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Maize, a globally essential staple crop, su�ers significant yield losses due to

diseases. Traditional diagnostic methods are often ine�cient and subjective,

posing challenges for timely and accurate pest management. This study

introduces MoSViT, an innovative classification model leveraging advanced

machine learning and computer vision technologies. Built on the MobileViT

V2 framework, MoSViT integrates the CLA focus mechanism, DRB module,

MoSViT Block, and the LeakyRelu6 activation function to enhance feature

extraction accuracy while reducing computational complexity. Trained on

a dataset of 3,850 images encompassing Blight, Common Rust, Gray Leaf

Spot, and Healthy conditions, MoSViT achieves exceptional performance, with

classification accuracy, Precision, Recall, and F1 Score of 98.75%, 98.73%,

98.72%, and 98.72%, respectively. These results surpass leading models such

as Swin Transformer V2, DenseNet121, and E�cientNet V2 in both accuracy

and parameter e�ciency. Additionally, the model’s interpretability is enhanced

through heatmap analysis, providing insights into its decision-making process.

Testing on small sample datasets further demonstrates MoSViT’s generalization

capability and potential for small-sample detection scenarios.

KEYWORDS

precision attention, maize disease detection, deep learning, MobileViT V2, parallel

attention mechanism, few-shot object detection

1 Introduction

Food grains constitute an indispensable food source for the burgeoning population in

numerous countries (Joseph et al., 2024). Maize is among the world’s leading crops (Xu

et al., 2023), serving as a vital food source for humanity and being extensively utilized in

feed and industrial raw materials (Ji et al., 2024). Its output and quality significantly affect

global food security and economic development. Nevertheless, during the growth of maize,

pests, and diseases represent the principal threats influencing its yield and quality, which

may engender substantial economic losses (Lin et al., 2023). Maize leaf diseases such as

maize leaf spot, rust, and dry blight can notably reduce crop yield. The annual loss of maize

due to diseases is 6%−10% (Li et al., 2020). Consequently, for farmers lacking professional

knowledge (Hao et al., 2020), timely and precise detection and diagnosis of maize leaf

diseases is the key to ensuring the healthy growth of crops and evading economic losses

for farmers.
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Traditionally, the diagnosis of maize leaf diseases has relied

on the experience of agricultural experts and visual observation.

However, this manual recognition approach has several limitations,

such as being time-consuming (Fan et al., 2022), having low

efficiency, and being highly subjective (Ahmad et al., 2023). In

large-scale farmland settings, expert identification is difficult to

implement widely, leading to delays in disease detection and

control and increasing crop losses. The continuous evolution

of machine vision technology has driven the development of

artificial intelligence in agriculture (Li et al., 2023). In recent

years, with the rapid advancement of machine learning (Zhang

et al., 2018), many researchers have begun to use machine learning

methods and computer vision technology for the identification

of agricultural diseases and pests (Yuan et al., 2022). Amri et al.

(2024) proposed a new deep learning model, MIV-PlantNet,

which combines MobileNet, Inception, and VGG architectures

to classify diverse plant species in Saudi Arabia. The model

achieved 99% accuracy, 96% accuracy, and 98% F1 score, as

experimentally proven. Seelwal et al. (2024) systematically reviewed

the literature on rice disease recognition from 2008 to 2023,

emphasizing the importance of precision-based recognition and

advocating hybrid approaches that combine deep learning with

machine learning to improve disease recognition efficiency and

address agricultural challenges. Gulzar et al. (2023) compared the

performance of five deep-learning models in sunflower disease

classification and found that EfficientNetB3 performed the best,

with an accuracy of 0.979. This indicates that deep learning has

significant potential in the early detection and classification of

sunflower diseases. Several scholars have conducted studies on

the detection of agricultural diseases and pests. Li et al. (2024)

improved the ConvNeXt network to detect pepper leaf diseases;

Attallah (2023), Kanda et al. (2022), and Shoaib et al. (2022)

optimized the classification of tomato leaf diseases using neural

networks; Saberi Anari and Kumar (2022), He et al. (2024), and

Umamageswari et al. (2023) attempted to detect and categorize

various plant leaf diseases, verifying the model’s generalizability;

Wang et al. (2024) combined a mask autoencoder (MAE) and a

Convolutional Block Attention Module (CBAM) to detect 21 leaf

diseases and discussed the application of self-supervised learning

(SSL) in plant disease recognition. Gulzar (2024) significantly

improved the soybean seed classification model by adding five

layers to the InceptionV3 architecture and applying techniques

such as transfer learning, adaptive learning rate adjustment,

and model check pointing. The final model achieved 98.73%

accuracy, demonstrating the potential of crop health assessment

and management in agricultural technology. These experiments all

demonstrate that deep learning technology holds great potential in

agricultural pest detection.

Recent studies have also focused on the classification of

maize leaf diseases using deep learning techniques. Alkanan and

Gulzar (2024) used artificial intelligence technology to identify

and classify maize diseases. By improving the MobileNetV2

model and adding an outer layer, combined with various

optimization techniques, they achieved a classification accuracy

of about 96%, performing well compared to advanced models.

Haque et al. (2022b) trained the Inception v3 model with

maize leaf disease images collected by their team, achieving an

average recall rate of 95.96%, although the model’s accuracy

was unsatisfactory. Qian et al. (2022) improved the attention

mechanism, resulting in an average recall rate of 98%. Amin

et al. (2022) proposed a composite model scaling technique,

designing a fusion of coefficients from two models to enhance

detection accuracy, achieving a final detection accuracy of 98.56%.

Li et al. (2022) designed a filter layer to preprocess images,

reducing noise interference and replacing the activation function

to minimize overfitting, reaching an average accuracy of 97.96%.

Pan et al. (2022) combined the softmax loss function with the

GoogleNet model to detect northern maize leaf blight, achieving

an impressive detection accuracy of 99.94%. However, these

studies have certain limitations. Although detection accuracy

has steadily improved, the large size of the models makes

them impractical for real-time detection in resource-limited

environments. Acknowledging this issue, researchers have started

to focus on creating smaller, faster models. Haque et al. (2022a)

introduced modified Inception modules to develop a lightweight

network model for detecting maize leaf blight, offering a single

detection target but providing ideas for further improvements.

Fan and Guan (2023) designed a maize disease recognition

system based on a pre-trained VGG16 model, applying transfer

learning to improve performance. The lightweight VGNet model

occupied only 79.5MB and took 75.21 seconds to test 230

images, demonstrating a good recall rate with sufficient data.

Bi et al. (2023) improved MobileNetV3 by adding bias loss

functions and an ECA attention mechanism, ensuring better

performance while maintaining a small model size. Zhou et al.

(2024) chose the compact ShuffleNetV2 model as a base for

improvements, replacing deep convolution layers with a max-

pooling layer for downsampling, extracting key features, and

reducing overfitting. This resulted in an accuracy of 98.40%

with a model size of just 1.56MB, offering a novel approach

for model enhancement. However, reducing model size often

compromises detection accuracy, and real-world environments

with significant noise and complexity (Masood et al., 2023;

Craze et al., 2022; Ma et al., 2022) make traditional deep-

learning models less effective. To address this, Zeng et al.

(2022) adjusted their model by incorporating a joint focal loss

function to tackle data issues, achieving an average recognition

accuracy of 92.9%, which was still unsatisfactory. Cai et al.

(2023) used EfficientNet, integrating an adaptive fusion module

to merge image information at different scales and designing a

coordinate attention module based on full convolution to reduce

background interference. With 3.44 million model parameters

and 339.74 million FLOPs, the recognition accuracy remained

promising. Chen et al. (2022) developed the DFCANet model,

incorporating a dual feature fusion module and a coordinate

attention-based downsampling module to reduce information loss

by expanding feature channels and using deep convolution, aiming

to mitigate noise interference with a more structured model

design. Albahli andMasood (2022) designed the Efficient Attention

Network (EANet) to identify multiple maize diseases, introducing

a spatial channel attention mechanism. They trained the EANet

model using focal loss to address class imbalance issues and

applied transfer learning to enhance generalization, achieving an

overall experimental accuracy of 99.89%. Nevertheless, current
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FIGURE 1

(A) Non-conforming maize leaf image. (B) Maize leaf image. A: Blight; B: Common Rust; C: Gray Leaf Spot; D: Healthy.

model improvements generally lack a scientifically explainable

foundation, which may result in a disconnect between the methods

and their objectives, limiting future development. It seems that after

introducing new components, researchers are attempting to mix

new “spices” with old “recipes.” While the results may improve,

how the changes in “flavor” align with the desired outcomes

remains unclear.

Therefore, this paper makes the following

main contributions:

1. It proposes a new perspective for classification models: the

model should prioritize precise feature extraction rather than

comprehensively focusing on all features. Traditional models

often have broad coverage, frequently capturing irrelevant

features or leading to misjudgments. By concentrating on key

features, the model can maintain high classification accuracy

while improving learning efficiency.

2. Significant improvements have been made to the MobileViT

V2 framework, introducing a new attention mechanism, two

additional modules, and a new activation function to support

the proposed point attention theory.

3. The model achieves an average accuracy of 98.75% and a peak

accuracy of 99.19%. It also performs well on datasets with

smaller sample sizes.

2 Data and methods

2.1 Data set construction

In this study, we used a carefully constructed maize leaf image

dataset from the PlantVillage and PlantDoc datasets (Singh et al.,

2019; Kusumo et al., 2018). These datasets are widely recognized

as an important public resource in the field of plant pathology,

providing a robust and reliable repository for our research.

However, in each category of the source data set, there are some

images whose detection targets are not clear or whose resolution

reaches the threshold, as shown in Figure 1A. After checking the

data set and removing images that did not meet the detection

criteria, we successfully reconstructed a dataset containing four

major categories of rusty leaves, gray mottled leaves, withered

leaves, and healthy leaves (Yang et al., 2024). A visual representation

of each category is shown in Figure 1B.

2.2 Data balancing

The number of maize leaves in the Gray_Leaf_Spot category

is significantly smaller compared to other categories, which
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FIGURE 2

Image balancing process image, where (A) original image; (B) Salt and pepper noise; (C) random brightness; (D) Random Angle rotation; (E) Gaussian

blur; (F) 180◦ rotation.

could negatively impact the accuracy and stability of the model’s

classification (Yang et al., 2024; Ayoub et al., 2023). To address the

issue of class imbalance and enhance the model’s generalization

capability, we implemented a series of data augmentation

techniques to balance the dataset. These techniques not only

increase the volume of data but also simulate various real-

world image variations, thereby improving the model’s robustness.

Specifically, we applied the following processing methods to each

image: random brightness adjustment, Gaussian noise addition,

salt-and-pepper noise introduction, random angle rotation, and

image flipping. A processed example is shown in Figure 2. By

employing these data augmentation techniques, we not only

balanced the sample sizes across different categories but also

significantly expanded the size and diversity of the training set,

as demonstrated in Table 1 before and after data balancing. This

approach effectively reduces the risk of model overfitting and

enhances themodel’s adaptability to a range of real-world scenarios.

2.3 MobileViT V2 network model

In this study, we have made enhancements based on the

MobileViT V2 model (Mehta and Rastegari, 2022). MobileViT V2

is a highly efficient vision transformer model designed to deliver

exceptional performance and computational efficiency on mobile

TABLE 1 Quantity of samples before and after equilibrium.

Classes Original quantity Balance quantity

Blight 983 5,898

Common_Rust 1,192 7,152

Gray_Leaf_Spot 513 3,087

Healthy 1,162 6,972

devices. The model integrates the strengths of convolutional neural

networks and vision transformers, effectively extracting both local,

and global features through its flexible module design. MobileViT

V2 excels in classification tasks, providing highly accurate results

while maintaining low computational overhead. Its architecture

features innovative convolution and transformer modules that can

handle complex visual tasks while optimizing computation and

memory usage across various devices. The structure diagram of

MobileViT V2, shown in Figure 3, illustrates the configuration and

interconnection of its modules.

2.4 Backbone network

The CLA-MoSVIT model proposed in this paper is employed

for the identification of maize leaf diseases and is constituted by the
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FIGURE 3

MobileViT V2 network structure diagram, MV2: MobileNet V2 block.

FIGURE 4

CLA-MoSViT backbone network structure.

DRB Block, MoSViT Block, Transformer Block, and CLA attention

mechanism. During model training, the DRB Block, functioning

as a CNN module, is utilized to downsample the input images

and initially extract their features. Meanwhile, the MoSViT Block

encompasses multiple CNN and Transformer modules for the

profound extraction of the input image features. The DRB Block

comprises two 1 × 1 convolutional kernels and two DW 3 ×

3 convolutional kernels, which mainly handle the input image

to reduce its size and extract features through successive 3 × 3

convolutional kernels. On one hand, the MoSViT Block initially

extracts features through consecutive DW 3 × 3 convolutional

kernels and then transmits the output to both the 1 × 1

convolutional kernel and the Transformer block simultaneously.

The output of the Transformer block is used as the input to

the 1 × 1 convolutional kernel to adjust its shape. On the other

hand, the initial input is transferred to the depth-separable residual

block for feature extraction. Ultimately, the addition of the outputs

from the three parts is regarded as the final output. The MoSViT
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TABLE 2 Structure of CLA-MoSViT model.

Layer Output size Out stride Repeat

Input 256× 256 1 -

Conv-3× 3, ↓2
DRB

128× 128 2 1
1

DRB, ↓2
DRB

64× 64 3 1
2

DRB, ↓2
MoSViT Block

32× 32 8 1
2

DRB, ↓2
MoSViT Block

16× 16 16 1
2

DRB, ↓2
MoSViT Block
Conv-1× 1

8× 8 32 1
1 1

Global average pooling 1× 1 256 1

Figure 6 shows the DRB module, and Figure 9B shows the structure of the MoSViT Block.

Block achieves efficient feature extraction by combining CNN,

Transformer, and dense connection approaches, thereby obtaining

higher detection accuracy. Its structure is depicted in Figure 4 and

Table 2.

2.5 CLA attention mechanism

Contemporary feature extraction models aim to achieve

broader coverage of feature spaces. However, this expanded

capture scope inevitably leads to increased probability of

irrelevant feature inclusion andmore complex model architectures,

which consequently compromise the requirements for accurate

recognition and rapid response in complex environments.

Therefore, we contend that precise feature identification and

classification are paramount for classification models. Based on

this theoretical framework, we have developed the CLA (Channel-

Location Adaptive) attention mechanism, which enhances focus

while maintaining global information capture. The architectural

configuration of this attention mechanism is illustrated in

Figure 5.

2.5.1 Channel attention module
The core concept of the CLA mechanism lies in aggregating

features along horizontal and vertical directions to generate

position-sensitive attention maps. Specifically, it employs two

adaptive average pooling operations to compress the feature

map along the height and width dimensions respectively,

capturing global contextual information in horizontal and vertical

orientations. The compressed features undergo convolution and

non-linear activation operations to generate channel-level attention

weights. These weights are then applied to the original feature map

to achieve spatially sensitive feature enhancement. This design

enables the model to precisely identify and emphasize the most

discriminative regions in images rather than uniformly attending

to the entire image. By accurately localizing and enhancing

critical spatial features, the CLA mechanism significantly

improves the model’s ability to capture essential information

while reducing interference from irrelevant features, thereby

enhancing classification accuracy and model robustness. The

module weight calculation formula is shown in Equation 1.

A_h = Sigmoid(Convlxl(Z_h))

A_w = Sigmoid(Convlxl(Z_w)) (1)

In the formula, Z_h and Z_w are the feature representations

obtained by convolution and activation of the pooled feature graph,

and A_h and A_w are the spatial attention weights calculated in

the height and width directions, representing the importance of

each position in the height and width directions respectively. The

application formula of feature weighting is shown in Equation 2.

Output = X ∗ Expand(A_h) ∗ Expand(A_w) (2)

Where Expand(A_h) and Expand(A_w) are to expand the

attention weight to the same spatial size as the input feature plot

for pixel-by-pixel multiplication.

In this way, the model can highlight important spatial locations

while suppressing irrelevant areas, allowing the model to focus on

capturing the right key features.

2.5.2 Self-attention module
The self-attention module is designed to efficiently capture

intrinsic relationships between features. Through 1 × 1

convolution operations, it generates corresponding query,

key, and value vectors. This method enables independent

evaluation of feature importance distribution at each spatial

position, with attention scores reflecting the relative importance

of different spatial locations calculated using the softmax function.

By multiplying these attention scores with the value vectors

and performing weighted summation, the model can focus on

the most relevant feature information. Finally, another 1 × 1

convolution operation maps the enhanced features back to the

original feature space. The design philosophy of this module aligns

closely with the core thesis of this paper, effectively identifying and

enhancing the most discriminative local features while maintaining

computational efficiency. This lightweight design allows the model

to process information rapidly, concentrating computational

resources on critical feature regions essential for classification

tasks rather than wasting them on potentially irrelevant areas.

The context vector calculation formula is presented in Equation 3.

Context_vector = Sum(K ∗ Attention_scores, dim = −1,

keepdim = true) (3)

In the formula, K represents the key vector, and

Attention_scores are the attention scores. The operation Sum

(K ∗ Attention_scores, dim = −1, keepdim = True) calculates the

context vector by weighting and averaging the key vectors, thereby

obtaining a weighted feature representation. This computation

enables the model to concentrate on the most pertinent features

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1498025
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Chen et al. 10.3389/frai.2025.1498025

FIGURE 5

CLA attention mechanism structure, oup: abbreviation of output channels, refers to the convolutional layer or the number of characteristic channels

output of attention mechanism; Multiply means a multiplication operation at the element level; The Expand operation is used to expand the tensor

repeatedly in some dimensions; Context Scores are obtained through softmax operation on query; Context Vector is obtained by weighted summing

Context Scores with key. It captures global context information for input features.

via attention mechanisms while taking into account global

information. The design effectively balances wider feature capture

with precision.

2.5.3 Union module
The joint attention module adopts a dual-branch parallel

architecture: the channel attention branch specializes in precise

spatial feature localization, while the self-attention branch focuses

on modeling interrelationships between local features. This

design demonstrates our paper’s core thesis that the integration

of parallel complementary attention mechanisms with residual

structures enables comprehensive and accurate feature extraction.

Notably, the module’s dynamic weight allocation mechanism

allows automatic adjustment of attention strategies based on input

characteristics—enhancing the channel attention branch for critical

region localization while prioritizing the self-attention branch

when analyzing complex feature relationships. This adaptive

capability not only improves the model’s discriminative feature

capture capacity but also effectively reduces misclassification risks

by suppressing interference from irrelevant information. The

mathematical formulation of the weight generation process is

detailed in Equation 4.

Weights = Normalize(Convlxl(Y_combined)) (4)

In the formula, Normalize (Weights, p = 1, dim = 1) the

weights are normalized L1 to make their sum equal to 1, ensuring

that the weighting operation is balanced.

The final output is shown in Equation 5.

Output = Weights[:, 0 : 1, :, :] ∗ Y_coord +Weights[:, 1 : 2, :, :]

∗Y_linear (5)

Where Weights[:, 0:1,:,:] and Weights[:, 1:2,:,:] are the

coefficients for weighting the feature graph.

This dynamic weighting mechanism allows the model to

adaptively adjust the importance of different attention mechanisms

based on inputs. Enhance the model’s ability to reduce error

features and environmental impacts.

2.6 DRB module

In this study, we have made structural enhancements

to the inverted bottleneck module in MobileViT V2 to

improve both feature extraction capabilities and overall

model performance. The modified DRB module structure is

illustrated in Figure 6. The original inverted bottleneck module

in the MobileViT V2 model employs a specific sequence of

convolutional layers. We have redesigned this structure by
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FIGURE 6

DRB module structure.

FIGURE 7

Information collection process of the DRB module.

introducing additional convolution operations and incorporating

residual connections.

Our improvements focus on enhancing the model’s ability

to capture local features and mitigating the gradient vanishing

problem in deep networks, thereby facilitating more effective

model training. Specifically, we have added a depthwise separable

convolution layer to enhance the model’s local feature extraction.

Additionally, we have included a residual connection that directly

adds the input to the module’s output. This modification

not only boosts the model’s feature expression capability but

also helps preserve and utilize the original input information,

potentially enhancing the quality of feature representation.

To prevent overfitting in the DRB module, we have used

LeakyReLU6 as the activation function. This choice helps maintain

a balance between non-linearity and computational efficiency.

The module’s information collection process is depicted in

Figure 7.

2.7 Activation function

We have improved the activation function, and in the original

model, the activation function is replaced by the H-Swish function,

which is an approximate version of the Swish function that is

more computationally efficient. The mathematical expression for

H-Swish is shown in Equation 6.

h− swish(x) = x
ReLU6(x+ 3)

6
(6)

ReLU6 is a variant of the ReLU function that limits its output

value to a maximum of 6.

There are several key reasons for opting for the H-Swish

function. First, H-Swish generally outperforms traditional ReLU

and ReLU6 functions in many tasks, particularly in deeper

networks. It offers the advantage of non-linear activation while
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FIGURE 8

Function image of LeakyReLU6.

also maintaining a robust gradient flow. Second, although H-

Swish is more complex than the simple ReLU, it is more efficient

than the original Swish function, making it especially well-suited

for mobile-friendly models. The smoothness of the H-Swish

function aids in the optimization process, potentially leading to

better convergence. Thus, H-Swish strikes a favorable balance

between model performance and efficiency when deployed on

mobile devices.

Additionally, we have introduced a novel activation function,

LeakyReLU6, in the DRB module. The calculation formula for

LeakyReLU6 is provided in Equation 7.

LeakyReLU6(x) = min(max(ax, x), 6) (7)

Where x is the input value and 6 is the upper bound of the

activation function. The function image for LeakyReLU6 is shown

in Figure 8.

By limiting the maximum range of activation values,

LeakyReLU6 can effectively avoid excessive activation values in

low-precision computing environments. This helps reduce the

inaccuracy of numerical representation and improve the stability

of calculations. At the same time, it retains the advantage of

LeakyReLU, which allows negative values to pass, thus alleviating

the gradient disappearance problem and mitigating the “dying

ReLU” issue to some extent. The introduction of a maximum

limit in LeakyReLU6 also effectively reduces the risk of overfitting

the model by preventing it from over-relying on certain features

during training.

2.8 MoSViT block

The MoSViT Block is a crucial component of the model,

undergoing numerous enhancements based on the MobileViT

Block module. Figure 9A illustrates the structure of the original

MobileViT Block module, while Figure 9B showcases the refined

MoSViT Block module.

In the improved module, the input initially splits into two

parallel processing streams. The first stream starts with two

consecutive 3× 3 depthwise convolution (DW) layers, designed to

extract spatial features while maintaining computational efficiency.

Afterward, the processing splits into two sub-streams: one sub-

stream focuses on channel fusion and dimensionality reduction

through a 1 × 1 convolution, while the other introduces a Linear

Transformer block. The output from the Transformer is then

directed into a 1 × 1 convolution to reshape the features and align

them with the primary stream.

Simultaneously, the module’s second primary processing

stream directly feeds the raw input into the DC module. This

DC module consists of multiple depthwise separable convolutional

layers, where the input to each layer is a concatenation of the

outputs from all preceding layers. Finally, the outputs from these

three distinct processing streams—the 1 × 1 convolution, the

DC module, and the Transformer path—are integrated through

an element-wise addition operation to produce the module’s

final output.

3 Experiment and result analysis

3.1 Experimental environment

In this study, we conducted a series of experiments to compare

classification models using the PyTorch deep learning framework

on a Windows operating system. The image input size was set to

224 × 224. Since the model was observed to converge within 100

epochs, we set the number of epochs to 100. The specific parameters

of the experimental setup are detailed in Table 3.
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FIGURE 9

(A) Structure of the MobileViT Block module. (B) MoSViT Block module structure, DC module: dense link depth separable convolutional module.

TABLE 3 Experimental parameters.

Accessories Parameter

CPU 12th Gen Intel(R) Core(TM) i7-12700
2.10 GHz

Random access memory (RAM) 16.0 GB

Vm(G) 12

Language Python3.9.12

DF Pytorch1.13.1

CUDA 11.6

Epoch 100

Vm, Video memory; Df, Development framework.

The learning rate, a crucial factor in the training process, was

tested at values of 0.001, 0.0001, and 0.00001. A learning rate that is

too high may prevent the model from converging, while one that

is too low can significantly slow down the training process. We

also experimented with batch sizes of 8, 16, and 32 to determine

the optimal setting. Different combinations of learning rates and

batch sizes can lead to changes in detection accuracy. The results

are presented in Table 4.

3.2 Evaluation index

In this experiment, several key metrics were used to evaluate

model performance. Accuracy measures the proportion of samples

predicted correctly by the model out of all samples and is the most

intuitive performance indicator. Precision refers to the proportion

of samples predicted by the model to be positive that are positive,

which is particularly important for dealing with imbalanced

datasets. The recall represents the proportion of actual positive

samples that the model successfully predicts, reflecting the model’s

ability to capture positive samples. The F1-Score is the harmonic
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TABLE 4 Classification model performance based on learning rate and

batch size.

Learning rate Batch size Converged
epoch

Accuracy

0.001 8 20 95.89%

0.0001 8 20 94.34%

0.00001 8 20 94.77%

0.001 16 20 96.59%

0.0001 16 30 96.55%

0.00001 16 20 97.60%

0.001 32 20 98.06%

0.0001 32 20 98.47%

0.00001 32 20 98.75%

TABLE 5 Calculation formula of evaluation index.

Index Formula Significance

Accuracy Accuracy = TP+TN
TP+TN+FP+FN

Correctly estimate the
number as a percentage
of the total.

Precision Precision =
Tpi

Tpi+FPi
The probability that all
samples predicted by the
model to be positive
examples are positive
examples

Recall Recall =
Tpi

Tpi+FNi
The probability that the
model predicts correctly
in all positive cases

F1-Score F1 = 2× Recall×Precision
Recall+Precision

F1 score takes into
account both recall and
accuracy

Number of parameters - Measure the complexity
of the model

TN (True Negative): the negative example is correctly judged as a negative example. TP (True

Positive): indicates that a positive example is correctly judged as a positive example. FN (False

Negative): indicates that a positive example is incorrectly judged as a negative example. FP

(False Positive): indicates that a negative example is incorrectly judged as a positive example.

mean of precision and recall, taking both metrics into account

and serving as an important indicator for evaluating the overall

performance of the model. Finally, the number of parameters in the

model directly affects its storage requirements and computational

complexity. Models with fewer parameters occupy less memory

and storage space and have faster computation speeds. This

is especially important in resource-constrained environments or

scenarios requiring efficient computations. The detailed process for

calculating these evaluation metrics is shown in Table 5.

3.3 Result analysis

3.3.1 Ablation experiment
To verify the effectiveness of the CLA attention mechanism,

DRB, and MoSViT Block modules in the CLA-MoSViT algorithm,

we conducted a series of ablation experiments. These experiments

aimed to evaluate the specific contributions of the CLA attention

mechanism and the dense linking modules to model performance.

We set up five sets of experiments: the baseline model used the

standard MobileViT V2, while the other four sets individually

incorporated the CLA attention mechanism, the DRB module,

the MoSViT Block module, and a combination of all three

modules, respectively.

As shown in Table 6, the experimental results indicate that

the accuracy of the original model is 95.33%. After integrating

the CLA attention mechanism, the accuracy increased to 95.80%.

Incorporating theDRBmodule alone raised the accuracy to 96.50%.

The MoSViT Block module, when used individually, improved

the accuracy to 97.20%. Finally, when all three modules (CLA,

DRB, and MoSViT Block) were combined, the accuracy increased

to 98.75%.

The accuracy improvement trend was consistent, rising from

95.33% in the original model to 98.75% with the combined

techniques. Recall also improved, increasing from 95.79% to

98.72%, demonstrating enhanced capability in identifying positive

samples. F1 scores followed a similar trend, improving from 95.72%

to 98.72%, indicating a better balance between precision and recall.

Overall, the combined use of the CLA attention mechanism,

DRB, and MoSViT Block significantly enhanced the model’s

accuracy, recall, and F1 scores, demonstrating that these

technologies effectively improved the model’s overall performance.

3.3.2 Comparison of di�erent
attention mechanisms

To verify the superiority of the CLA attention mechanism

proposed in this paper, we conducted systematic comparative

experiments. The primary goal was to compare the CLA attention

mechanism with other mainstream attention mechanisms to

evaluate its impact on model performance. In these experiments,

we replaced the attention mechanism in the base model with

EMA, CA, SE, ECA, CBAM, and the model’s original attention

module, respectively. We then compared the performance of these

replacements with that of the CLA attention mechanism.

To provide a comprehensive evaluation of each attention

mechanism’s effects, we plotted the accuracy curves. As shown in

Figure 10 and Table 7, the accuracy variations of each attention

mechanism at different training stages are clearly illustrated. The

results indicate that the CLA attention mechanism significantly

improves both accuracy and stability, outperforming other

attention modules by a substantial margin.

In summary, comparative experiments have shown that

the CLA attention mechanism has significant advantages in

improving model performance. These results not only validate

the effectiveness of the CLA mechanism in feature extraction and

information fusion but also provide new ideas and directions for

future model improvement.

3.3.3 Comparative test
To thoroughly evaluate the performance of our enhanced CLA-

MoSViT model, we designed a series of comparative experiments.

In these experiments, we compared CLA-MoSViT with several

prominent deep-learning models, including DenseNet121, Swin

Transformer V2, ResNet50, ConvNextV2, Inception-Next-T,
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TABLE 6 Results of the ablation experiment.

Evaluation index Originalmodel
(%)

Original model
+CLA
(%)

Original
model +DRB (%)

Original model
+MoSViT Block

(%)

Original model
+CLA+ DRB+

MoSViT Block (%)

Accuracy 95.33 96.24 96.03 97.28 98.75

Precision 95.80 96.21 96.08 97.29 98.73

Recall 95.79 96.24 96.04 97.26 98.72

F1 Score 95.72 96.11 96.05 97.28 98.72

FIGURE 10

Comparison of experimental accuracy curves of di�erent attention

mechanisms. The red curve is the CLA attention mechanism, and

the highest accuracy is 97.23%.

GhostNetV2, EfficientNet, MobileNetV2 (Gulzar et al., 2024), and

DeiT3. These models represent influential architectures in the field

of image recognition, making them ideal for establishing a clear

and comprehensive performance benchmark.

In the comparative experiments, we used the same dataset and

ensured consistency in the experimental environment to maintain

the comparability of results. We evaluated each model based on

loss function, accuracy, number of parameters, model size, and

other relevant metrics. The experimental results are presented in

Supplementary Figures S3– S6 and Table 8.

During the experiment, the CLA-MoSViT model was trained

and evaluated meticulously. The outcomes reveal that the model

starts to converge after 20 training rounds, and the final value

of the loss function stabilizes at approximately 0.001. In contrast,

the loss values of other models mostly stabilize at around

0.004. This finding not only demonstrates that the CLA-MoSViT

model can achieve an excellent convergence effect within a short

training cycle but also showcases its remarkable advantages in

training efficiency. Generally speaking, the CLA-MoSViT model

performs outstandingly, featuring high training efficiency and

superior performance.

Comparative data highlights that CLA-MoSViT excels across

key metrics, including average accuracy, precision, recall, F1

score, and parameter count. Notably, CLA-MoSViT achieves an

outstanding average accuracy of 98.75%, outperforming all other

models, which demonstrates its effectiveness in correctly classifying

instances in the dataset. Furthermore, with a precision score of

98.73%, CLA-MoSViT leads in ensuring that positive classifications

are highly likely to be correct. The recall score stands at 98.72%, also

the highest among the models, indicating its ability to accurately

identify a high proportion of actual positives. The F1 score of

98.72% underscores a balanced performance between precision

and recall.

Impressively, despite its superior performance, CLA-MoSViT

boasts significantly fewer parameters−7,607,372—compared to

models like Swin Transformer V2, ConvNeXt V2, and DeiT3,

making it more efficient in terms of computational resources.

Excellent inference speed in high-precision models −0.5964s per

batch. These results further validate the effectiveness of our

improved strategy and indicate the potential superiority of the

CLA-MoSViT model in practical applications.

Through this series of comparative experiments, we not only

verify the performance of the CLA-MoSViT model but also

provide a valuable reference and comparison benchmark for

future research. We believe that with further optimization and

improvement, the CLA-MoSViT model will play a more significant

role in areas such as image recognition.

3.3.4 Thermal map comparison test
To further verify the superiority of the CLA-MoSViT algorithm,

we adopted the thermal map method to demonstrate the

advantages of the model in feature extraction and area of concern.

By comparing the heat maps of CLA-MoSViT and the baseline

model on different test images, we were able to visually observe

the accuracy and effectiveness of the model in identifying key areas.

The thermal map results are shown in Figure 11.

We can see the significant advantages of CLA-MoSViT in

focusing on important features and suppressing interference

factors, which are essential for detection in complex environments.

The model’s focus area is more precise and aligns closely with

our ideas. These results not only validate the effectiveness of the

improved algorithm but also further demonstrate the superior

performance of CLA-MoSViT in practical applications.

3.3.5 Confusion matrix experiment
To analyze the performance of our enhanced CLA-MoSViT

model in greater detail and to better understand its class

recognition capabilities, we conducted a confusion matrix
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TABLE 7 Comparative test evaluation index data of di�erent attention mechanisms.

Model Accuracy(%) Precision(%) Recall(%) F1 score(%) Parameter quantity

EMA 93.17 93.16 93.17 93.00 7,537,268

CA 95.03 95.09 95.03 94.94 3,679,408

CBAM 93.73 93.75 93.73 93.54 3,305,974

ECA 94.33 94.31 94.33 94.21 3,156,173

SE 95.79 95.32 95.33 95.27 1,306,948

Separable self-attention 95.33 95.80 95.79 95.72 4,399,245

CLA 96.24 96.21 96.24 96.11 4,399,245

TABLE 8 Comparative test evaluation index data of di�erent models.

Model Accuracy(%) Precision(%) Recall(%) F1 score(%) Parameter
quantity

Single batch inference
speed(s)

Densnet121 98.10 97.44 97.34 97.35 7,978,856 0.9947

Swin Transformer V2 98.44 98.13 97.98 97.92 28,333,468 2.4226

Resnet18 97.45 96.81 96.27 96.24 11,689,512 0.6498

ConvNeXt V2 97.41 96.71 96.25 96.45 27,866,496 1.0658

Inception_Next_T 95.94 94.74 94.43 94.48 28,055,680 1.0022

GhostNet V2 91.32 88.53 87.75 87.93 12,392,698 0.4297

EfficientNet V2 94.55 92.91 92.20 92.17 13,649,388 0.7578

MobileNet V2 84.48 79.61 78.86 78.28 1,968,680 0.2522

Deit3 98.14 97.58 97.25 97.31 22,059,496 0.6252

MobileViT V2 95.33 95.80 95.79 95.72 4,399,245 0.4691

CLA-MoSViT 98.75 98.73 98.72 98.72 7,607,372 0.5964

FIGURE 11

Heat maps of di�erent models.

experiment. Similar to the previous comparative tests, we included

DenseNet121, Swin Transformer V2, ResNet50, ConvNeXt V2,

Inception-Next-T, GhostNetV2, EfficientNet, MobileNetV2, and

DeiT3 as comparison models.

A confusion matrix is a valuable tool for visualizing

how a model’s true classifications compare with its predicted

classifications across different categories. It allows us to see which

categories the model excels in and where it may make errors
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FIGURE 12

Representative images of the rice dataset.

TABLE 9 Number of images in rice small sample dataset.

Type of disease Image
quantity

Training
set size

Test set size

Bacterial blight disease 50 40 10

Blast disease 50 40 10

Brown spot disease 50 40 10

False smut disease 50 40 10

or experience confusion. In this experiment, we recorded the

prediction results of each model on the test set in detail and

generated the corresponding confusion matrix graphs. The results

are illustrated in the figures.

By comparing the confusion matrices of each model, we

observed that the CLA-MoSViT model generally demonstrates

higher recognition accuracy across most categories and a

lower misjudgment rate. This further validates the effectiveness

of the CLA-MoSViT model in image recognition tasks. The

experimental results of the confusion matrix are shown in

Supplementary Figures S9, S10.

3.3.6 Test experiments with di�erent data sets
To further verify the generality of the CLA-MoSViT algorithm

and whether the model can efficiently capture key features with

a small number of samples, we conducted a test experiment with

different data sets. A dataset of rice diseases was used in this

experiment. The images of each species are shown in Figure 12,

and the number and species of images in the dataset are shown in

Table 9. Without any enhancement of the data, all models are tested

directly on the original data set, and the performance of eachmodel

is compared.

The comparison between the detection results and other

mainstream models is shown in Supplementary Figure S1 and

Table 10.

The experimental results showed that CLA-MoSViT achieved

excellent results on the small sample data set of rice diseases.

First of all, it shows that the CLA-MoSViT model has a strong

generalization and the model solves the problem of overfitting.

Secondly, the model still shows good performance when the

number of samples is very small, the image quality is not high and

some features are similar, which not only shows the superiority

of the model but also shows that our “attention theory” is correct

and verifiable.

To further validate the model’s performance on few-shot

learning tasks, we conducted experiments using the Omniglot

benchmark dataset (Lake et al., 2015). As a specialized image

dataset for few-shot character recognition, Omniglot contains

1,623 unique characters from 50 distinct writing systems,

each rendered by 20 different individuals. Figure 13 illustrates

representative handwriting samples of the Alphabet_of_the_Magi

script. This evaluation specifically examines the model’s

capability in cross-linguistic∗ few-shot classification scenarios.

Supplementary Figures S7, S8 show the test results.

The experimental results demonstrate that the model achieves

exceptional performance in both convergence speed and final

classification accuracy. These findings suggest that the proposed

architecture deserves further investigation in the field of few-

shot learning.

4 Conclusion

This study aims to improve the classification performance of

models in complex environments. By introducing the CLA

attention mechanism, DRB module, MoSViT Block, and

LeakyReLU6 activation function, we have significantly enhanced

the learning efficiency and accuracy of the model. The results of our

experiments demonstrate that the enhanced focus and accuracy

of the model significantly improve classification performance

in complex environments. The model effectively captures only

the most important features in an image, thereby increasing

learning efficiency.

Specifically, the CLA attention mechanism proposed in

this paper excels in gathering global information and focusing

attention. In the attention mechanism comparison experiments, it

achieves an accuracy rate of over 96%, which is notably higher than

other attention mechanisms. The DRB module and MoSViT Block

designed in this study substantially enhance model performance

with only a minimal increase in parameters. Ablation experiments

show that these components improve the average accuracy of the

original model by 0.7% and 1.95%, respectively.

The LeakyReLU6 activation function effectively prevents model

overfitting and improves computational stability, maintaining
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TABLE 10 Test evaluation index data of small sample datasets of di�erent models.

Model Accuracy(%) Precision(%) Recall(%) F1 score(%) Parameter quantity

Densnet121 78.08 78.26 74.66 75.12 7,978,856

Swin Transformer V2 60.43 56.80 61.02 57.76 28,333,468

Resnet18 48.83 37.18 42.66 38.60 11,689,512

ConvNeXt V2 78.30 75.16 74.51 74.17 27,866,496

Inception_Next_T 70.20 70.12 69.71 67.94 28,055,680

GhostNet V2 60.10 60.06 62.71 57.98 12,392,698

EfficientNet V2 55.48 54.91 57.00. 52.38 13,649,388

MobileNet V2 49.13 51.77 49.93 44.58 1,968,680

Deit3 67.43 68.17 65.58 63.83 22,059,496

MobileViT V2 81.40 82.49 81.75 80.82 4,399,245

CLA-MoSViT 86.08 85.89 85.05 84.86 7,607,372

FIGURE 13

The Alphabet_of_the_Magi font is written by di�erent people.

superior performance across different datasets. Due to its high

learning efficiency, the model performs well even with small sample

sizes. This further supports our findings and may guide future

research directions.

However, despite the significant achievements of this study,

there are still some limitations to our approach. For example, the

convergence speed and accuracy of the model with a small number

of samples need to be improved. In future studies, we plan to

explore the potential of precision attention theory in the field of

small-sample detection.
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