profitability and

sustainability are evident. Utilizing biomimicry as a decision-

making framework for maintenance decisions helps maintenance

engineers and other inspection professionals. Moreover, it

introduces a realm of innovative possibilities for enhancing the

decision-making process while prioritizing human wellbeing.

By applying biomimicry principles, industries and maintenance

professionals can explore a vast realm of innovative ideas to

revolutionize the maintenance process, while simultaneously

optimizing costs, time, and human wellbeing. Furthermore,

beyond individual projects, biomimicry principles enable smarter

decision-making that aligns actions with the natural environment.

This holistic approach fosters sustainable practices and promotes a

deeper connection between human activities and the natural world.

This work introduces a biomimicry-inspired decision-making

methodology based on human cognition (sensation, perception,

memory, learning, thinking, and problem-solving) to enhance

industrial maintenance, featuring adaptive rule refinement,

multi-sensory data integration, and energy-efficient processing

for constrained environments. Key contributions include (1)

demonstrating adaptive intelligence through ongoing case and rule

updates, allowing systems to learn from experience, (2) empirical

validation for rapid fault identification, and (3) advocating for

energy-efficient sensors, context-conscious perception adaptation,
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leveraging data augmentation to address missing or degraded

data, and biomimetic optimization algorithms ideal for IoT and

edge applications.

To the best of our knowledge, this is the first study to

present an extensive analogy between industrial CM and human

cognitive processes, offering a novel path toward sustainable and

intelligent industrial decision-making. The remainder of the paper

is structured as follows: Section 2 offers an overview of biomimetic

from present status and potential perspective focusing specifically

on process biomimicry. Section 3 delves into the cognitive stages

involved in decision-making. Section 4 details the structure and

functionality of the bio-inspired decision-making methodology.

Section 5 presents empirical studies along with a detailed discussion

of the experimental results, evaluating the performance and

effectiveness of the proposed methodology. Section 6 provides

concluding remarks.

2 Biomimicry overview

2.1 Current status

Biomimicry is the practice of imitating nature’s forms and

processes to solve human problems. Benyus (1997), a biologist

and leader in biomimicry, advocates for imitating nature to

achieve a sustainable future. As Janine Benyus asserts, “Nature is

inherently creative and has already solved many of the problems

we encounter today.” Indeed, the natural world abounds with

creativity and innovation. Biomimicry proponents emphasize that

merely copying natural form is not enough (Bhushan, 2009). They

propose a comprehensive approach encompassing three levels of

mimicry: form, process, and ecosystem, as shown in Table 1. This

entails considering the physical attributes, underlying mechanisms,

and wider ecological context in order to effectively emulate nature.

The first level of design biomimicry has been using intensively

in engineering design (Al-Obaidi et al., 2017; Fu et al., 2020;

Chayaamor-Heil and Hannachi-Belkadi, 2017), material science

(Wegst et al., 2014), soft robotics (Coyle et al., 2018), and sensor

technology (Stroble et al., 2009). Nature serves as a rich source

of time-tested material, structure, and patterns, which biomimicry

aims to comprehend and apply to design challenges.

The second level of process biomimicry encloses intelligent

behaviors and biological marvels, exemplified by insects and birds,

which excel in complex tasks due to their adaptability, autonomous

learning, and strength and efficiency. It involves drawing

inspiration from natural processes to develop innovative industrial

solutions to various condition monitoring challenges. This

approach often leads to more sustainable and efficient solutions

that mimic the resilience, adaptability, and effectiveness found in

natural systems. Common examples of process biomimicry are

robotic locomotion strategies (Gao et al., 2019), optimization, and

metaheuristic searching algorithms (Dorigo et al., 2006; Daweri

et al., 2020; Katoch et al., 2021) .

To date, biomimicry has primarily focused on the first two

levels of design and process. However, to fully revolutionize

our industries, we must replicate entire ecosystems, which pose

greater challenges due to their complexity and multitude of factors.

Mimicking entire systems enables the concept of “regenerative

TABLE 1 Three levels of biomimicry.

Form (Design or material) (Fu

et al., 2020; Wegst et al., 2014)

Building interior architecture and

design, Structure of material, Peak shape

in high speed train Cements like corals,

Dust repellent paint, etc.

Process (Methodlolgy) (Gao

et al., 2019)

Sensing, survival, protection

communicating technique Robotic

locomotion, etc.

Ecosystem (Blanco et al.,

2021)

The contextual fit, Camouflage for

self-protection by octopus Nature

recycles everything, Nature thrives with

diversity etc.

design,” which seeks to counter the ongoing degradation of

ecosystems. This approach involves designing urban areas to

restore and heal ecosystems, benefiting both nature and humanity

(Blanco et al., 2021).

2.2 Potential perspective

Currently, biomimicry is relatively new in the field of

CM. Despite the increasing availability of bio-inspired sensors

and actuators, and the emergence of bioinspired analytics for

data processing, decision-making frameworks that fully integrate

biomimicry at a macro scale remain rare. Biomimicry will find

wider application in maintenance engineering, particularly as

a valuable long-term tool, as a means of fostering sustainable

processes and optimizing deliberate decision-making.

2.2.1 Energy-constrained and comprehensive
sensing

Event cameras, inspired by biological vision systems, detect

changes in brightness asynchronously at the pixel level and operate

more energy-efficiently than traditional frame-based sensors.

Biologically inspired sensor arrays emulate the distributed sensing

capabilities of natural systems, enabling real-time, and energy-

efficient data acquisition.

Event cameras represent a transformative advancement in

condition monitoring. Unlike conventional cameras that capture

frames at fixed intervals, event cameras asynchronously detect

per-pixel brightness changes, generating a continuous stream of

events that encode the time, location, and polarity of these changes

(Gallego et al., 2022). This unique sensing mechanism offers several

advantages like high temporal resolution, low latency, reduced

motion blur, high dynamic range, and energy efficiency, making

them suitable for CM in energy-constrained industrial settings.

In a big and complex system, a single sensor is incapable

of accumulating enough data; by combining different sensor

modalities, we can unlock synergistic benefits. A multi-modal

sensor array combines different sensing modalities, such as

temperature, force, and vibration, into a single unified system,

allowing it to capture diverse data types simultaneously. This

integration not only simplifies the system design, reducing

complexity and cost, but also enhances the accuracy and depth of

condition monitoring by correlating data from multiple sensors
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to provide more comprehensive and insightful analysis. For

instance, a tactile sensor array equipped with thermal, force,

and micro vibration modalities can detect mechanical forces,

vibrations, and temperature variations (Lin et al., 2009). Overall,

sensory arrays play a vital role in boosting the accuracy,

reliability, and versatility of sensing systems across a wide

range of applications. Comprehensive sensing approach can be

implemented by consolidating all sensor inputs, enabling more

informed, accurate, and timely insights in CM. formaintenance and

fault detection.

2.2.2 Perception enhancement via super
resolution and data augmentation

Super-resolution algorithms enhance low-resolution images by

predicting and adding missing details, akin to how the human

brain reconstructs incomplete sensory information based on prior

knowledge and experience. In condition monitoring, it can be

applied to improve the clarity and accuracy of sensor data, such

as vibration signals or images, allowing for more precise detection

of anomalies or defects (He et al., 2024). By enhancing the

resolution, super resolution helps uncover subtle patterns that may

be overlooked in lower-quality data, thereby improving predictive

maintenance and fault detection capabilities.

Organisms enhance survival by generating diverse variations

to adapt to new environments; similarly, data augmentation

creates synthetic data variations to improve machine learning

model robustness across varying conditions. A model to guide

the selection of appropriate data imputation techniques tailored

to diverse measurement environments is presented in Dhungana

P. et al. (2025); however, in certain scenarios, the collected

data remains insufficient for making optimal decisions. Data

augmentation techniques have proven effective in generating

synthetic data that closely resembles and enhances the original

training set (Semenoglou et al., 2023; Hou et al., 2022). Having

many training datasets greatly enhances time series analytics.

2.2.3 New evolutionary computation algorithms
for optimization

New evolutionary computation algorithms are continually

emerging by mimicking natural processes such as evolution,

swarm intelligence, and cellular growth. These biomimicry-

inspired methods enhance optimization by offering adaptive,

scalable, and efficient solutions to complex real-world problems

across various domains. In real-world engineering applications,

numerous challenges arise that involve multiple viable solutions,

which are commonly referred to as optimization problems.

Within this context, the pursuit of identifying the optimal

solution among the array of available choices characterizes the

process known as optimization. The optimization problem is

solved through four steps: parameter identification, recognition

of constraints, consideration of objectives, and finally, based on

the identified types of parameters, constraints, and number of

objectives, a suitable optimizer should be chosen and employed

to solve the problem (Saremi et al., 2017). The optimization

algorithms usually fall into two types: gradient-based and heuristic.

Metaheuristic algorithms are higher-level strategies for refining

heuristic algorithms to guide the search process for finding

optimum solutions. Metaheuristic algorithms, inspired by natural

phenomena, do not rely on gradient information and can utilize

a set of design points to find the optimum, making them

highly robust.

Metaheuristic algorithms typically fall into two categories:

single solution-based and population-based. In single solution-

based algorithms, only one solution is processed during

optimization, whereas in population-based algorithms, a set

of solutions evolves in each iteration of the optimization process.

They find optimal solutions for complex problems through

random searches, drawing inspiration from natural phenomena,

living organisms, physics, biology, human behavior, and other

evolutionary concepts. Meta-heuristic optimization techniques

have become very popular over the last two decades for four main

reasons: simplicity, flexibility, derivation-free mechanism, and

local optima avoidance. Meta-heuristics may be classified into four

main classes: evolutionary, physics-based, swarm intelligence, and

human-based algorithms (Kaveh and Mesgari, 2023).

Today, all evolutionary optimization algorithms are collectively

known as evolutionary computation algorithms. Bio-inspired

algorithms, a prominent field of artificial intelligence, has seen

extensive study over recent decades. The two most widely used

evolutionary algorithms are the genetic algorithm (GA), which

draws inspiration from Darwin’s principle of survival of the fittest

(Katoch et al., 2021), and particle swarm optimization (PSO), which

is based on a simplified social model (Dorigo et al., 2006). Genetic

algorithms have effectively tackled diverse optimization tasks such

as parameter tuning, scheduling, routing, and machine learning.

In the realm of open-source Python libraries for nature-

inspired metaheuristic optimization algorithms, several general-

purpose packages exist, including Opytimizer, NiaPy, EvoloPy3,

DEAP4, and others (Faris et al., 2016). However, the most recent

and comprehensive platform, Mealpy, stands out with its collection

of over 160 classical and state-of-the-art metaheuristic algorithms

(Van Thieu and Mirjalili, 2023). Developed through an analysis

of existing libraries and validated via a case study discussion,

Mealpy offers well-documented code, a user-friendly interface, and

minimal dependencies.

In essence, biomimicry offers promising perspectives in

CM by inspiring energy-efficient and comprehensive sensing

strategies, particularly valuable in resource-constrained industrial

environments. It also enables perception enhancement through

techniques like super-resolution and biologically inspired data

augmentation, which improve model robustness and handle

challenges such as missing or incomplete sensor data. Additionally,

bio-inspired evolutionary computation algorithms can drive more

effective optimization in fault diagnosis andmaintenance planning,

contributing to smarter, more adaptive decision-making systems.

3 Cognitive stages in decision making

Understanding how humans think is difficult because countless

mechanisms can lead to the same observation. However, recent

research in various fields like economics, psychology, neuroscience,

and linguistics has started combining differentmethods (Lieder and

Griffiths, 2020). This includes adding cognitive limits to rational
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FIGURE 1

A model of human decision-making showing cognition stages from sensation to action.

models, blending rational principles into how our minds work, and

using optimization ideas to grasp how our brains represent things.

The author showed that resource-rational models can explain

how our minds perform complex cognitive tasks even though we

sometimes act irrationally.

According to the Oxford Learner Dictionary, cognition is the

process by which knowledge and understanding are developed

in the mind. It is a mental process of acquiring knowledge and

understanding through thought, experience, and the senses. It

encompasses many aspects of intellectual functions and processes,

such as perception, attention, learning, memory, thinking,

decision-making, and problem-solving. In other words, cognitive

processes use existing knowledge from sensation, perception, and

memory to discover new knowledge by learning, thinking, and

decision-making. The complete cyclic diagram illustrating the

cognition process from sensation to action is shown in Figure 1.

3.1 Sensing

To register changes in the environment, a biological organism

has multiple senses. The sense organs convert changes in different

environment variables into electrochemical signals and send them

to the brain via sensory nerves. While human senses are limited

to vision, hearing, touch, smell and taste, some animals employ

a vast range of senses, like sonar in bats, hygroreceptor in

Cockroach (Filingeri, 2015), electroreception in some ray-finned

fishes, bumblebees, platypus (England and Robert, 2022; Newton

et al., 2019), infrared radiation detection in snakes (Gracheva et al.,

2010), or magnetic fields in frogs, snails, lobsters (Formicki et al.,

2019; Wiltschko and Wiltschko, 2019).

Corresponding to the sense organs in animals, different types of

sensors are used in condition monitoring. Some sensors may have

equivalence in the animal world, while others may monitor specific

parameters that have no equivalence in the animal world. Different

sensors have their own structure and capability in terms of sample

rate, resolution, accuracy, sensitivity, bandwidth, low power, etc.

Selection of the instruments depends on the parameter that needs

to be monitored. A summary detailing these sensory mechanisms,

and their parallels in the industrial domain are presented in Table 2.

3.2 Attention

Attention involves concentrating consciousness on a specific

idea or object at a particular moment, excluding other stimuli. It

is governed by a combination of voluntary processes, controlled by

a central executive system, and involuntary processes, regulated by

the attentional orienting system (Cowan, 1998). Humans process

vast amounts of sensory information daily, but they filter out the

familiar and focus on a small fraction. Thus attention prioritizes

data with maximum information for conscious thought. Attention

serves as an initial filter for human information processing, shaping

our perception of environmental stimuli (Cowan, 2008). It can

narrow to reduce irrelevant input or broaden to integrate parallel

information streams.
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TABLE 2 Similarities between biological sensing and industrial condition monitoring.

Animal Sense organ Feature Bit
transducer

Connection to
nervous system

Condition
monitoring

Industrial
sensor

Human Eye (Sight) Vision (Light

intensity and

visibility)

Photosensitive Rods

cells and Cones cells

on retina convert

light into neural

signal

Optic nerve Visual inspection

Laser

interferometry

CC Camera, IR

camera,

computerized

tomography

Human Ear (Sound) Hearing

(Mechanical wave

vibration)

Hair cell inside

cochlea convert

vibrations and

knock into neural

signal

Cochlear nerve Acoustic

monitoring

Acoustic

microphone

Human Nose (Smell) Olfaction Cilia in the

epithelium convert

smell signal into

neural signal

Cranial nerves Odor sensing

Olfactory

monitoring

Chemical/Gas,

Smoke detector,

antigen-based

detection

Human Tongue (Taste) Gustation Gustatory cells

inside the taste buds

convert tastants

into neural signals

Vagus nerves Potentiometric

sensing,

Concentration

monitoring

Chemical/Antigen-

based

detection

Human Skin (Touch) Tactile perception Tactile sensations

(touch, pressure,

heat, and vibration)

into neural signal

Peripheral nerves Thermography,

Vibration

monitoring, Touch

inspection

Temperature/pressure

contact vibration

Deep water fish Skin

(Electroreceptor)

Electric field Electroreceptive

ampullae of

Lorenzini

Sensory nerve Electric power

distribution

inspection

Electrical field

strength sensor

Arthropods

Mollusce and birds

Peak, skin

(Magnetoreceptor)

Magnetic field Electroreceptive

ampullae of

Lorenzini

Trigeminal nerve Navigate using the

earth’s magnetic

field

Compass/

Inclinometers

Cockroaches,

Worms

Antenna

(Hygrosensation)

Hygroreceptor Hygroreceptive

sensillum (moist

and dry sensitive

neural cells)

Sensory nerve Air density

monitoring

Humidity sensor

Snakes Pit organ (Infrared

radiation)

Infrared receptors Radiation heating

of Pit organ via

molecular basis

Nerve fibers system Thermal imaging Infrared camera

Bats Ears (Ultrasonic

detection)

Ultrasound

receptors

Monitoring

Hair cell inside

cochlea convert

vibrations and

knock into neural

signal

Cochlear nerve Ultrasonic

Monitoring

Ultrasound sensor

In computational, attention is equivalent to filtering, reducing

data size, choosing important features, and organizing how tasks

are done. Attention mechanisms dynamically adjust the weights

of input features, enabling models to focus on the most relevant

information for both tasks fault diagnosis and failure prognostics.

Incorporating attention into deep learningmodels enhances feature

extraction by emphasizing critical patterns indicative of system

degradation, thereby improving the accuracy and robustness of

prognostic assessments in complex industrial environments.

3.3 Perception

Perception is the cognitive process of making sense of

sensory stimuli, drawing on prior knowledge and environmental

cues to construct a meaningful reality. It involves identifying,

selecting, organizing, and interpreting sensory data. Recent

research highlights the role of prior expectations in shaping sensory

processing, either reducing or enhancing sensory representations

before and after stimuli (de Lange et al., 2018).

Human actions, emotions, thoughts, and feelings are triggered

by their perceptions, so different people may perceive the same

environment differently. It is a subjective process and is like beauty

that lies in the eyes of the beholder. The Gestalt principles in

psychology are founded on the concept that the whole is greater

than the sum of its parts (Todorovic, 2008). They elucidate how

humans perceive and interpret visual data through principles such

as similarity, proximity, closure, symmetry, and continuity. These

principles of encoding shed light on how humans naturally perceive

environmental observations. Similarly, perception in CM processes

can be implemented by using raw sensor data of preprocessed

features, to identify early-stage anomalies.
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3.4 Memory

Human memory is filled with different information,

knowledge, and skills and has the ability to revise the content.

Every single content in memory is kept as a task and stored by

encoding with model gained by observation or hardcoded at birth

to represent knowledge (Hawkins, 2021). Different groups of nerve

cells are responsible for different thoughts or perceptions and drift

in and out of action. Different sensations (visual, auditory, tactile,

olfactory, and gustation) experienced by the brain can exhibit

distinct patterns of observation, and we can interpret these signals,

resulting in a set of memories. Episodic memory is thought to

depend on brain regions, such as the hippocampus and adjacent

structures in the medial temporal lobe, along with connections

to other brain regions responsible for memory consolidation and

retrieval. Experience is the capacity to connect various tasks and

knowledge, drawing upon past encounters and insights to navigate

current situations effectively. As a person gains more experience,

he can accumulate a greater number of models that enable him to

approach and solve a wider range of problems and navigate various

situations effectively. In the context of control, memory is classified

into sensory, working, and long-term memory, with information

flowing from sensory receptors to working memory and potentially

being stored in long-term memory (Atkinson and Shiffrin, 1971).

Effective memory strategies such as encoding, storage, retrieval,

and repetition are necessary to transfer information from working

memory into long-term memory and vice versa.

Likewise, in CM, past instances serve as memory, which

contains the specific data in the form text, image, video, programs,

and algorithms in the form of files. The file format serves as

a standardized method to encode, store, and decode as per

analysis requirements. The content within these files varies and

is determined based on type of sensor, analytical procedure, and

system goals.

3.5 Learning

Learning is a process of acquiring knowledge, skills, attitudes, or

behaviors through experiences, study, instruction, or observation.

It involves a change in an individual’s mental structures or behavior

as a result of these experiences. It is explained by three theories:

behaviorism, which emphasizes stimulus-response relationships

(Kevin, 2018a); cognitive theory, which focuses on internal

mental processes like information processing (Kevin, 2018b); and

constructivism, which views learning as individual knowledge

construction through interaction with the environment, involving

experimentation, concept organization, personal meaning-making,

and synthesis (Kevin, 2018c). In one sentence, the relationship

between learning and decision making is symbiotic, with learning

provide better insights for decision making.

These learning approaches are crucial in CM where vast

and complex data must be interpreted accurately to detect

faults. While machine learning and deep learning enable the

system to learn patterns from raw sensor data, transfer learning

significantly enhances performance by leveraging pre-learned

knowledge from similar machines or conditions, reducing training

time and improving diagnostic accuracy in scenarios with limited

labeled data. Imaginative AI, transfer learning, and context-aware

analytics collectively enhance deliberative decision-making by

enabling creative solution generation, leveraging prior knowledge

for new problem contexts, and integrating environmental and

operational factors to produce insightful, adaptive, and context-

sensitive maintenance strategies aligned with human-like learning

and reasoning processes (Emmanouilidis et al., 2019). Bio-inspired

computation, a prominent field of artificial intelligence, has seen

extensive study over recent decades (Del Ser et al., 2019). Numerous

innovative approaches have demonstrated the effectiveness of

adopting various bio-inspired behaviors and characteristics to

achieve near-optimal performance across a diverse array of

complex academic and real-world problems to address complex

modeling, simulation, and optimization problems.

3.6 Thinking

Thinking is the action of using one’s mind to produce

thoughts and concepts to solve problems, make decisions, form

judgments, and generate new insights. It is used to reason,

analyse, imagine, conceptualize, and make sense of information

and experiences (Minda, 2020). For decades, psychologists have

been deeply intrigued by twomodes of thinking (Kahneman, 2011).

System 1 functions automatically and rapidly, requiring minimal

effort and lacking a sense of voluntary control, while System

2 directs attention to demanding mental activities, including

complex computations.

3.7 Decision making

Decision making refers to the process of selecting a course of

action or making a choice among available alternatives (Klapproth,

2008). It involves evaluating different options, considering relevant

factors, and selecting the most suitable choice based on personal

preferences, goals, and values. In neuroscience, the authors explain

three types of information processing systems for decision-making

(Van Der Meer et al., 2012). The Pavlovian system is recognized

for promoting automatic and instinctive behaviors. The Habit-

Based system involves transitioning a conscious decision into habit

formation. Effective decision making requires critical thinking,

problem-solving skills, the ability to analyse information, and a

consideration of both short-term and long-term consequences.

It also involves managing uncertainty and making choices in

situations where complete information may not be available.

Cognitive activities like learning, thinking, and decision-

making can be partially analogous to data analysis in the cyber

domain. Data analytics connects data into reality, considering the

forces behind the data. It’s the art of interpreting reality using data,

not merely reflecting data from various perspectives. However,

human cognition is notably more intricate and adaptable than

current computer algorithms. Humans adeptly manage ambiguity,

context, emotions, and ethical factors, which pose challenges

for machines to fully replicate. Recent advancements in artificial

intelligence and machine learning aim to narrow the gap between
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human cognition and computational processes (Fridman et al.,

2019).

4 Bio-inspired methodology for
decision making

Cognitive modeling is vital for understanding the humanmind,

serving threemain purposes. First, it allows for the precise testing of

psychological concepts through computer simulations, pinpointing

any explanatory gaps. Second, it facilitates the exchange of

insights between human and artificial intelligence development.

Third, modeling empirical phenomena helps infer the underlying

psychological mechanisms essential for predicting human behavior

in new scenarios.

A typical decision-making system follows the Sense–Think–

Act model (Côté, 2019), where an agent gathers information

from its environment (Sense), processes this information to make

decisions (Think), takes appropriate actions (Act), and repeats

these steps to achieve autonomy. A typical approach to condition-

based decision-making unfolds as follows: (1) Sensors are deployed

on equipment or structures to collect a substantial amount of

data. (2) Data from sensors are analyzed; the quality and quantity

of gathered data influence the maintenance decision. (3) An

algorithm detects potential damage, pinpoints its location, and

assesses structural health and performance. (4) The responsible

manager decides whether to proceed with repairs. Essentially,

decision-making is perceived as a step occurring once the manager

comprehends the equipment’s condition through the monitoring

system. The increasing prevalence of terms like “smart equipment”

or “intelligent monitoring” within our community underscores

the notion that decision-making is essentially an outcome of

condition monitoring.

The data–information–knowledge–wisdom hierarchy (DIKW)

hierarchy, also known as the Knowledge Hierarchy or Knowledge

Pyramid, is a widely acknowledged and fundamental model

in information and knowledge literature (Rowley, 2007;

Baskarada and Koronios, 2013). Conventionally, information

is conceptualized in relation to data, knowledge in relation to

information, and wisdom in relation to knowledge. However, there

is less agreement on how the processes transforming elements

lower in the hierarchy into those above them are described,

resulting in a lack of definitional clarity.

Based on the data science domain in condition management,

we redefine the terms of data, information knowledge, and wisdom

in our case. Data is raw information about real or simulated entities,

lacking inherent meaning. Data items serve as elementary and

recorded descriptions of things, events, activities, and transactions.

They comprise discrete, objective facts or observations that

are unorganized and unprocessed, devoid of specific meaning,

which comprises numerical values, textual statements, or other

descriptive details concerning an object or concept. Information

is meaningful data, often referred to as interpreted data and

adds value to the understanding of a subject for humans.

Knowledge is organized and processed meaningful data conveying

understanding, experience, accumulated learning, and expertise

relevant to a current problem or activity. In other words, knowledge

contains profound relationships between different pieces of

TABLE 3 Depending on where the data is extracted from within the DIKW

hierarchy, di�erent types of decision-making emerge.

Sensors —————————————Data (number, text, image, audio, video etc.)

Data + meaning ——————————————————— Information (features)

Information + context (relationship with circumstances) ———————————-

———————————————————————- Knowledge (Risk, Reliability)

Knowledge + insight (consequences and likelihood) —————————————–

———————————————————————————–Wisdom (Decision)

Data ——————————————————————————– Reflex Decision

Information—————————————————————– Procedural Decision

Knowledge————————Deliberate Decision (Wisdom and advance analytics)

information and is integrated with opinion, skills, and experience,

forming an asset for decision-making. Wisdom represents the

highest level of abstraction, incorporating vision, foresight, and the

capability to perceive beyond immediate circumstances. Wisdom

involves the practical and critical application of understanding

in diverse situations, guided by ethical judgment aligned with an

individual’s belief system. It is the accumulation of knowledge,

enabling the application of concepts across different domains.

Wisdom makes the best application of knowledge in a meaningful

and ethical way.

Taking a computer science perspective, we define knowledge

as validated information concerning relationships between entities

in specific contexts. In the context of machine learning, a crucial

element of knowledge is its formalization (Vonrueden et al.,

2021). The level of formalization is contingent on factors such as

written representation, structure, and the formality of the language

used (e.g., mathematical formulas, logical rules, knowledge graphs,

etc.). Greater formal representation enhances integration into

analytical processes.

A structure designed for an intelligent decision support system

centered around human needs and a robust decision depends

on both the amount of data available and the effort invested

in the decision-making process. In this framework, maintenance

decisions occur at three different stages of data processing in

the DIKW hierarchy. Decision-making directly from raw data is

termed reflex decision, while decisions made from interpreted data

(information) are procedural decisions. Finally, decisions derived

from the meaningful relationship of interpreted data (knowledge)

are termed deliberate decisions, as illustrated in Table 3 and

Figure 2.

4.1 Reflex decision

Momentary valence in human cognition refers to the

immediate state of an individual at a specific point in time.

It represents the subjective experience of the pleasantness or

unpleasantness of an emotion felt in the present moment.

Habitual behavior differs from procedural behaviors and demands

considerable information processing (attention to environmental

cues, logical checks for the correct pattern of conditions), while

habits are automatic responses that need minimal information
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FIGURE 2

Functional block diagram of decision-making methodology for condition monitoring.

processing (Verplanken and Vemund Rudi, 2014). From the

inspiration from the momentary valence and reflex snaps in human

cognition, a reflex decision is presented.

A reflex synapse is an automatic and nearly instantaneous

movement in response to a stimulus and acts as an impulse

before that impulse reaches the brain. A reflex is made possible by

reflex arcs, which consist of sensory neurons, relay neurons, and

motor neurons, and can act on an impulse before that impulse

reaches the brain. An example of execution of reflex decision by

pulling a hand away candle is shown in Figure 3a. The process

begins as the receptor detects the stimulus, transmitting electrical

impulses through the sensory neuron to the CNS (specifically, the

spinal cord). At synapses between neurons, chemicals facilitate

the passage of electrical impulses along the relay neuron and,

subsequently, the motor neuron. Finally, the impulse reaches the

effector muscle, causing actions like narrowing the eye in response

to bright light or contracting muscles to move the hand away

from pain.

Similarly, an emergency decision refers to an immediate activity

required to handle seriously threatening situations to prevent or
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FIGURE 3

(a) Reflexive decision-making in human cognition (BBC Bitesize, n.d.). (b) Layout of distribution feeder adapted from Kumari and Naick (2022), where

the instant activation of a circuit breaker in power distribution systems forms phasor measurement unit sensor data.

mitigate dangerous situations like burning, breaking, and other

destruction. The decision region converts raw data into a reflex

decision based on an inherent process. Regardless of the threshold

level of an alarm system, machinery has various protective circuits,

fuses, and circuit breakers. Thus, the immediate decision taken

from sensor data to protect the equipment is categorized as a reflex

decision in this framework.

For example, in power distribution systems, reliability is

hampered because of a lack of adequate responses from

the protective equipment. The system’s functionality may be

compromised when insufficient coordination between the fuse

and the circuit breaker exists. To address this issue, a fuse-saving

scheme was developed by leveraging the coordination between

the fuse and circuit breaker using the Petri net model in Kumari

and Naick (2022). Figure 3b illustrates the correlation between

reflexive decision-making in human cognition and the immediate

triggering of a circuit breaker. This decision aims to minimize

the cost of fuse repair by preventing fuse burnout during a

temporary fault.

4.2 Procedural analytics

Humans often rely on simplified decision-making processes

and heuristics due to their cognitive limitations and the constraints

of time and resources, as in the old brain. Although a bounded

rationality concept was introduced by economists, it is highly

applicable in procedural decision-making (Lieder and Griffiths,

2020). In CBM, sensors may collect noisy data and contain

insufficient information, the decision support frameworks may

have limited analytical algorithms and computation resources;

however, the framework must provide satisfactory judgements.

Procedural decision-making relies on prior cases and generalized

rules. It might be useful in ensuring fair and consistent decisions,

but sometimes, it may not be sufficient to accommodate unique or

unexpected situations in decision-making. The procedural analysis

aimed to investigate a simple, quick, and easy way of making

decisions using experience and immediate goals. These decisions,

while not optimal, are good enough to run the process equipment

safely. This means that at the initial stages of the functioning of

equipment, when there is no historical data to process and analyze,

the equipment should be able to run safely, even sub-optimally.

Once the basic information is gathered, the procedural analytics

either utilizes association with prior cases or employs generalized

rules from expert domain knowledge to reach prompt decisions.

4.2.1 Case-based decision making
A case represents a condition of equipment and can be

formulated in various ways, ranging from straightforward (linear)

to intricate hierarchical structures. Typically, a case encompasses

both a problem description and its corresponding solution. Case-

based decision theory (CBDT) can be easily incorporated into this

module for decision-making. Cases are stored as lookup tables

in traditional discrete episodic memory models; however, in the

cases of a continuous domain, where a state is never visited

twice, previous episodic methods fail to aggregate experience across

trajectories efficiently. In those situations, generalizable episodic

memory is the practical solution for decision-making.

CBDT eliminates the need for an explicit domain model,

transforming elicitation into the collection of case histories

(Watson and Marir, 1994). Implementation involves identifying

key features describing a case, a simpler task than creating an

explicit model. Through the application of database techniques,

CBD efficiently manages large volumes of information. CBD

systems can also enhance maintenance by learning and acquiring

new knowledge from cases.

The case-based decision-making process can be summarized

succinctly in four steps: Retrieve, Reuse, Revise, and Retain,

as shown in Figure 4a. Retrieve: When confronted with a new

problem, recall the most similar cases. Reuse: Apply the retrieved

cases to solve the problem at hand. Revise: Evaluate the proposed

solution (continuous learning); if deemed inadequate, adjust to a

better fit for the current problem or meet specific requirements.

Retain: Store the proposed solution in memory as a newly solved

case for use in future problems.
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FIGURE 4

(a) Case-based decision-making model in condition management adapted from Agnar and Plaza (1994). (b) Decision rules interpretable machine

learning.

New information is modeled primarily by adding cases to

memory, which stores only real occurrences. Each case informs

solely about the chosen action within it, with the evaluation

based on the actual outcome derived from that specific case. Case

retrieval is based on two key criteria: usefulness and similarity. The

equivalence term assumes the existence of a case utility function

and a similarity function. Thus, the most similar and useful cases

are retrieved, and based on that, each possible decision is evaluated.

Humans continuously learn and adapt by registering

environmental changes, updating their mental models accordingly,

and learning from mistakes to refine predictions based on stored

models, rectifying errors when predictions fail to match actual

changes. Similarly, case revision enables updates to existingmodels,

while new information obtained is retained in memory for future

scenarios and additions of new models; thus, continuous learning

mirrors retraining a model in machine learning, which ensures

consistent accuracy with the latest data, albeit with the crucial need

to balance cost and accuracy when defining an optimal retraining

schedule. Reusable cases are stored in a case base for future use in

decision-making.

4.2.2 Rule-based decision making
In rule-based decision-making systems, decisions are

formulated as logical rules that incorporate elements of probability

and fuzziness to handle uncertainty and ambiguity. Each rule

comprises multiple components, with specific conditions guiding

the selection of alternatives based on environmental cues. The Rule-

Based Decision Field Theory (RBDFT) extends this framework

by modeling dynamic attention shifts among competing options,

allowing for adaptive decision-making in response to changing

contexts (Johnson and Busemeyer, 2014). Fuzzy inference systems

further enhance this approach by employing “if-then” rules to

represent and reason about imprecise knowledge. Each fuzzy rule

consists of an antecedent (“if ” part) and a consequent (“then” part),

facilitating decision-making under uncertainty. These systems are

particularly effective in applications such as fault diagnosis and

failure prognostics, where they enable the identification of critical

patterns and support procedural decision-making processes.

Domain knowledge is important for creating rules. In the

implementation part, a primary challenge arises in extracting

knowledge and translating it into a set of rules as shown in

Figure 4b. Consequently, knowledge extraction from experts stands

out as a key issue in rule-based systems. Another challenge lies

in the disparity between the complexity of the actual application

domain for decision-making and the straightforward structure of

IF-THEN rules.

Frequent repetition of a task can result in the formation

of routines, which may replace more deliberate processes in

influencing behavior. That means, repeated experiences lead to

the development of simple rules or attribute values that inform

successful decisions. The decision maker relies on either attribute

values or rule-based guidance, with preferences evolving over time

through the accumulation of this information. Similarly, when the

system comprises numerous similar cases, it is natural to derive

rules from repetated cases (Avdeenko and Makarova, 2017). As a

simple example, a mere counter can quantify the experience.

In case-based decision-making, explicit rules are not

established. However, when the system encounters recurring

issues, it is common practice to evaluate an action based on

its average past performance, rather than relying solely on a

straightforward summation. It emphasizes the generalization

of cases, encouraging the creation of basic, simple, and quick

rules (Avdeenko and Makarova, 2017). Generalizable episodic
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TABLE 4 The causal hierarchy adapted from Pearl (2019), the last four rows are newly added specially for condition monitoring.

Concept Association Intervention Counterfactual

Level (symbol) p(y|x) p(y|do(x)) p(yx|x0 , y0)

Typical activity Seeing Doing, intervening Imagining, retrospection

Typical question How does x change my belief in y? What if I do x? Would y have happened instead of y′ , if I had done

x instead of x′?

Example What information does sensory data

provide about the degradation score?

What if we change operation variable,

will the degradation score be improve?

Would equipment still be functioning if the fire

hadn’t occurred.

Nature of analysis It involves passive observation of

naturally occurring events.

It actively involves manipulating

variables in controlled experiments.

It compares actual outcomes with hypothetical

scenarios.

Control It lacks researcher control over

variables.

It allows for researcher control and

manipulation.

It relies on hypothetical scenarios to estimate

causal effects.

Purpose Lacking controls over variables make

it challenging to establish causation.

It is focused on establishing causation

and determining the impact of specific

interventions.

It is concerned with estimating causal effects by

exploring alternative scenarios.

memory, which encompasses the ability to abstract and generalize

past cases, can serve as an intermediate step for rule-making.

By extracting common patterns and regularities from past cases,

rules can be formulated to guide decision-making. In essence, the

generalization of cases paves the way for the creation of rules to

guide decision-making in a variety of contexts. These explicit rules

can be cleaned, improved, and used more effectively.

To a large extent, case-based decision-making and rule-

based decision-making are not competing methodologies; they

represent different approaches to cognitive behaviors. Rather than

determining which approach is more appropriate for decision-

making, it should be decided by system experts. In general, rule-

based decision-making is simple and promising. However, if the

system is new and there is limited history of failure cases, case-based

decision-making might be the default choice. Both methods are

equally simple and quick in terms of computation. Furthermore,

the specific methods presented in these frameworks may not

provide the same predictions given the same observations. Hence,

we believe that there is room for both strategies.

4.3 Deliberate analytics

Deliberative analytics carefully consider various alternatives,

weighing pros and cons, and making decisions based on reasoning.

It deals with data, identify patterns, and interpret information to

gain insights into potential threats or vulnerabilities. Information

fusion, failure analysis, risk assessment, and optimization form the

common elements of deliberate analytics.

4.3.1 Information fusion
Information fusion in deliberate analytics combines

information from multiple sources (sensors, memory, algorithms,

or methodologies) to improve the quality of knowledges and

has gained significant attention in condition monitoring. This

fusion may involve integrating information to create a more

comprehensive understanding of the situation. Experimental

verification showed that collaborative fault diagnosis gives more

reliable results by the integration of multisensory data and fusion

of maintenance strategies (Shao et al., 2021). Knowledge-level

sensory fusion integrates sensor signals’ reported results based on

voting fusion rules to offer collaborative inference.

4.3.2 Failure analysis
Failure analysis is a systematic process of investigating the

causes and consequences of a failure. It identifies the root causes

of the failure, understands the mechanisms involved, and provides

insights to prevent similar failures in the future; it can be conducted

through various methods and tools, including Failure Mode and

Effects Analysis (FMEA) (Mikulak et al., 2017), Fault Tree Analysis

(FTA) (Sharma and Sharma, 2010), Root Cause Analysis (RCA)

(Tuninetti et al., 2021), Reliability Block Diagram (RBD), 5 Whys,

Probabilistic Risk Assessment (PRA), etc. Each of these approaches

possesses unique capabilities and limitations, and the selection of

a particular method depends on the specific requirements and

objectives of the system at hand.

The three-level hierarchy in causal reasoning for failure analysis

is outlined in Table 4. It addresses the activity and characteristic

questions that can be answered at each level, along with additional

examples related to condition monitoring analytics. The first

level of the causal hierarchy is associative. It relies on purely

statistical relationships defined by the raw data. The second level is

interventional. It goes beyond observational raw data and focuses

on changes being tested. Randomized controlled trials (RCTs) are

widely regarded as the gold standard for assessing the effectiveness

of interventions. They are valued for their ability to minimize

bias and establish causal relationships between interventions

and outcomes. Lastly, the third level involves Counterfactuals,

which have been given computer-friendly interpretations in recent

decades. A common question in this category is: “What if I

had made a different choice?” This requires looking back and

considering alternative actions. It draws upon scientific thinking,

legal and moral reasoning (Pearl, 2019). In brief, interventional

questions need more than just looking at statistics; similarly,

counterfactual questions need more than intervention.

Relying solely on observations for causal inference isn’t enough;

conducting intervention gives deeper understanding. Causal
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Bayesian networks are utilized for predicting intervention effects

and formulating the corresponding transition probabilities in Lee

et al. (2024). Predictive analysis entails forecasting future events

by leveraging historical data and identifying patterns. Markov

Decision Process (MDP) models have been widely employed

in predictive analytics within stochastic domains, including

applications in condition monitoring. An MDP model consists of

states, actions, transition probabilities, and rewards.

Imagination is central to human cognition, and it involves

in decision-making (Paul, 2014). Blomkvist (2022), claims that

imagination is intentionally controlled by employing the reality

constraint and change constraint. Imagination involves mentally

going beyond time, place, and situations. The paper discusses the

challenge of designing imagination machines, explores connections

between current research and imagination, and explains how

automating imagination can greatly progress AI (Mahadevan,

2018).

Creativity entails generating novel ideas, particularly when

encountering complex challenges, and thinking outside the box.

This creative thinking empowers decision-makers to explore

unconventional possibilities, ultimately fostering innovative

solutions and yielding superior outcomes. Similarly, within

the realm of computer science analytics, when learning from

observations and intervention proves inadequate for decision-

making, there arises a necessity for counterfactual analytics,

serving as the foundation for causal inference (Höfler, 2005).

Creative AI can produce realistic video footage, images, graphics,

and simulation data using techniques such as GANs, VAEs, and

counterfactual simulations (de Vries, 2020). The simulated data

can used for data augmentation to make more optimal decision.

Counterfactual analysis serves as the cornerstone of causal

inference, especially in failure analysis, particularly for identifying

root causes. Counterfactual decision theory (CDT) suggests

that you should assess an action based on the outcomes that

would probably happen if you were to do it (Hedden, 2023).

Causation and counterfactuals are frequently associated, but not

invariably. In instances such as overdetermination, constitution,

and determinism, where they diverge, CDT provides accurate

verdicts, supported by valid reasoning compared to ausal decision

theory. Counterfactual causality was the primary concept driving

the development of randomized experiments to generate simulated

data. Counterfactual simulations are needed to explain causal

judgements, and just hypothetical simulation isn’t enough to

predict causal judgements (Gerstenberg, 2022).

4.3.3 Risk assessment
Risk pertains to situations where probabilities are known,

while “uncertainty” refers to situations where states are defined

naturally or can be easily constructed, but probabilities are

not specified (Gilboa and Schmeidler, 2001). Risk can be

broadly characterized as the likelihood of potential loss of

valuable assets, while vulnerability encompasses the characteristics

and conditions that may contribute to heightened risk and,

consequently, potential losses (Escobar Wolf et al., 2018). Risk

assessment is a well-established discipline where the systematic

execution of assessments guides analysts in identifying potential

hazards or threats, analyzing their origins and consequences, and

presenting the risk, usually with quantitative precision and a

proper representation of uncertainties (Zio, 2018). It has been the

primary approach for ensuring safety in the design and operation

of industrial systems.

The risk assessment module typically comprises three key

stages: risk identification, risk analysis, and risk evaluation. In

the first stage, potential risks are identified. The second stage

involves a detailed analysis of these identified risks, assessing their

causes, potential consequences, and likelihood. Finally, in the third

stage, the analyzed risks are evaluated to prioritize and determine

their significance, guiding subsequent decision-making and risk

management actions. Risk assessment dependability modeling

methods provide insights into various dependability modeling

approaches from fault trees, Bayesian networks, stochastic Petri-

nets, and so on, and how uncertainty is handled (Chemweno

et al., 2018). However, the success of these strategies depends on

adequately considering asset failure dependencies during the risk

assessment process. In short, risk assessment helps organizations

prioritize and allocate resources to address risks effectively.

4.3.4 Knowledge discovery and fusion
Initially, early knowledge fusion predominantly relied on

conventional data fusion techniques. Its primary focus was on

validating data authenticity, ensuring the reliability of information

sources, resolving numerical conflicts between diverse data

sources, and deducing the inherent real value. This approach

placed particular emphasis on the data level. Contrasting with

data fusion, knowledge fusion diverges in its fundamental

objective. It revolves around the exploration of methods to

amalgamate descriptive information concerning a singular entity

or concept from various sources (Zhao et al., 2020). Knowledge

graphs, fuzzy set theory, Dempster-Shafer evidence, and Bayesian

inference are common theories used for knowledge discovery

and decision-making.

The Knowledge Graph (KG) is recognized as an evolving

semantic infrastructure for big data analysis and knowledge

discovery (Ristoski and Paulheim, 2016). It serves as a structural

semantic knowledge base, employing a graph-based representation

method to symbolically describe real-world concepts and their

relationships. Its efficiency in managing and representing massive,

multi-source data has led to its application in equipment condition

management (Qiu et al., 2022). This structured representation gives

relationships, identifies patterns, and makes informed decisions

based on a comprehensive understanding of the information for

decision-making.

Petri nets serve as graphical and formal modeling tools for fault

analysis known for their expandability and portability (Peterson,

1981). They can be seamlessly converted from fault trees, offering

robust logical description capabilities. Murata (1989) demonstrates

the transformation of various intricate fault tree relationships into

Petri nets, showing their efficiency compared to fault trees. A

formally defined as a directed bipartite graph using Petri net of a

six-tuple was presented for failure analysis in Sharma and Sharma

(2010).

Fuzzy set theory is effective when dealing with both inaccurate

and uncertain information. It allows for the representation of

uncertainty using degrees of membership, making it suitable for
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situations where precise data is difficult to obtain. Its efficacy hinges

on the precise modeling of membership functions, a task that may

demand domain expertise. It may not be as well-suited for problems

with highly structured and precise data.

The Dempster-Shafer Theory of Evidence (DSTE) is based

on two principles: (i) assessing degrees of belief for subjective

probability estimates, and (ii) combining these degrees of belief

within a probabilistic framework (Shafer and Logan, 1987). It

offers an effective method for integrating information from

various sources, qualitative and quantitative alike, using Dempster’s

combination rules and advantages to deal in conflicting evidence

(Lin et al., 2015). Moreover, it can handle situations where

information is incomplete or when there is uncertainty about the

reliability of different sources, but its implementation is complex

and computationally intensive.

Bayesian theory is well-suited for updating beliefs and

probabilities based on new evidence. It is particularly effective when

dealing with well-defined probabilistic models and when there is

a need to incorporate prior knowledge into decision-making. It

assumes a clear specification of prior probabilities and likelihoods,

which may be challenging in cases with limited historical data

or when uncertainties are high. In knowledge discovery, the

choice between these theories could depend on factors such as

the type and quality of available data, the level of uncertainty in

the system, and the modeling requirements. Additionally, some

applications may benefit from a combination of these approaches

or from integrating them into a hybrid framework to leverage their

respective strengths.

4.4 Level of condition based maintenance

Condition monitoring (CM) systems evolve through four levels

of capability: detection, diagnosis, quantification, and prognosis

(Kandukuri et al., 2016). At the basic level, CM can detect the

presence of faults, progressing to diagnosing the type of fault,

then quantifying its severity, and ultimately predicting future

failure timelines.

4.4.1 Fault detection
Fault detection level has the capability to detect faults and

differentiate between healthy and faulty states. The fault is

identified either based on baseline values stored in memory or

by detecting anomalies from observations. Fault detection in

condition monitoring can be modeled after the trigger drawn

from attention. Just as attention concentrates on relevant senses in

human cognition. The fault detection module can discern incipient

faults, distinguishing between a healthy state and a degradation

stage. Machine learningmodel was used to identify the patterns and

anomalies in Dhungana et al. (2024).

4.4.2 Fault identification
Fault identification possesses the capability to determine the

type of fault that has occurred and pinpoint the location of the fault

within the equipment. Identification relies on recognizing prior

fault data stored in memory. In our previous work, we applied a

signature-based initial fault identification approach as evidence of

the effectiveness of this example (Singh et al., 2024b).

4.4.3 Fault quantification
Fault quantification level captures the magnitude of incipient

faults. At the early fault detection stage, it may be challenging to

measure the fault size precisely. However, certain statistical features

can provide an approximate indication of the fault magnitude based

on the distribution of measurements. Capability index, six Sigma

are the common parameters to quantify fault severity because

reflect the degree of the process variation with respect to the specific

limits (Gupta et al., 2018).

4.4.4 Fault prognosis
Fault prognosis aims to forecast the progression toward

functional failure. In failure prognostic problems, fault

quantification information can be utilized to model the rate

of degradation and predict the remaining useful life (Dhungana

et al., 2025b). Based on the degradation rate, the remaining useful

life is predicted to set maintenance time.

4.5 Memory

4.5.1 Baseline references and signatures
The baseline represents the operational value when the

equipment normally operates. Detecting fault conditions as early

as possible, with a specified degree of confidence, while minimizing

false alarms is essential. Therefore, the availability of historical data

is assumed to define an appropriate baseline. Baseline values are

subjective and established based on best practices and experience,

in line with system requirements. In our previous work of

initial fault finding, the average of four experimental readings

are employed as baseline value (Singh et al., 2024b). Signatures

are unique patterns of data or information utilized for potential

matching with historical data for classification and clustering. The

instantaneous signature of the observed data is compared with a

database of fault signatures stored in memory to identify the type

of fault.

4.5.2 Prior cases and rules
Prior cases in condition monitoring are analogous to

experiences stored in humanmemory. They serve as a repository of

information influencing decision-making process in similar future

situations. The choice of case descriptors and their storage format

depends on the type of information utilized. Typically, numerical

case representations are stored in data structures like arrays, lists,

or matrices in computer memory. Each element of the case tuple

corresponds to a feature descriptor. Indexing may be employed to

effectively search for matches between cases.

In the cyber domain, a rule refers to a set of predefined

directive or instruction used within analytics to produce intended

results. These rules are often implemented within different modules

and submodules of decision-making frameworks. Rules define

the boundaries of actions, and serve as a means of regulating
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behavior, ensuring consistency, and maintaining order and stability

in decision-making. In this framework, software libraries, both

built-in and user-defined functions, and data analysis algorithms

can be regarded as rules.

4.5.3 Domain knowledge
Domain knowledge refers to a comprehensive grasp of

a particular field. Every area of study encompasses one or

more domains where analysis and exploration are conducted.

The research problem in the implementation of this proposed

framework is how domain knowledge can be integrated into

deliberate decision-making. The domain knowledge consists of

three dimensions: knowledge discipline, knowledge representation,

and knowledge integration. In any discipline, knowledge is stored

in various forms, such as algorithms, mathematical equations,

simulation results, logic rules, knowledge graphs, and probabilistic

correlations, regardless of the field. Concerning knowledge

integration, our aim is to achieve all the advantages associated

with condition monitoring, including life extension, reduction of

operational costs, and attainment of higher standards/accuracy in

production, among others.

4.6 Maintenance decision

We face various types of maintenance decisions at different

observation points. In situations requiring prompt decision-

making, extensive experience plays a key role. In such cases, certain

decisions are genuinely automatic, requiring no deliberation.

Conversely, when ample time allows for optimal decision-making

conditions, advanced analytics, in addition to prior experience,

guide the decision-making process. It is crucial to comprehend how

the appropriate strategy is chosen to align with business objectives

in this scenario.

Like the three modes of information processing in decision-

making, we have proposed three types of maintenance decisions:

reflexive decision, procedural decision, and deliberate decision, as

shown in Figure 2. Reflexive decisions are automatic. Therefore,

there is no role for data analytics. These decisions are solely decided

by data measurement of sensors into protective action as a reflexive

response. Like the two modes of thinking, we have proposed two

types of decision-making: procedural decision focused on safety

and security, which is quick and relies on a simple approach,

and a thoughtful decision centered on business values, which

is detailed, comprehensive, and considers various aspects from

different perspectives.

There are two primary computational paradigms to formally

model decision-making under uncertainty: statistical reasoning

and probabilistic reasoning. The procedural analytics relies

on statistical reasoning, while the deliberate analytics utilizes

probabilistic resoning. It’s commonly believed that human

decision-making involves a blend of three fundamental techniques:

analogies (case-based deduction), rule-based deduction,

and probabilistic inference. Within procedural analytics, we

categorize models into two sub-techniques: analogies (case-based)

(Dhungana, 2024a) and rule-based methods (Dhungana, 2024b).

Procedural decisions are well-defined and structured, meaning

all inputs, outputs, and internal procedures are known and

specified. In contrast, deliberate decisions are unstructured because

they are either new, complex, or rare and lack prior experience.

By comparing the decision-making problem from the perspectives

of computer science and information technology (Marko, 2009),

we classify deliberate decisions as strategic, procedural decisions as

tactical, and reflex decisions as operational. By comparing model-

based and model-free dichotomy for decision making behavior

(Hasz and Redish, 2018), we put model free decision making

behavior as deliberate analytics, and model based decision making

behavior as procedural analytics.

Within deliberate analytics, Expected Utility Theory (EUT) is

widely regarded as the preferred method for making prognostic

decisions in uncertain situations. It provides an analytical

quantitative framework to determine the most favorable decisions,

considering potential outcomes and the probabilities of each

structural state. To implement EUT, the utility function is needed,

i.e., its values for any consequence that may result from any act.

The EUT requires the decision-maker to think in hypothetical

or counterfactual terms. In EUT new information is modeled

as an event, i.e., a subset of states, which has obtained. The

model is restricted to this subset, and the probability is updated

according to Bayes’ rule. Bayesian model coupled with expected

utility maximization standing out as the most prominent approach

(Cappello et al., 2016).

Technical insights alone are insufficient for guiding strategic

maintenance decisions in industrial systems. Effective decision-

making must also incorporate factors such as regulatory

compliance related to safety and risk, as well as adherence to

environmental standards. Additionally, business considerations-

including cost-benefit analysis, operational efficiency, and

organizational goodwill-are essential for aligning maintenance

strategies with broader enterprise goals as in Figure 5.

5 Empirical studies and discussion

Empirical studies is carried out at the fault identification level of

CM using procedural analytics applied to vibration data obtained

from bearing degradation tests. The classification methodology

integrates both case-based and rule-based analytical techniques

to facilitate rapid identification and categorization of bearing

faults by interpreting extracted vibration features as diagnostic

information. This approach leverages memory-associated

classification mechanisms, where case-based classification

relies on previously encountered fault patterns, and rule-based

classification utilizes predefined logical rules. Both methods

contribute to the quick differentiation of bearing health states,

encompassing normal operating conditions as well as specific

fault types such as inner raceway faults, outer raceway faults, and

ball defects.

5.1 Datasets

This study employs the 12k Drive End Bearing vibration

data from the Case Western Reserve University (CWRU) bearing
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FIGURE 5

A Sankey diagram of knowledge fusion for the deliberative maintenance decision.

dataset for fault analysis and detection. Specifically, samples with

a fault diameter of 0.021”, a motor load of 3 HP, and a motor

speed of 1,730 RPM are used to validate the proposed approach

experimentally. The CWRU dataset provides comprehensive ball-

bearing test data, including both healthy and faulty conditions, and

serves as a widely recognized benchmark in bearing fault diagnosis

research (Smith and Randall, 2015).

The experiments were conducted using a 2-horsepower

Reliance Electric motor, with vibration data collected via

accelerometers mounted at both proximal and distal positions

relative to the motor bearings. Faults with a diameter of 0.021

inches and a depth of 0.011 inches were systematically introduced

into three specific bearing locations: the inner raceway (IR), the

ball, and the outer raceway (OR). These faulty bearings were

reinstalled into the motor, and vibration signals were recorded

at a consistent motor speed of 1,730 RPM under a 3 HP load,

with a sampling rate of 12,000 samples per second. The drive end

bearing under investigation is a 6205-2RS JEM SKF deep groove

ball bearing, characterized by an inner diameter of 0.9843”, an

outer diameter of 2.0472”, a thickness of 0.5906”, a ball diameter

of 0.3126”, and a pitch diameter of 1.537”. The dataset includes

conditions for normal bearings and those with single-point

defects at the drive end. Vibration data were acquired using

accelerometers mounted at the 12 o’clock position on the bearing

housing with magnetic bases to ensure stable placement. All

data are stored in MATLAB (*.mat) format and accompanied

by detailed documentation of the experimental setup, which is

available through the official CWRU website.1

5.2 Experimental settings and evaluation
metrics

The vibration measurement data was divided into segments

of 1,000 data points, corresponding to 0.0833 seconds, covering

at least two full bearing rotations. The healthy sample of healthy

dataset was labeled into normal class and specific bearing defects

such as inner race, outer race, and ball defects categories, with

one for healthy samples and the rest for faulty ones, differentiated

by fault diameter and location. Each vibration file contained over

1 Bearing Data Center | Case School of Engineering. Available online at:

https://engineering.case.edu/bearingdatacenter.

120,000 measurements for faulty classes and over 480,000 for

healthy ones. To balance the classes, we used 120 samples per

class together 480 samples. The dataset was used for a 4-category

classification-based fault location on bearing parts.

Features like peak-to-peak, dominant frequency and harmonics

of vibration are extracted as equivalent to information extraction

from raw vibration data for fault diagnosis. It reads a dataset

of vibration signals, calculates key signal features-peak value,

dominant frequency, and number of harmonics-for each signal

sample. The dominant frequency and harmonics are computed

using the Fast Fourier Transform (FFT), focusing on the most

prominent frequency components. These extracted features are

then compiled along with the corresponding fault labels. All

analytics were executed on a personal computer with an Intel(R)

Core(TM) i9-10900X CPU @ 3.70 GHz and 32 GB of memory,

using Jupyter Notebook.

Standard performance metrics for classification tasks accuracy,

precision, recall, and F1 score are employed as in Equations 1–4

to evaluate fault identification based on procedural analytics (Sun

et al., 2020). Accuracy measures the overall correctness of the

model by calculating the ratio of correctly predicted instances to

the total instances. Precision indicates how many of the predicted

positive cases are actually correct, reflecting the model’s ability to

avoid false alarms. Recall measures the model’s ability to detect all

actual positive cases, showing how well it captures true faults. F1

Score is the harmonic mean of precision and recall, providing a

balanced evaluation when both false positives and false negatives

are important.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall (Sensitivity) =
TP

TP + FN
(3)

F1 Score = 2×
Precision× Recall

Precision+ Recall
(4)

where: TP = True Positives (correctly predicted positive cases),

TN = True Negatives (correctly predicted negative cases), FP =

False Positives (negative cases incorrectly predicted as positive),

FN = False Negatives (positive cases incorrectly predicted

as negative).
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FIGURE 6

Nature of feature distributions of three di�erent failure parts along with normal bearing.

5.3 Results

To construct representative cases and interpretable

classification rules, feature distributions of vibration data

were visualized for three distinct bearing fault types-inner race,

outer race, and ball defects-alongside normal bearing conditions.

The selected features include the peak-to-peak amplitude of

the vibration signal, the dominant frequency component,

and the number of harmonics present in each measurement

sample. Figure 6 shows an intuitive understanding of feature

behavior across different fault types, enabling the formulation of

discriminative and explainable classification rules.

5.3.1 Case-based classification
As in Case-Based Decision Making (CBDM), cases are

represented as combinations of problem descriptions, actions, and

outcomes, with learning achieved through the storage of real

instances in memory. Experimental verification of case-based RMS

prediction under varying speeds-both increasing and decreasing-

was presented in Dhungana (2024a). Similarly, in this work, we

formulate a case using three key features as in Equation 5:

Case tuple C = (P,D,H) (5)

where: C is the case, P is the peak,D is the dominant frequency, and

H is the harmonic.

To ensure that each feature contributes equally to case

formation without bias from differing magnitudes, we normalize

the feature using MinMaxScaler. The four distinct fault categories

are then treated as cluster centroids by computing the mean

values of each fault class’s three key features: Peak, dominant

frequency, and harmonics. These mean values are rounded to

four decimal places to maintain precision while simplifying

interpretation. This approach allows for a clear comparison of

feature distributions across different fault types, supporting further

classification. Therefore, the cases of four types of bearing condition

is represented as cases as tuple and their respective value of each

baseline fault category is represented as

Normal case C1: (0.036, 0.7936, 0.0917),

Ball fault case C2: (0.3642, 0.6544, 0.3333),

Inner race fault case C3: (0.0055, 0.3242, 0.3333),

Outer race fault case C4: (0.6307, 0.9144, 0.0194).

To retrieve similar cases, a similarity metric Sim(Cnew,Ci) is

used to compare the new case cnew with baseline cases Ci. We

use Euclidean Distance as the similarity measure as shown in

Equation 6. The baseline case with the smallest distance to the new

case is selected as the matched case for fault classification.

Sim(Cnew,Ci) = Euclidean Distance(d)

=

√

√

√

√

n
∑

j=1

(Cnew
j − Ci

j)
2, for i = 1, 2, 3, 4 (6)

Case-based classification was tested on 480 samples from the

allocated dataset. Each sample was assigned a fault type based on

the minimum Euclidean distance to known cases. The evaluation

metrics for case-based classification performance are detailed in the

first row of Table 5.

5.3.2 Rule-based classification
Rule-based systems are widely used in expert systems,

automation, and decision support systems. Industry standards like

ISO 10816 and expert knowledge guide establishing the following

vibration severity rules.2 These rules are typically expressed in

the form of “if-then” statements, where specific conditions (the

“if ” part) trigger corresponding actions or conclusions (the “then”

part). Table 6 shows the generic decision matrix based on vibration

data. Inspired by the ISO guideline in the context of the CWRU

dataset, we customize the rule based on the nature of the feature

2 ISO 20816-1:2016 - Mechanical vibration - Measurement and evaluation

of machine vibration - Part 1: General guidelines. Available online at: https://

www.iso.org/standard/63180.html.
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TABLE 5 Fault identification from two approcach.

Procedural analytics Processing time (ms) Accuracy Precision Recall F1_score

Case based 48.7237 0.9646 0.9671 0.9646 0.9645

Rule based 37.4417 0.9854 0.9862 0.9854 0.9854

TABLE 6 Decision matrix based on ISO 20816-1:2016 general machine vibration guidelines.

Vibration level (mm/s) Dominant frequency Presence of harmonics High frequency
components

Condition

<2.5 Any None None Normal condition

2.5–4.5 RPM None None Imbalance

4.5–6.5 Any 2X, 3X of RPM None Misalignment

>6.5 Any None High frequency

components (>1 kHz)

Bearing fault

>6.5 BPFO X, 2X, 3X of BPFO Outer race

>6.5 BPFI X, 2X, 3X of BPFI Inner race

>6.5 BSF X, 2X, 3X of BSF Ball

>6.5 FTF X, 2X, 3X ofFTF Cage

distributions in Figure 6. This approach reveals the clear boundary

for interpretable decision criteria and transparency and supports

actionable insights, especially in systems requiring explainable

decision-making. Only four rules are sufficient to distinguish the

fault types and are made as follows “if-then” statements. The

evaluation metrics for rule-based classification performance are

detailed in the last row of Table 5.

• Rule 1: If the peak value is less than 1 and the dominant

frequency falls between 2,000 Hz and 2,500 Hz, then it is in

normal condition.

• Rule 2: If the peak value is less than 1 and no specific frequency

condition is met, then it is ball fault.

• Rule 3: If the peak value is greater than 1 and the dominant

frequency is between 2,500 Hz and 3,000 Hz, then it is inner-

race fault.

• Rule 4: If none of the above conditions are satisfied, then it is

oute-race fault.

Table 5 compares the performance of case-based and rule-

based approaches for fault identification. The rule-based method

outperforms the case-based one in all key metrics, achieving higher

accuracy (98.54% vs. 96.46%), precision, recall, and F1-score, while

also requiring less processing time (37.44 ms vs. 48.72 ms). This

indicates that the rule-based approach is both more accurate and

computationally efficient for fault diagnosis tasks. Even with data

from 1,000 vibration readings, the fault identification time using

pixel intensity-based inference from the trained model takes 1.41

ms on the same computing setup (Dhungana et al., 2025a). In

comparison, the rule-based identification consumes only 0.078 ms.

The Figure 7 on the left displays the confusion matrix for case-

based analytics, while the graph on the right presents the confusion

matrix for the results of rule-based analytics. Both methods

perform well overall, but the rule-based model shows slightly

higher accuracy, especially for Ball faults and Outer race faults,

by eliminating misclassifications that occurred in the case-based

approach. This suggests that the rule-basedmethodmay offer better

consistency and generalization for this particular dataset.

5.4 Discussion

CBDM offers efficiency by utilizing past experiences to

streamline problem-solving, reducing the need to develop solutions

from scratch. Its flexibility allows adaptation to novel challenges,

while its transparency ensures that decisions remain interpretable

and grounded in historical cases. CBDM’s effectiveness is

contingent on the quality of its case base, the accuracy of similarity

measurement, and the complexity of adapting past solutions

to new contexts. Formalizing CBDM mathematically enhances

its integration into computational systems, such as case-based

reasoning (CBR) in AI, improving its scalability and applicability.

An innovative case formation method was introduced, using a

single dataset to create three unique feature tuples.While successful

in case selection is based on Euclidean distance-based approach

requires further refinement for improved accuracy. The case-based

classification achieved 96% accuracy using three key features: peak-

to-peak value, dominant frequency, and number of harmonics. To

further improve accuracy, additional discriminative features-such

as spectral kurtosis, RMS, or time–frequency domain descriptors-

could be integrated into the case representation. Moreover,

optimizing the distance metric or incorporating hybrid approaches

combining rule-based logic with case retrieval may enhance

classification robustness. We presented empirical studies focused

on the retrieval and reuse phases of the case-based classification

process without addressing the retention and revision stages.

Exploring retention and revision mechanisms will be considered as

part of future work to enhance the adaptability of the system.

Rule-based classification offers advantages such as

interpretability, simplicity, and real-time decision-making,

making it suitable for applications requiring transparent and

efficient rule evaluation. Its straightforward structure eliminates
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FIGURE 7

Confusion matrix or fault identification from case base and rule based classification.

the need for complex machine learning models, enabling

rapid decision-making in real-time monitoring systems. While

rule-based prediction ensures simplicity and interpretability,

its limitations include difficulty in capturing complex data

relationships and sensitivity to threshold tuning, which may

lead to false positives or negatives. Enhancing these systems by

integrating machine learning models and employing adaptive

thresholds can improve accuracy and adaptability to dynamic

operating conditions.

We achieved 99% classification accuracy in a very short time by

using only three features to formulate a set of simple yet effective

decision rules. In our previous work, a CNN-based approach for

real-time fault identification in rolling element bearings achieved a

processing time of 6.48 ms per sample (Dhungana et al., 2025a). In

comparison, the current rule-based classification method, applied

to the same dataset and computational platform, significantly

reduces the processing time to just 0.16 ms per sample. These

interpretable rules enable fast and accurate fault identification,

demonstrating the potential for real-time implementation with

minimal computational overhead. Since the dataset does not

include fault types such as imbalance or misalignment, our study

is limited to a subset of bearing fault conditions. This represents

a limitation of the research, as broader fault categories could not

be evaluated.

We have demonstrated the experimental verification of our

fault identification methodology using vibration data, providing

empirical evidence of its applicability in real-world scenarios. This

approach not only aids in fault identification but also supports

fault detection, quantification, and failure prognostics. However,

despite its general applicability across various levels of Condition

Monitoring (CM), the methodology faces implementation

challenges, such as accuracy variability due to the quality of CM

techniques, data consistency, and the complexity of machinery.

Scalability issues may arise when applied to large, heterogeneous

industrial systems, and sensor placement or data noise could

impact the robustness of results. These challenges highlight

the need for further refinement, validation in diverse industrial

environments, and continuous adaptation to practical limitations.

The proposed methodology is well-suited for industrial systems

with extensive sensor networks that generate large volumes of data.

It addresses the gap in decision-support tools for engineers by

employing biomimetic principles for enhanced data analysis and

inference. Given the subjective nature of condition monitoring

objectives, which can vary based on system deployment, we do

not quantify the strength of connections among these elements.

Therefore, the proposed generic procedure empowers researchers

and industrial engineers to tailor the weighting according to their

specific standards.

6 Conclusion

As industrial systems continue to generate increasing volumes

of sensor data, the demand for intelligent, interpretable, and

resource-efficient condition monitoring solutions grows. In

this work, we present a biomimetics-inspired decision-making

framework that parallels human cognitive processes, offering a

systematic approach to condition management that bridges the gap

between raw sensor data and actionable maintenance decisions.

Unlike conventional methods, our approach emphasizes the

data-information-knowledge hierarchy, focusing on perception,

learning, and adaptation rather than material mimicry.

A key contribution of this methodology lies in its ability

to support interpretable and adaptive maintenance strategies

through continuous rule and case refinement, multi-sensory

integration, and energy-efficient processing suitable for constrained

environments. Our empirical studies using vibration data validate

the framework’s practical viability and highlight its flexibility across

varying operational scenarios.

The results underscore the importance of simplicity and

usability-while the abstract design ensures wide applicability,

domain-specific customization remains essential for optimal

deployment. Future work will focus on enhancing the

computational core through data augmentation, transfer learning,

and context-aware analytics, while expanding validation efforts

across diverse industrial systems and sensor types. This study
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provides a novel methodological foundation and a functional

roadmap for integrating biomimicry into the next generation of

maintenance engineering.
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