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Background: The diagnostic power of exercise stress electrocardiography 
(ExECG) remains limited. We aimed to construct an artificial intelligence (AI)-
based method to enhance ExECG performance to identify patients with 
significant coronary artery disease (CAD).

Methods: We retrospectively collected 818 patients who underwent both 
ExECG and coronary angiography (CAG) within 6 months. The mean age 
was 57.0 ± 10.1 years, and 614 (75%) were male patients. Significant coronary 
artery disease was seen in 369 (43.8%) CAG reports. We  also included 197 
individuals with normal ExECG and low risk of CAD. A convolutional recurrent 
neural network algorithm, integrating electrocardiographic (ECG) signals and 
features from ExECG reports, was developed to predict the risk of significant 
CAD. We also investigated the optimal number of inputted ECG signal slices and 
features and the weighting of features for model performance.

Results: Using the data of patients undergoing CAG for training and test sets, our 
algorithm had an area under the curve, sensitivity, and specificity of 0.74, 0.86, 
and 0.47, respectively, which increased to 0.83, 0.89, and 0.60, respectively, 
after enrolling 197 subjects with low risk of CAD. Three ECG signal slices and 12 
features yielded optimal performance metrics. The principal predictive feature 
variables were sex, maximum heart rate, and ST/HR index. Our model generated 
results within one minute after completing ExECG.

Conclusion: The multimodal AI algorithm, leveraging deep learning techniques, 
efficiently and accurately identifies patients with significant CAD using ExECG 
data, aiding clinical screening in both symptomatic and asymptomatic patients. 
Nevertheless, the specificity remains moderate (0.60), suggesting a potential for 
false positives and highlighting the need for further investigation.

KEYWORDS

exercise stress electrocardiography, coronary artery disease, deep learning, 
multimodal approach, feature variable, artificial intelligence, clinical screening, 
convolutional recurrent neural network

OPEN ACCESS

EDITED BY

Tim Hulsen,  
Rotterdam University of Applied Sciences, 
Netherlands

REVIEWED BY

Natallia Maroz-Vadalazhskaya,  
Belarusian State Medical University, Belarus
Jafar A. Alzubi,  
Al-Balqa Applied University, Jordan
Michael Guckert,  
Technische Hochschule Mittelhessen, 
Germany

*CORRESPONDENCE

Hsin-Yueh Liang  
 liangsy2@gmail.com

RECEIVED 13 September 2024
ACCEPTED 27 February 2025
PUBLISHED 17 March 2025

CITATION

Liang H-Y, Hsu K-C, Chien S-Y, Yeh C-Y, Sun 
T-H, Liu M-H and Ng KK (2025) Deep learning 
analysis of exercise stress electrocardiography 
for identification of significant coronary artery 
disease.
Front. Artif. Intell. 8:1496109.
doi: 10.3389/frai.2025.1496109

COPYRIGHT

© 2025 Liang, Hsu, Chien, Yeh, Sun, Liu and 
Ng. This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 17 March 2025
DOI 10.3389/frai.2025.1496109

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1496109&domain=pdf&date_stamp=2025-03-17
https://www.frontiersin.org/articles/10.3389/frai.2025.1496109/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1496109/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1496109/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1496109/full
mailto:liangsy2@gmail.com
https://doi.org/10.3389/frai.2025.1496109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1496109


Liang et al. 10.3389/frai.2025.1496109

Frontiers in Artificial Intelligence 02 frontiersin.org

Introduction

Ischemic heart disease is the major cause of mortality 
worldwide. Recent findings from the global disease burden study 
indicate that ischemic heart disease caused more than 9 million 
deaths in 2021 (Vaduganathan et al., 2022; Malakar et al., 2019). 
Early diagnosis is crucial because lifestyle modification and 
medical intervention improve life quality and prolong survival 
(Knuuti et al., 2020).

The workup of a patient presented with suspected coronary 
artery disease (CAD) involves history taking, physical 
examination, and initial examinations. Possible CAD is further 
evaluated using many noninvasive test modalities, including 
exercise stress electrocardiography (ExECG), stress 
echocardiography, stress nuclear myocardial perfusion imaging, 
cardiovascular magnetic resonance imaging, and coronary 
computed tomography angiography (CCTA). Among them, 
ExECG, which has been used for >60 years, is a safe and 
affordable test for suspected CAD. However, although several 
ExECG scores, such as the Duke treadmill score, have been 
developed to improve diagnostic accuracy, the diagnostic power 
of ExECG remains limited with an area under the receiver 
operating characteristics curve (AUC) of 0.72–0.76 (Shaw 
et al., 1998).

Artificial intelligence (AI) has been applied in many disease 
models (Yadav and Jadhav, 2019; Movassagh et al., 2023; Alzubi 
et  al., 2021; Kose et  al., 2021). Given the limitations in the 
diagnostic accuracy of ExECG, AI offers the potential to 
overcome these challenges by detecting subtle patterns in ExECG 
data that might be  missed by conventional interpretation 
methods. AI-enabled ExECG algorithms, which utilize various 
models and datasets to enhance accuracy, efficiency, and 
applicability of CAD prediction, have been published, with AUC, 
sensitivity, and specificity of 0.73–0.78, 0.25–0.85, and 0.43–0.97, 
respectively (Babaoglu et al., 2009; Babaoğlu et al., 2010; Yilmaz 
et  al., 2023; Lee et  al., 2022). A hybrid convolutional neural 
network (CNN)–long short-term memory (LSTM) architecture 
has been shown to effectively process and analyze 
electrocardiography (ECG) (Banerjee et al., 2020; Cheng et al., 
2021). We hypothesized that the application of a hybrid CNN–
LSTM model in ExECG might accurately and efficiently identify 
patients with significant CAD. To test this hypothesis, 
we conducted a retrospective study of ExECG in patients who 
underwent invasive coronary angiography (CAG) and those with 
normal ExECG to develop and validate a deep learning AI model 
to predict significant CAD.

The primary objectives of this study were to: (1) develop a 
hybrid CNN–LSTM algorithm that integrates ECG signals and 
ExECG features to improve the diagnostic accuracy of ExECG for 
significant CAD; (2) optimize the number and weighting of ECG 
signal segments and features to maximize model performance; 
and (3) evaluate the model’s efficiency in generating results. Our 
findings suggest that a multimodal AI algorithm leveraging deep 
learning can rapidly and accurately detect significant CAD from 
ExECG data, delivering results within one minute post-test. This 
advancement holds potential to enhance clinical screening for 
CAD in both symptomatic and asymptomatic patients.

Materials and methods

Study population

We enrolled 4,959 ExECG reports of 4,849 patients who underwent 
symptom-limited ExECG saved in XML format using the GE CASE 
6.73 Stress Test system from January 2017 to January 2022 (Fletcher 
et al., 2013). We excluded patients with incomplete ExECG data or 
pacemaker implantation. The CAG group was defined as patients who 
underwent ExECG and subsequent CAG within 6 months, which was 
further divided into two subgroups with (A) and without (N) significant 
CAD. ExECG reports showing peak heart rates >85% of the maximum 
predicted rate and interpreted as normal by cardiologists, without 
subsequent CAG within 6 months, were categorized as subgroup T. In 
this group, patients with known or suspected CAD, hypertension, 
hyperlipidemia, diabetes, or clinical risk factors of CAD [male ≥45 years 
old, female ≥55 years old, or body mass index ≥24 or < 18.5 kg/m2] 
were further excluded, resulting in a subgroup at low risk of CAD (H). 
We selected patients who were evaluated through both ExECG and 
CCTA within 6 months at the Health Screening Center and had <50% 
coronary artery stenosis and classified them into subgroup C (Figure 1). 
Due to the variable positive predictive value of CCTA, ranging from 64 
to 91%, patients identified by CCTA as having >50% coronary artery 
stenosis were excluded from the study (Arbab-Zadeh and Hoe, 2011). 
We included patients with a wide range of CAD severity to ensure the 
generalizability of our model.

We conducted model training using combinations of the 
aforementioned subgroups, resulting in five groups, including the 
CAG group (subgroups N and A); group II (subgroups N, A, and T); 
group III (subgroups N, A, and H); group IV (subgroups N, A, and C); 
and group V (subgroups N, A, H, and C). Some patients underwent 
more than one examination. We  used any complete examination 
reports available, which resulted in a discrepancy between the number 
of examinations and patients.

Patients who underwent ExECG and CAG within 6 months at our 
institute and Asia University Hospital after February 2022 were used for 
external validation, respectively. The Institutional Review Board (IRB) of 
China Medical University Hospital approved this retrospective, single-
center study (IRB number CMUH110-REC3-019).

Coronary angiography

Coronary angiography was performed using standard techniques 
and used as the golden standard to determine the presence and 
severity of CAD. Significant CAD was defined as ≥50% stenosis of the 
left main stem and/or ≥ 70% stenosis in any major coronary artery 
(Nallamothu et al., 2013; Bhatt, 2015).

ExECG data retrieval

The ExECG equipment generates a 10-s ECG signal at a 
frequency of 500 Hz in 12 ECG leads. ECGs in the pretest, exercise 
(peak heart rate), and recovery phases were retrieved for model 1 
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training (Figure 2, left panel). To investigate if the number of ECG 
signal slices for model input is proportional to the model’s capability, 
we added three extra slices close to the peak heart rate during the 
exercise and recovery phases for model 2 training (Figure  2, 
right panel).

The ExECG reports included supplementary physiological data 
alongside the ECG signals, which have been shown to enhance the 
accuracy of ExECG assessments (Lehtinen, 1999; Christman et al., 
2014; Ahmed et al., 2015; Marzlin and Webner, 2019; Schultz et al., 
2017; Ghaffari et al., 2017; Mieres et al., 2014; Snader et al., 1997). 
To improve the model’s effectiveness in detecting CAD, 
we integrated a carefully selected set of these physiological metrics 
as metadata, consisting of 14 primary features and two derived 
features. The primary features included sex, age, BMI, resting and 
peak heart rates, maximum predicted heart rate, resting and peak 
systolic and diastolic blood pressures, maximum rate-pressure 
product, maximum workload, maximum ST depression, and the 
ST/heart rate index. Additionally, we  derived chronotropic 
incompetence and percent predicted metabolic equivalents to 
further support the model’s predictive capability (Supplementary  
material).

ECG signals and metadata preprocessing

Our model processed input data as stacked ECG signals, 
annotated as 5,000 × 12  in three phases (pretest, exercise, and 
recovery), indicating that each lead had 5,000 data points. 
Subsequently, the ECG signals were separated into limb (I–III, aVR, 
aVL, and aVF) and precordial leads (V1–V6). Each lead, composed of 
one-dimensional data, was directed into an analytical module, 

structure A, for subsequent processing (Figure 3) (Yildirim et al., 
2018; Kiranyaz et al., 2015).

Numerical and categorical variables of metadata were 
preprocessed using MinMaxScaler and one-hot encoder techniques. 
We excluded the ExECG if sex was absent. In our study, the missing 
data rate was minimal (0–0.5%), and the data followed a normal or 
near-normal distribution. For other variables with incomplete entries, 
we used the mean of the data, ensuring the continuity and integrity of 
the dataset for analysis. Outliers were individually reviewed to ensure 
accuracy. If it was not feasible to confirm whether an outlier was 
accurate, it was handled using the same approach as missing data.

Model design

For our model development, we  designed a deep learning 
framework that integrated the CNN with LSTM network, as previously 
described (Chen et al., 2022) (Figure 3). Structure A in the architecture 
extracted the characteristics of ECG signals from the limb and 
precordial leads in each phase, and it consisted of six layers of one- 
dimensional CNN layers (Figure 4). We added a dropout layer after 
every three CNN layers, randomly discarding 20% of the information, 
to prevent overfitting. The Leaky Rectified Linear Unit (LeakyReLU) 
activation function was also used for each layer in structure A, which 
maintained the gradient flow during the training process, potentially 
leading to a better model performance. The output results from 
structure A were combined and input into the attention layer (Yang 
et al., 2016) to determine important weight vectors, followed by two 
bidirectional LSTM layers for sequence analysis. Subsequently, the 
output data were entered into two dense layers to classify the processed 
characteristics of ECG signals (Figure 3).

FIGURE 1

Flowchart of ExECG reports selection. This diagram outlined the systematic approach for selecting ExECG. TET = Treadmill exercise stress 
electrocardiographic test.
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FIGURE 2

Selection of electrocardiographic slices. In model 1 (left panel), one slice (blue circle) of the signal in each stage was selected for training. In model 2 
(right panel), three extra slices (yellow and solid orange circles) close to the peak heart rates during exercise and recovery phases were added.

FIGURE 3

Process of ExECG analysis. It comprised data acquisition, preprocessing, feature extraction, and machine learning.
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Additional physiological features (metadata) were also inputted into 
one dense layer. Subsequently, these outputs were integrated with the 
characteristics of ECG signals to serve as inputs of the judgment module, 
comprising of two dense layers and using sigmoid functions, culminating 
in the final determination of whether the patient had significant CAD 
(Figure  3). We  further evaluated our model using only metadata, 
excluding ECG signals, as illustrated by the brown box in Figure 3.

Model training

For each patient group, eligible ExECG reports were randomly 
divided into training, validation, and testing subsets in a 64:16:20 
ratio. To maximize dataset utility, we  employed K-fold cross-
validation, a method particularly advantageous when data resources 
are limited. This approach splits the combined training and validation 
data (accounting for 80% of each group) into K equal folds. The model 
is trained on K − 1 folds, with the remaining fold used for validation, 
cycling through all folds. We set K to 5, implementing a 5-fold cross-
validation process (Supplementary Figure 1).

Performance evaluation

The performance metrics of the model were systematically 
assessed through various subgroup permutations. Our evaluative 
methodology included accuracy, AUC, sensitivity, specificity, positive 
and negative predictive values (PPV and NPV, respectively), and 
F1 score.

Statistical analysis

Data were presented as mean ± standard deviation and percentages 
for continuous and categorical variables, which were compared using 
chi-square test and one-way analysis of variance, respectively. A 
two-sided p < 0.05 was considered statistically significant.

Results

Study population

Our study included 818 patients (842 ExECG reports) who 
underwent CAG (group CAG). Of these, 356 (369 CAG reports) 
and 468 patients (473 CAG reports) were identified with significant 
CAD (subgroup A) and not significant CAD (N), respectively. 
Moreover, 2,598 patients (2,623 ExECG reports) whose ExECG 
were interpreted as normal by cardiologists did not undergo 
subsequent CAG (T). We further excluded individuals with risk 
factors of CAD, leading to 197 subjects at low risk of CAD (H). 
Additionally, 248 patients (249 CCTA reports) whose CCTA 
showed <50% coronary artery stenosis were classified as subgroup 
C (Figure  1). Table  1 shows the clinical and demographic 
characteristics of both CAG and non-CAG groups. The mean age 
in subgroup A was 59.0 ± 9.8 years, which was older than the other 
subgroups. Additionally, subgroup A had a higher prevalence of 
male sex, hypertension, diabetes, and hyperlipidemia. We used 325 
and 114 patients at our institute after February 2022 and Asia 
University Hospital for external validation, respectively.

FIGURE 4

The architecture of structure A. It extracted the characteristics of ECG signals from limb and precordial leads in each phase and consisted of six layers 
of one-dimensional CNN layers.

TABLE 1 Clinical and demographic characteristics.

Characteristic Non-CAG group CAG group

Patient, n C = 248* H = 197 T = 2598* N = 468*,# A = 356*,#

ExECG, n 249 197 2,623 473 369

CAG or CCTA, n 249 0 0 473 369

Age (yrs) 52.6 ± 11.6 34.4 ± 10.3 48.2 ± 13.8 54.7 ± 11.6 59.0 ± 9.8

Male, n (%) 128 (52%) 80 (41%) 1,483 (57%) 299 (64%) 315 (88%)

Hypertension, n (%) 138 (56%) 0 (0%) 1,288 (50%) 328 (70%) 309 (87%)

Diabetes, n (%) 24 (10%) 0 (0%) 236 (9%) 75 (16%) 110 (31%)

Hyperlipidemia, n (%) 93 (38%) 0 (0%) 600 (23%) 189 (40%) 197 (55%)

BMI (kg/m2) 24.5 ± 3.3 21.4 ± 1.4 24.9 ± 4.1 25.6 ± 4.0 26.2 ± 3.2

*One patient in subgroup C, 25 in T, 5 in N, and 13 in A underwent examinations twice. #Six patients were included in both A and N subgroups according to CAG reports.
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Quantity of ECG slice and features

In the CAG group (A + N), optimal performance was achieved by 
integrating three ECG slices (pretest, peak heart rate, and recovery 
phases) and 12 features without blood pressure data, resulting in AUC, 
sensitivity, and specificity of 0.74, 0.86, and 0.47, respectively (Table 2). 
More slices and/ or features did not improve model performance. The 
SHapley Additive exPlanations summary plot (Figure 5) showed that 
sex, maximum HR, and ST/HR index were the most significant 
predictors in our model. Therefore, we used the integration of three 
ECG slices and 12 features in the next stage.

Performance across five training groups

Subsequently, the model was trained using various group 
combinations. The outcomes across five training groups were not 
significantly different if the test set only included the CAG group 
(A + N) (Table 3), with AUC, sensitivity, and specificity of 0.74–0.78, 
0.82–0.89, and 0.47–0.51, respectively. When T subgroup was integrated 
into the training and test sets (group II), accuracy significantly 
improved, with AUC, NPV, and specificity of 0.75, 0.88, 0.97, and 0.75, 
respectively. However, this enhancement was achieved with detriment 
to the F1, and PPV. When low-risk patient data (H) were included for 
both training and testing (group III), accuracy significantly improved, 
with AUC, NPV, and specificity of 0.71, 0.83, 0.90, and 0.60, respectively. 
However, the F1 score, PPV, and sensitivity had minimal variation. The 
demographic, CAG, and ExECG features did not differ significantly 
between training, validation, and testing sets in group III 
(Supplementary Table  1). The performance was not significantly 
different when the model was trained and tested on groups III, IV, or V 
(Table 3). We also compared our models with the conventional ExECG 
algorithm, which primarily focuses on exercise-induced ST-segment 
changes as assessed by board-certified cardiologists with varying levels 
of clinical experience (Mieres et  al., 2014). Compared with the 
conventional ExECG algorithm, the performance of our AI model 
showed improvements across all measured variables and delivered 
predictive outcomes within 1 min after completing ExECG.

The performance of the model using the combination of ECG 
signals and metadata was comparable to that using metadata alone 
(the brown box in Figure 3), as shown in Table 4. However, the model 
integrating ECG signals and metadata demonstrated higher sensitivity 
compared to the model relying solely on metadata.

External validation
The comparative analysis of performance across five training 

groups showed minimal discrepancy in patients at our institute after 
February 2022 and Asia University Hospital (Table 3), indicating that 
our models can potentially be applied in diverse settings.

Bootstrap validation
We implemented bootstrapping to assess low AUC probability of 

Table 2 and simulated the sample size improvement (n = 10,000) with 
a flexible bootstrap distribution. The results showed that the AUC 
distribution of our model was stable, with minimal variability and a 
narrow confidence interval. The consistency between bootstrap 
estimates and the original value underscored the reliability of this 
method for performance validation using SAS JMP Academic Suite 
Version 17.2 (JMP Inc., NC, United States) (Figure 6).

Discussion

Our study provides an efficient and accurate tool to identify 
patients with significant CAD by the AI-enhanced ExECG algorithm, 
which achieved an AUC of 0.83, a sensitivity of 0.89, and a specificity 
of 0.60, within 1 min. The most important feature predictors for our 
model performance were sex, maximum heart rate, and ST/HR index.

The conventional ExECG algorithm mainly depends on ST 
segment changes (Gibbons et al., 2002). A meta-analysis of 147 studies 
involving 24,047 patients reported mean sensitivity and specificity of 
68 and 77%, respectively, but with considerable variability, ranging 
from 23–100% for sensitivity and 17–100% for specificity. The 
variation in diagnostic accuracy could be attributed to significant 
disparities in the demographic and clinical profiles of the studied 
cohorts, divergent criteria for defining the presence and severity of 
CAD, and differences in the selection of diagnostic variables (Fletcher 
et al., 2013; Detrano et al., 1989). Compared with the conventional 
ExECG algorithm, our model, incorporating ECG signal along with 
12 features, showed superior performance.

In 2009, Babaoglu et al. initially explored the use of AI algorithms to 
detect and localize CAD through ExECG (Babaoglu et al., 2009). Their 
methodology incorporated 27 distinct features as inputs into their 
model. Subsequently, they refined their approach by reducing the feature 
set to 18 and applied the support vector machine method for further 
studies (Babaoğlu et al., 2010). Various models have been developed with 
the rapid evolution of machine learning technologies. Lee et  al. 
introduced the random forest algorithm to enhance ExECG diagnostic 
capabilities, utilizing a dataset comprising 30 specific features, with the 
option to incorporate clinical data (Lee et  al., 2022). Following this 
advancement, Yilmaz et al. implemented the eXtreme gradient boosting 
algorithm, capitalizing on ECG characteristics and signals presented in 
JPEG format for their analysis (Yilmaz et al., 2023). Compared with a 
previous study, our training model using five different patient groups 
showed not inferior performance, supported by AUC metrics, when 
assessed in the CAG group (Table 5). The AUC values reported in these 

TABLE 2 Model performance across varied quantities of inputted ECGs 
and features.

Inputted number Model performance

ECGs Features ACC AUC F1 SEN SPE

N = 6 0 0.62 0.66 0.58 0.58 0.64

10 0.64 0.66 0.59 0.57 0.69

12 0.64 0.69 0.68 0.83 0.47

14 0.65 0.70 0.68 0.82 0.50

16 0.68 0.72 0.68 0.75 0.61

N = 3 0 0.65 0.68 0.66 0.72 0.59

10 0.60 0.68 0.65 0.79 0.44

12 0.65 0.74 0.70 0.86 0.47

14 0.66 0.72 0.64 0.65 0.68

16 0.64 0.71 0.68 0.82 0.48

ACC = accuracy; AUC = area under the curve; F1 = F1 score; SEN = sensitivity; 
SPE = specificity. Bold value indicated optimal performance.
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FIGURE 5

The SHapley additive exPlanations summary plot. The red and blue colors represent the feature values, with red indicating high feature values and blue 
corresponding to low feature values. Positive SHAP values indicate that the feature increases the likelihood of predicting significant CAD, while negative 
SHAP values suggest a decreased likelihood of significant CAD. Sex, maximum HR and ST/HR index were the most significant predictors in our model.

TABLE 3 Performance comparison of the model integrating ECG signals and metadata across subgroup combinations.

Training set Test set ACC AUC F1 PPV NPV SEN SPE

Gr CAG, N: A CAG, N: A 0.65 0.74 0.70 0.59 0.79 0.86 0.47

N: A* 0.63 0.74 0.69 0.58 0.73 0.84 0.42

N: A# 0.55 0.70 0.62 0.49 0.73 0.84 0.34

Gr II, (T + N): A CAG, N: A 0.66 0.76 0.69 0.60 0.77 0.82 0.51

N: A* 0.59 0.73 0.66 0.56 0.69 0.83 0.37

N: A# 0.61 0.68 0.66 0.53 0.82 0.88 0.42

II, (T + N): A 0.75 0.88 0.43 0.29 0.97 0.82 0.75

Gr III, (H + N): A CAG, N: A 0.66 0.78 0.71 0.59 0.82 0.89 0.47

N: A* 0.61 0.75 0.69 0.57 0.77 0.89 0.35

N: A# 0.55 0.63 0.63 0.49 0.77 0.88 0.31

III, (H + N): A 0.71 0.83 0.69 0.57 0.90 0.89 0.60

Gr IV, (C + N): A CAG, N: A 0.67 0.78 0.71 0.60 0.83 0.89 0.48

N: A* 0.62 0.75 0.69 0.57 0.78 0.89 0.35

N: A# 0.56 0.63 0.63 0.49 0.78 0.88 0.32

IV, (C + N): A 0.65 0.79 0.65 0.51 0.89 0.89 0.52

Gr V, (C + H + N): A CAG, N: A 0.66 0.78 0.71 0.59 0.82 0.89 0.47

N: A* 0.62 0.75 0.69 0.57 0.78 0.89 0.35

N: A# 0.56 0.63 0.63 0.49 0.78 0.88 0.32

V, (C + H + N): A 0.68 0.82 0.63 0.49 0.92 0.89 0.59

Conventional CAG, N: A 0.46 - 0.55 0.45 0.49 0.71 0.24

* External validation from data of our institute after Feb 2022. # External validation from data of Asia university hospital. ACC = accuracy; AUC = area under the ROC curve; F1 = F1 score; 
PPV = positive predictive value; NPV = negative predictive value; SEN = sensitivity; SPE = specificity.
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ExECG-CAG studies were not as high as those observed in other AI 
implementations for ECG analyses, such as those for arrhythmia and 
systolic dysfunction (Attia et al., 2019; Adedinsewo et al., 2020). The 
selection bias inherent in ExECG-CAG studies might account for this 
discrepancy. Specifically, patients selected for CAG typically showed a 
higher probability of having obstructive CAD, a selection criterion that 
usually excludes healthy individuals. Consequently, this predisposition 
influenced the severity spectrum used during model training, 
culminating in acceptable but not outstanding AUC values.

Healthy individuals are commonly included into the training sets to 
enhance the generalization capability of AI models, facilitating its 
broader applicability across patients at various risks (Huang et al., 2022). 
Thus, we  included individuals with normal ExECG interpreted by 
cardiologists and those exhibiting insignificant coronary artery stenosis 
determined by CCTA into the training sets (groups II–V) (Table 3). The 
performance metrics for each group (groups II–V) significantly 
improved, with AUC, sensitivity, and specificity of 0.79–0.88, 0.82–0.89, 
and 0.52–0.75, respectively. Although accuracy and AUC were the 
highest when the model underwent both training and testing on group 
II, PPV and F1 score significantly decreased, with increased specificity. 
This observation suggests a propensity for the model, when trained with 
data from group II, to exhibit a bias towards classifying subjects as 
normal. This alteration may be attributed to data imbalance, considering 
that the sample size of subgroup T disproportionately exceeded that of 
subgroup A (Huang et al., 2023). Furthermore, the possibility of silent 
ischemia in subgroup T could not be  entirely ruled out, potentially 
contributing to a reduction in both PPV and F1 score. Conversely, the 
outcomes of the model trained and tested on group III including patients 
at low risk (H) also showed excellent discrimination, supported by an 
AUC, sensitivity, and specificity of 0.83, 0.89, and 0.60, respectively, 
which was achieved without compromising the PPV and F1 score. 
Considering that coronary artery disease is treatable yet often presents 
acutely and can lead to severe complications, we prioritized designing an 
algorithm with greater sensitivity and accuracy to assist in the early 
identification of potential cases. The performance of the model when 
using group IV or V did not surpass that noted in group III. This 
observation may be due to the patients undergoing CCTA (included 
within groups IV or V) are generally older and possess higher 
cardiovascular disease risk factors, aligning more closely with the 
characteristics of subgroup A instead of subgroup H (Table 1). These 
demographic and clinical characteristics may potentially lead to model 
misinterpretation. Similarly, although the performance of the model 
using only metadata was comparable to that of the model integrating 
ECG signals and metadata (Table 4), we prioritized higher sensitivity, 
which led to our selection of the model combining ECG signals 
and metadata.

The ECG images presented in PDF or JPEG formats in previous 
studies underwent processing by the equipment and limited the display 
of each lead to 2.5 s. In contrast, we used original ECG signals directly 
generated by the equipment, extending the duration for each lead to 10 s, 
which enhanced the model’s access to comprehensive ECG data. By 

combining CNNs and LSTMs into a CRNN architecture, our model 
provides the benefit of both spatial feature extraction and temporal 
sequence modeling, allowing our model to understand the complex 
structure of ECG data, recognizing the immediate patterns in the signals 
and how these patterns change over time (Verma and Agarwal, 2018; 
Zhang et  al., 2020; Zihlmann et  al., 2017). In our investigation, the 
analysis of three ECG signal slices with 12 specific features during the 
pretest, peak heart rate, and recovery phase yielded optimal performance 
metrics. However, the additional ECG slices or features did not enhance 
predictive outcomes. The principal predictive variables were sex, 
maximum heart rate, and ST/HR index (Figure 5), offering valuable 
insights into the weighting of features to identify significant CAD 
(Lehtinen, 1999; Christman et al., 2014; Ahmed et al., 2015; Marzlin and 
Webner, 2019; Schultz et al., 2017; Ghaffari et al., 2017; Mieres et al., 
2014; Snader et al., 1997). Moreover, our model can generate results 
within 1 min after completing ExECG. Future research should aim to 
enhance specificity by integrating clinical and imaging data, optimizing 
the AI algorithm, applying differential weighting during training, 
incorporating additional physiological features from the ExECG report, 
exploring the impact and significance of metadata, and expanding 
training datasets to include larger and more diverse populations 
(Benkarim et al., 2022; McKinney et al., 2020; Sato et al., 2022; Marwick 
et al., 1995; Gencbay et al., 1999; Siegler et al., 2011).

Limitations

Our study has limitations. First, the patient cohort was recruited 
from a single institution; notwithstanding, external validation was 
conducted at Asia University Hospital, revealing minimal variance in 
performance outcomes across the two facilities. Second, angiographic 
analyses were conducted by interventional cardiologists engaged in 
routine clinical practice rather than by a dedicated core laboratory, which 
may introduce a degree of subjective bias in interpretation. Despite these, 
significant stenosis was accurately identified consistently. Third, not all 
participants underwent angiography or CCTA; however, the likelihood 
of erroneously classifying patients with significant CAD as normal was 
reduced by preferentially selecting individuals at low risk for 
CAD. Additionally, our study focused on epicardial stenosis and did not 
assess coronary microvascular dysfunction. In some patients with 
diabetes or hypertension, coronary artery disease may arise from 
microvascular dysfunction rather than macrovascular stenosis (Vrints 
et al., 2024; O'Neal et al., 2017; Angeja et al., 2002; Okin et al., 2004). 
Using CAG-detected epicardial stenosis as the gold standard for 
evaluating functional tests like ExECG may not fully reflect the 
underlying pathophysiology and could negatively affect AI performance. 
Finally, low PPV and specificity might increase the incidence of 
unnecessary CAG. This limitation is primarily attributable to the 
selection bias inherent in ExECG-CAG studies. Moreover, our primary 
objective is to assist physicians in efficiently screening patients following 
ExECG, rather than acting as the sole determinant for advanced invasive 

TABLE 4 Comparison of model performance using ECG signals and metadata versus metadata alone.

Patients Model ACC AUC F1 PPV NPV SEN SPE

Gr CAG, N: A ECG+ metadata 0.65 0.74 0.70 0.59 0.79 0.86 0.47

Only metadata 0.66 0.72 0.67 0.61 0.72 0.73 0.59
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TABLE 5 The comparison with the existing literature.

Study Cohort and definition of CAD Input Model Output ACC AUC SEN SPE

Babaoglu et al. (2009) Training and test cohorts

330 patients with ExECG and CAG within one month

Definition of CAD

Narrowing ≥50% in LM, or narrowing ≥70% in the other major coronary 

arteries

27 features from the ExECG data ANN LM 0.91 - 0.25 0.97

LAD 0.73 - 0.75 0.70

LCX 0.65 - 0.50 0.75

RCA 0.69 - 0.50 0.80

Babaoğlu et al. (2010) Training and test cohorts

480 patients with ExECG and CAG within a month

Definition of CAD

Narrowing ≥50% in LM, or narrowing ≥70% in the other major coronary 

arteries

18 features from the ExECG data using the 

PCA method

SVM CAD 0.79 - - -

Lee et al. (2022) Training and test cohorts

2,325 patients with ExECG and CAG within a year

Definition of CAD narrowing ≥70% in LAD, LCX, RCA, or their main 

branches, or narrowing ≥50% in LM

30 features from the ExECG data RF CAD 0.57 0.73 0.85 0.43

30 features from the ExECG data and 7 

clinical features

CAD 0.59 0.74 0.85 0.45

Yilmaz et al. (2023) Training and test cohorts

294 patients with ExECG and CAG in the same month.

Definition of CAD narrowing ≥70% in LAD, LCX, RCA, or LM

23 extracted features from ExECG signal in 

JPEG format

XGBoost CAD 0.81 0.78 0.67 0.85

Our study Training and test cohorts

842 patients with ExECG and CAG within 6 months

Definition of CAD

Narrowing ≥50% in LM, or narrowing ≥70% in the other major coronary 

arteries

ExECG signals in XML format and 12 

features

CRNN CAD 0.65 0.74 0.86 0.47

CAD = coronary artery disease; ACC = accuracy; AUC = area under the ROC curve; SEN = sensitivity; SPE = specificity; ExECG = exercise electrocardiography; CAG = coronary angiography; LAD = left anterior descending artery; LCX = left circumflex artery; 
RCA = right coronary artery; LM = left main segment; XGBoost = eXtreme Gradient Boosting; RF = Random Forest; SVM = Support Vector Machine; ANN = Artificial Neural Network; CRNN = Convolutional Recurrent Neural Networks.
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testing. Therefore, when AI-generated findings raise clinical uncertainty, 
additional imaging modalities should be considered. Further research 
aimed at improving specificity is warranted.

Conclusion

Our AI-based algorithm has shown promise in identifying patients 
with significant CAD using ExECG data. Integrating a multimodal 
approach that combines ECG signals with additional features enhances 
both predictive performance and efficiency. Further large-scale studies 
and algorithm refinements are needed to improve specificity and validate 
clinical utility across diverse patient populations.

Summary

This study aimed to develop an artificial intelligence (AI)-based 
method to enhance the efficiency and accuracy of exercise stress 
electrocardiography (ExECG) in detecting significant coronary artery 
disease (CAD). We retrospectively analyzed 818 patients who underwent 
both ExECG and coronary angiography (CAG) within 6 months. 
We used a Convolutional Recurrent Neural Network algorithm, which 
integrated electrocardiographic (ECG) signals and ExECG report 
features to predict significant CAD. The algorithm achieved an area 
under the curve (AUC) of 0.74, sensitivity of 0.86, and specificity of 0.47. 
With the inclusion of 197 low-risk patients, AUC, sensitivity, and 
specificity improved to 0.83, 0.89, and 0.60, respectively. Optimal 
performance was achieved with three ECG signal slices and 12 features, 
including sex, maximum heart rate, and ST/HR index as principal 
predictive variables. The AI model generated results within 1 min after 
completing ExECG, suggesting its potential to identify significant CAD 
efficiently and accurately in both symptomatic and asymptomatic 
patients, thereby enhancing clinical screening.
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