
Frontiers in Artificial Intelligence 01 frontiersin.org

Reconstructing signal during 
brain stimulation with Stim-BERT: 
a self-supervised learning model 
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Brain stimulation has become a widely accepted treatment for neurological 
disorders such as epilepsy and Parkinson’s disease. These devices not only deliver 
therapeutic stimulation but also record brain activity, offering valuable insights into 
neural dynamics. However, brain recordings during stimulation are often blanked 
or contaminated by artifact, posing significant challenges for analyzing the acute 
effects of stimulation. To address these challenges, we propose a transformer-
based model, Stim-BERT, trained on a large intracranial EEG (iEEG) dataset to 
reconstruct brain activity lost during stimulation blanking. To train the Stim-BERT 
model, 4,653,720 iEEG channels from 380 RNS system patients were tokenized 
into 3 (or 4) frequency band bins using 1 s non-overlapping windows resulting in 
a total vocabulary size of 1,000 (or 10,000). Stim-BERT leverages self-supervised 
learning with masked tokens, inspired by BERT’s success in natural language 
processing, and shows significant improvements over traditional interpolation 
methods, especially for longer blanking periods. These findings highlight the 
potential of transformer models for filling in missing time-series neural data, 
advancing neural signal processing and our efforts to understand the acute effects 
of brain stimulation.
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1 Introduction

Brain stimulation has emerged as a highly effective technique for treating a range of 
neurological disorders, including Parkinson’s disease and epilepsy (Benabid, 2003; Fisher et al., 
2010; Kringelbach et al., 2007). Devices such as the NeuroPace RNS System and the Medtronic 
Percept have received FDA approval and are now in clinical use (Geller et al., 2017; Nair et al., 
2020; Weaver et  al., 2009; Salanova et  al., 2021). In addition to delivering therapeutic 
stimulation, some of these devices are capable of recording brain activity, which is particularly 
valuable for understanding the brain’s response to stimulation (Swann et al., 2018; Morrell, 
2011; Sellers et al., 2021). Analyzing brain activity during and surrounding stimulation pulses 
can provide crucial insights into how these pulses modulate neural dynamics. For instance, 
studies have demonstrated that electrical stimulation can acutely reduce spectral power in 
brain activity immediately following stimulation (Rønborg et al., 2021; Sohal and Sun, 2011). 
However, a significant challenge arises from the fact that recordings are often either blanked 
or contaminated by stimulation artifacts during the delivery of stimulation pulses, rendering 
them unsuitable for direct analysis. The ability to reconstruct brain activity during these 
periods of artifact could therefore be invaluable for both clinical and research applications.
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Previous efforts to reconstruct or denoise stimulation artifacts 
have primarily utilized signal processing and machine learning 
techniques such as template subtraction, adaptive filtering, and signal 
interpolation (Hines et al., 1996; Bahador et al., 2023). Each of these 
methods, however, has inherent limitations (Mumtaz et al., 2021). 
Template subtraction, for example, requires precise identification of 
artifact patterns, which can be difficult to achieve (Hashimoto et al., 
2002). Adaptive filtering, a real-time artifact rejection technique, 
adjusts its coefficients continuously to better estimate and remove the 
artifact while preserving the neural signal. Nevertheless, obtaining an 
appropriate reference signal for adaptive filtering can be challenging, 
especially if the artifact is poorly defined or if the reference signal 
contains neural components. Additionally, adaptive filtering may not 
be effective with different types of stimulation pulses (Hua, 2020). 
Both template subtraction and adaptive filtering are only applicable in 
scenarios where the neural signal is captured during stimulation and 
is ineffective if the recording is completely blanked (Mumtaz et al., 
2021). Interpolation methods are often employed to handle missing 
or blanked data, but their performance can degrade significantly when 
the duration of blanking is prolonged (Lepot et al., 2017). Additionally, 
interpolation methods only take a few samples surrounding the 
stimulation blanking to reconstruct the signal and hence may not 
capture longer-term context to reconstruct lost signal. Given these 
limitations, there is a need for more advanced approaches to 
reconstruct brain activity during periods affected by stimulation 
artifacts. In fact, several recent studies have demonstrated tremendous 
potential of deep learning techniques in advancing neural data 
analysis and EEG classification tasks (Waqar et al., 2019; Hussain et al., 
2019; Iqbal et al., 2024). Following that, this study proposes the use of 
transformer-based models with attention mechanism (Vaswani, 2017; 
Devlin, 2018) to overcome the challenges associated with the above 
methods, potentially offering a novel solution for reconstructing 
neural signals during stimulation blanking.

Transformer-based Large Language Models (LLMs) have 
demonstrated remarkable capabilities in natural language processing 
tasks, particularly in filling in missing words within a sequence by 
leveraging contextual understanding (Naveed et al., 2023). A notable 
model is BERT (Bidirectional Encoder Representations from 
Transformers) which employes bidirectional self-attention 
mechanisms, enabling it to grasp the context of words in a sentence 
from both directions (Devlin, 2018; Koroteev, 2021). BERT’s 
architecture consists of multiple layers of transformers that process 
input text as tokens, and the model is pre-trained on extensive text 
corpora using a self-supervised learning technique known as masked 
language modeling (MLM) (Devlin, 2018). During MLM, certain 
tokens in the input sequence are randomly masked, and the model is 
trained to predict these masked tokens. Following pre-training, BERT 
can be fine-tuned on specific tasks with labeled datasets, achieving 
state-of-the-art results across various NLP benchmarks (Devlin, 
2018; Koroteev, 2021). While BERT and similar models are 
traditionally designed for text, the core principles of tokenization and 
masked modeling can be  applied to time series data, such as 
EEG. Recent studies utilizing self-supervised training of BERT 
models on EEG data to create embedding models for downstream 
classification tasks have shown promising performance (Wang et al., 
2023; Kostas et  al., 2021; Hollenstein et  al., 2021). In this paper, 
we leverage a large intracranial EEG (iEEG) dataset, comprising over 
4 million 90-s signals from 475 NeuroPace patients to train 

Stim-BERT specifically for reconstructing data lost during stimulation 
blanking. Our results show that this approach significantly 
outperforms interpolation techniques in reconstructing blanked data, 
with the model’s performance advantage increasing as the duration 
of blanking grows.

2 Methods

2.1 The NeuroPace RNS system and 
intracranial EEG (iEEG) records

The NeuroPace RNS System is an FDA-approved responsive 
neurostimulation device designed to detect and stimulate abnormal 
brain activity, specifically for the treatment of drug-resistant focal 
epilepsy (Morrell, 2011). The device can connect to up to two leads, 
which may be strip leads, depth leads, or a combination of both. To 
date, the system has been implanted in over 5,000 patients, resulting 
in the collection of more than 17 million intracranial EEG (iEEG) 
records.

Data for this study were obtained from the NeuroPace® RNS® 
System clinical trials. All study protocols were approved by the US 
FDA and the institutional review boards of the participating 
investigation sites. All participants gave written informed consent. The 
RNS System Feasibility, Pivotal, LTT and PAS studies are registered on 
CllinicalTrials.gov (NCT00079781, NCT00264810, NCT00572195, 
and NCT02403843, respectively).

During neurostimulation, the recording amplifiers are temporarily 
blanked, leading to segments of iEEG data that are flat or blanked 
(Figure 1 top panel shows an example of six stimulation pulses). The 
device can be programmed to deliver up to five stimulation therapies 
when abnormal brain activity is detected. Each stimulation therapy 
consists of two bursts, with the duration of each burst ranging from 
10 milliseconds to 5 s, typically around 100 milliseconds. Over 35% of 
all iEEG records captured using the NeuroPace RNS System contain 
at least one instance of stimulation blanking, followed by an amplifier 
recovery artifact, which appears as a sharp spike followed by a rapid 
decay lasting a few hundred milliseconds.

Each iEEG record typically includes four channels of data, with 
two channels recorded from each lead. The data is sampled at 250 Hz 
per channel (Jarosiewicz and Morrell, 2021).

2.2 Data pre-processing

2.2.1 Data split into training, validation, and test
For this study, approximately 1.4 million iEEG records (each 

record with up to 4 channels) from 475 patients were used. The patient 
data was shuffled and divided into training, validation, and test sets 
(Table 1), ensuring no overlap of iEEG records from the same patients 
across these data groups. The training dataset was used to train the 
Stim-BERT model, as described in a later section. An overview of the 
iEEG processing and Stim-BERT model training steps are shows in 
Figure  2. The validation dataset was employed to determine the 
optimal number of training epochs and hyperparameters, while the 
test dataset was used to evaluate the model’s performance. All data 
used in this study were obtained from RNS patients enrolled in clinical 
trials, with consent provided for research purposes.
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2.2.2 Stimulation artifact rejection, spectral 
power extraction

Stimulation artifact were identified and removed using previously 
published methods (Desai et al., 2019; Sun et al., 2018; Barry et al., 
2021). Specifically, the first derivative of the signal was computed to 
detect flat portions caused by stimulation blanking. An additional 125 
samples following the blanking period were excluded to account for 
amplifier recovery artifact. The time series segments before and after 
these periods were then concatenated, effectively eliminating the 
artifacts. This approach successfully removed all blanking artifacts and 
most of the amplifier recovery artifacts (Figure 1).

After artifact removal, the signal was normalized by calculating 
the z-score using the formula:

 ( )Signal Signal – mean of signal / standard deviation of the signal=

This normalization adjusted the signal amplitude.
The spectral power of the signal was computed using SciPy with 

a window size of 250 samples, focusing on three frequency ranges: 
0–13 Hz (encompassing delta, theta, and alpha power), 13–35 Hz 
(beta power), and 35–125 Hz (gamma power) (Desai et al., 2019). 

Since the sampling rate was 250 Hz, this window size produced three 
power values (low, medium, and high frequency bands) per second of 
data. For example, a 90-s time series would yield a 90×3 spectral 
power matrix.

A similar approach was applied using four frequency bands 
instead of three: 0–8 Hz (delta and theta), 8–13 Hz (alpha), 13–35 Hz 
(beta), and 35–125 Hz (gamma). The rationale for splitting the lower 
frequency range for the 4 frequency band case was to achieve higher 
resolution in the lower frequency range, considering the 1/f nature of 
neural activity (Lombardi et al., 2017).

2.3 Tokenization

The next step involved converting the analog spectral power 
values in the 3 (or 4) frequency bands into a fixed number of quantized 
bins. For each frequency band, a bin range of 0–9 (10 bins) was used. 
In the three-band scenario, this resulted in 1,000 possible 
combinations of bins (range: 000–999), where a value of 000 would 
indicate very low spectral power across all three bands, and 999 would 
indicate very high spectral power. In the four-band case, this method 
resulted in 10,000 possible combinations of bins (range: 0000–9999). 
The rationale for selecting 3 (or 4) frequency ranges was to keep the 
number of tokens limited to a few thousand, aligning with the 
vocabulary size used for training large language models (LLMs) like 
BERT, which has a vocabulary size of 30,522 tokens created using 
WordPiece tokenization (Devlin, 2018).

The spectral power in each frequency range was not uniformly 
divided into 10 bins due to the unequal distribution of data, with 
higher spectral power having fewer samples, reflecting a long-tail 

FIGURE 1

Data preprocessing steps. The raw time series signal is passed through a stimulation artifact cleaning step. The signal amplitude is normalized and the 
spectral power in 3 or 4 frequency bands is computed. Top panel shows a time series signal with five consecutive stimulation blanking periods 
(highlighted with arrow). Center panel shows the time-series signal with the stimulation blanking portions cleaned, and bottom panel shows the time-
series signal’s amplitude normalized.

TABLE 1 The number of iEEG channels in the train, validation, and test 
datasets is summarized in the table.

Dataset Train Validation Test

Number of patients 380 48 47

Number of iEEG channels 4,653,720 527,950 472,265
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distribution. To address this, 250,000 iEEG records (~500 per 
patient) were randomly selected from the training dataset. The 
spectral power in each frequency range across these records was 
divided into quantile-based bins using pd.qcut, ensuring even 
distribution across 10 bins for each frequency range. Once the bin 
boundaries were determined, all iEEG records in the training, 
validation, and testing datasets were converted into these spectral 

bands and quantized into bins 0–9 for each frequency band 
(Figure 3).

Most iEEG records captured by the NeuroPace RNS System are 
90 s long, resulting in 90 tokens per channel of iEEG data after 
tokenization. For iEEG records shorter than 90 tokens, token 0 was 
used to fill in the missing data toward the end of the record. For 
records longer than 90 s, only the first 90 s of the record were used 

FIGURE 2

The iEEG time series signal (typically 90 s long) is passed through a stimulation artifact removal step. Spectral power in 1 s bins was computed using the 
scipy python package. Tokenization was performed to result in 90 tokens. A total 18% of the tokens in the training dataset were masked for training a 
bi-directional transformer model. The validation dataset was used to select the training hyperparameters and to determine the number of epochs of 
training. The test dataset was used to report the performance of the trained Stim-BERT model.
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and the remaining tokens were discarded. Using this method, all 
iEEG records were converted into 90 tokens for each channel 
of iEEG.

2.4 Random masking of tokens and 
Stim-BERT model training

During Stim-BERT model training process, 18% of the tokens (16 
out of 90 tokens) within each iEEG channel were masked, using a 
token value of 1,000 to indicate masking for both the three-band and 

four-band cases. The training objective was to predict these masked 
tokens, with the cross-entropy loss function defined accordingly for 
optimization (Figure 4).

The model’s performance on the validation dataset was used to 
fine-tune the hyperparameters. The final hyperparameters used in this 
study are as follows:

 • VOCAB_SIZE: 1001 (10,001 for four-band)
 • MODEL_DIMENSION: 496 (dimension of the model’s 

hidden state)
 • MAX_LEN: 90 (corresponding to 90 tokens)

FIGURE 3

Binning of data and quantization. The spectral power in 3 or 4 frequency bands is quantized into bins. In this figure, quantization of 3 frequency bins is 
shown. Top panel shows power distribution and dB quantization boundaries for the low frequency range (0–13 Hz), the middle panel and bottom 
panels show the power distribution and dB quantization for 13–35 Hz (medium frequency), and 35–125 Hz (high frequency).
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 • MASK_PROBABILITY: 0.18 (adjusted from the default 0.15 to 
account for the presence of zero tokens at the end)

 • NUM_TRAINING_EPOCHS: 30 (determined through trial 
and error)

 • NUM_HIDDEN_LAYERS: 6
 • NUM_ATTENTION_HEADS: 8
 • OPTIMIZER: Adam with a learning rate of 1e-6
 • EARLY_STOP_PATIENCE: 10

2.5 Model evaluation and performance on 
test dataset

To evaluate the model’s performance, a tolerance of ±1 digit was 
applied to each digit within a token. For the three-band case, if the 
actual token is “456” and the model predicts “345,” it is considered 
correct. However, a prediction of “256” would be incorrect. The same 
principle applies to the four-band case, where each digit in the 4-digit 
token also has a tolerance of ±1. This approach allows small deviations 
in predictions to be considered accurate, providing a more robust 
measure of model performance.

Overall performance is measured as the mean accuracy 
percentage, determined by dividing the total number of correctly 
predicted tokens (within the tolerance) by the total number of tokens 
in each 90 s iEEG file and multiplying that ratio by 100. This yields an 
accuracy metric for each iEEG channel. The aggregate performance 
across all test iEEG channels is then calculated using the mean and 
standard error of the mean.

The test dataset involved masking between 1 and 10 tokens, 
using two different masking approaches. In the first approach, 
individual tokens were arbitrarily masked within the 90-token 
sequence. In the second approach, 1–10 consecutive tokens were 

masked at an arbitrary position within the sequence to 
assess the model’s ability to reconstruct data when up to 10 s of 
signal are lost due to stimulation artifacts. All masked tokens used 
for model evaluation were confined to the actual signal length 
within the 90-s sequence. For example, if the iEEG record only 
produced 80 tokens (with the record being 80 s long), masked 
tokens were restricted to the first 80 tokens. Masking beyond 
this range would have artificially inflated Stim-BERT’s 
reconstruction accuracy.

2.6 Comparison with other methods

The performance of the reconstructed tokens generated by 
Stim-BERT model are compared with a simple Interpolation 
method. In this Interpolation approach, the context size was varied 
from 1 token on either side of the missing token up to 5 tokens. The 
predicted token value was calculated by averaging the tokens on 
either side of the missing token(s) and using that average as the 
estimated value.

Accuracy of reconstruction of Stim-BERT is compared against 
Interpolation and random token methods and t-test is used to test 
for significance.

3 Results

3.1 Stim-BERT training and validation

Training of Stim-BERT stopped after 21 epochs for the three-band 
case and 20 epochs for the four-band case with an early_stop_patience 
of 10 epochs. In both scenarios, there was a notable decrease in both 

FIGURE 4

Example of original and masked tokens for the 4-frequency band case. On the y-axis, dt is delta and theta band, a is alpha, b is beta, and g is gamma band.
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training and validation loss throughout the training process. For the 
three-band case, the training loss initially measured 6.9, ultimately 
decreasing to 0.702 after 21 epochs, with a corresponding validation 
loss of 0.720. Similarly, for the four-band case, the training loss started 
at 9.282 and concluded at 0.987 after 20 epochs, with a validation loss 
of 1.105 at the 20th epoch.

3.2 Performance of Stim-BERT on test 
dataset and comparison with other methods

Stim-BERT achieved a masked token reconstruction accuracy 
of approximately 30.5% when 1 to 10 individual tokens were 
masked at random locations within a test iEEG channel of 90 
tokens (Figures  5, 6). In contrast, the Interpolation method’s 
accuracy was about 25.1%, significantly underperforming 
compared to the Stim-BERT reconstruction approach. The 
random token method, however, yielded an accuracy of about 
2.2%, which was substantially lower than both the Stim-BERT and 
Interpolation methods. All three methods showed similar 
accuracy when masking between 1 and 10 tokens 
arbitrarily (Tables 2, 3) i.e., Stim-BERT based reconstruction 
accuracy was somewhat steady around 30% when 1–10 tokens 
were arbitrarily masked. Similarly, Interpolation based 
reconstruction accuracy was around 25%, and random token 
method reconstruction accuracy was around 2% when 1–10 
tokens were arbitrarily masked.

For consecutive token masking, the Stim-BERT model’s 
reconstruction accuracy began at 30.7% with 1 masked token. As 
the number of consecutively masked tokens increased, the 
accuracy declined by about 2%, reaching 28.7% with 10 masked 
tokens. In contrast, the Interpolation method experienced a more 
pronounced decline, with accuracy dropping from 25.1% with 1 
masked token to 21.4% with 10 masked tokens, a decrease of 3.7%. 
The random tokenization method maintained a consistent 
accuracy of around 2.2% across 1–10 consecutive masked tokens 
(Tables 2, 3).

Similar trends were seen with the 4-frequency band case with the 
Stim-BERT reconstruction accuracy significantly outperforming 
Interpolation and random tokenization methods (Table 3).

3.3 Performance of Stim-BERT vs. 
interpolation on varying context length

Performance of the Stim-BERT model was compared to the 
Interpolation method, where the context length for Interpolation was 
varied between 1 and 5 tokens on either side of the masked token. As 
the context length for Interpolation increased, the reconstruction 
accuracy slightly improved from 22.2 to 23.8%. However, this accuracy 
remained significantly lower than Stim-BERT’s, which ranged from 
29.3 to 28.7% (Table 4).

3.4 Stimulation artifact reconstruction

Figure 7 illustrates an example of a time-series RNS System 
signal, along with the tokenized 3 and 4 frequency bands and the 
reconstructed signal. Although there is no ground truth available 
to validate the accuracy of the reconstruction in this case, the 
figure demonstrates the proof of concept. In this application, five 
consecutive stimulation artifacts can be seen in the Figure 7A. In 
the corresponding tokenized spectrogram (Figure  7B top), 5 
masked (blue vertical lines) tokens are seen, one for each 
stimulation blanking period in panel A. The trained Stim-BERT 
model reconstructs the tokens lost to stimulation artifact 
(Figure 7B bottom). Similar reconstruction of the original time-
series signals masked tokens can be seen with the 4-frequency 
band case in Figure 7C.

4 Discussion

Brain stimulation artifact recovery remains a major challenge 
in neural data analysis, with various hardware and software 
methods proposed to mitigate their effects (Mumtaz et al., 2021). 
In this study, we investigated the potential of using a transformer-
based model to reconstruct data lost due to brain stimulation 
artifact, employing self-supervised learning on a large intracranial 
EEG (iEEG) dataset.

The iEEG signals used in this study were sourced from 
patients implanted with the NeuroPace RNS System (Morrell, 

FIGURE 5

(Top) Example 3 band tokens for a 90 s iEEG file. (Middle) Arbitrarily selected individual tokens masked. (Bottom) Reconstruction of masked tokens with 
Stim-BERT. On the y-axis, low is delta, theta, and alpha bands, medium is beta band, and high is gamma band.
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2011; Jarosiewicz and Morrell, 2021). To process the time-series 
data, spectral power in 3 and 4 frequency bands was extracted 
from non-overlapping 1-s windows and quantized into a few 
thousand tokens. The token count was constrained to a similar 
order of magnitude as the vocabulary size in language models 
(Devlin, 2018). For the three-band case, this approach resulted in 
1,000 tokens, and for the four-band case, 10,000 tokens. The three-
band reconstruction case achieved an accuracy of approximately 
30%, while the four-band reconstruction case resulted in an 
accuracy of about 18% using Stim-BERT. The higher accuracy in 
the three-band case is expected, as the model only needs to predict 
3 power bands (range: 000–999, with each digit representing a 
quantized power band) within a ± 1 digit tolerance. In contrast, 
the four-band case requires predicting power across 4 bands 
(range: 0000–9999), with the same ±1 digit tolerance, which 
presents a more complex challenge. Despite the lower accuracy, 
the increased number of bands offers higher resolution, potentially 
enabling more impactful applications.

Given the widespread use of spectral data in neural analysis, 
it was both logical and practical to extract spectral power features 
from 1-s non-overlapping windows (Desai et al., 2019; Sun et al., 
2018; Skarpaas et al., 2018). For higher resolution, smaller window 
sizes of 0.25–0.5 s can be utilized. Alternatively, a technique akin 
to BrainBERT (Wang et al., 2023), which varies resolution across 
frequency bands, could be  employed. For instance, if specific 

frequency bands like the beta band (13–35 Hz) associated with 
Parkinson’s disease are of interest (Little and Brown, 2014), 
focusing on 3–4 sub-bands within this range could enhance 
reconstruction accuracy. Depending on the application, other 
EEG features such as spike rate (Desai et  al., 2019) or phase-
amplitude coupling (Edakawa et al., 2016) may also be extracted 
for tokenization.

Neural data inherently contains both short-term and long-
term context, as evidenced by seizure prediction studies 
(Kuhlmann et  al., 2018; Mormann et  al., 2007; Acharya et  al., 
2018), where changes in neural signals are observed several 
seconds to minutes before a seizure. Therefore, a model encoding 
long-term context is likely more effective at reconstructing 
missing data during stimulation blanking than methods 
considering only shorter time scales. To test this hypothesis, Stim-
BERT’s reconstruction accuracy was compared with Interpolation, 
where the context length for Interpolation was extended up to five 
tokens on each side of the missing token. In all scenarios, the 
iEEG-BERT model significantly outperformed Interpolation, with 
a greater margin of improvement for longer windows of 
continuously masked data.

In this study, a maximum context length of 90 s was used. 
While this context length may be sufficient for stimulation artifact 
recovery, other applications may benefit from longer context 
lengths. For instance, wearable devices that capture physiological 

FIGURE 6

(Top panel – 3 subplots) Original, masked, and Stim-BERT reconstructed tokens for individual masked 4-frequency band tokens. (Bottom Panel—3 
subplots) Original, Masked, and Stim-BERT reconstructed tokens for consecutively masked 4-frequency band tokens. On the y-axis, dt is delta and 
theta bands, a is alpha band, b is beta band, and g is gamma band.
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data, such as heart rate, electrocardiogram (ECG), and other 
biosensor data over extended periods could utilize a longer context 
length model for reconstructing missing data due to intermittent 
device charging (Picard et al., 2001). In such applications, larger 
transformer-based models offering longer context lengths could 
be  applicable to these applications (Naveed et  al., 2023; 
Thirunavukarasu et al., 2023). A recent study by Google used self-
supervised learning to train a model with 100 million parameters 
by masking portions of multimodel wearable data in 5 h chunks 
collected using Fitbit watches (Narayanswamy et al., 2024).

Due to the lack of ground truth data for stimulation artifact-
masked data, the Stim-BERT model was largely trained using 
background EEG data with masked tokens. However, stimulation 
might alter the underlying iEEG signals, meaning the data 
reconstructed using this approach may not accurately reflect the 
true data during stimulation artifacts. This limitation is not 
unique to the methods described in this paper; it is a common 
challenge for all techniques attempting to reconstruct data based 
on context during stimulation artifacts.

The concept of using BERT-like models for neural data 
reconstruction has been previously demonstrated with 
BRAINBERT (Wang et  al., 2023), which was trained for EEG 

representation learning. In that study, short-time Fourier 
transform (STFT) and Superlet methods were used to compute the 
spectrogram of EEG data, with entire frequency and time bands 
masked during model pre-training. The representations learned 
by the model were then passed through a linear classification layer 
to classify the neural data, outperforming benchmark models and 
demonstrating the potential of transformer-based architectures 
for neural data. The data were segmented into 5-s blocks. Given 
that stimulation artifacts can last longer than 5 s, longer data 
segments were necessary, hence the datasets in the current study 
were kept at 90 s. Additionally, only temporal masking was 
performed, as our model was specifically trained to fill in missing 
temporal data.

Although Stim-BERT was not explicitly trained to reconstruct 
continuously masked tokens, which would result from long 
stimulation bursts, it was able to predict the tokens with only a 
slight performance degradation compared to random masking of 
tokens. As the duration of continuous masking increased, the 
Stim-BERT model continued to outperform Interpolation 
methods, with a larger margin as mask duration increased. Future 
models specifically trained to predict continuously missing tokens 
are expected to further enhance performance in this area.

TABLE 2 Performance of Stim-BERT and other methods on arbitrarily 
masked individual tokens (top) and arbitrarily masked consecutive tokens 
with three frequency bands.

Number 
of 
individual 
tokens 
masked

Stim-BERT Interpolation Random

Mean SEM Mean SEM Mean SEM

1 30.662 0.127 25.13 0.119 2.235 0.041

2 30.91 0.094 25.238 0.088 2.243 0.029

3 30.904 0.08 25.202 0.075 2.217 0.023

4 30.765 0.072 25.108 0.068 2.225 0.02

5 30.838 0.067 25.171 0.064 2.254 0.018

6 30.808 0.063 25.172 0.06 2.24 0.017

7 30.644 0.06 25.222 0.057 2.244 0.015

8 30.523 0.058 25.123 0.055 2.223 0.014

9 30.508 0.056 25.125 0.053 2.228 0.014

10 30.508 0.054 25.253 0.052 2.236 0.013

Number of consecutive tokens masked

1 30.701 0.142 25.216 0.133 2.251 0.046

2 30.571 0.108 24.309 0.102 2.232 0.032

3 30.333 0.093 23.646 0.089 2.223 0.026

4 30.104 0.085 23.171 0.081 2.208 0.023

5 29.819 0.079 23.012 0.076 2.254 0.02

6 29.439 0.075 22.609 0.073 2.231 0.019

7 29.312 0.073 22.283 0.071 2.263 0.017

8 29.009 0.07 21.951 0.067 2.232 0.016

9 28.914 0.068 21.739 0.066 2.227 0.015

10 28.652 0.067 21.402 0.065 2.25 0.015

TABLE 3 Performance of Stim-BERT and other methods on arbitrarily 
masked individual tokens (top) and arbitrarily masked consecutive tokens 
with four frequency bands.

Number 
of 
individual 
tokens 
masked

Stim-BERT Interpolation Random

Mean SEM Mean SEM Mean SEM

1 18.281 0.119 14.347 0.108 0.604 0.024

2 18.034 0.088 14.336 0.081 0.637 0.017

3 18.079 0.076 14.286 0.069 0.63 0.014

4 18.082 0.07 14.198 0.063 0.637 0.012

5 17.912 0.065 14.286 0.059 0.634 0.011

6 17.904 0.063 14.323 0.057 0.625 0.01

7 17.923 0.06 14.258 0.054 0.63 0.009

8 17.956 0.058 14.339 0.053 0.632 0.009

9 17.914 0.057 14.363 0.052 0.627 0.008

10 17.758 0.056 14.208 0.05 0.634 0.008

Number of consecutive tokens masked

1 18.216 0.119 14.312 0.108 0.674 0.025

2 17.888 0.09 13.844 0.083 0.624 0.017

3 17.765 0.079 13.543 0.073 0.617 0.014

4 17.531 0.073 13.203 0.067 0.638 0.012

5 17.323 0.068 12.902 0.063 0.62 0.011

6 17.252 0.066 12.671 0.06 0.637 0.01

7 17.091 0.064 12.64 0.059 0.642 0.009

8 16.865 0.061 12.358 0.057 0.628 0.008

9 16.927 0.061 12.345 0.056 0.634 0.008

10 16.789 0.06 12.131 0.055 0.621 0.008
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In summary, this study showed that: (1) time-series brain 
recordings can be effectively tokenized using spectral information, 
yielding a vocabulary size of 1,000–10,000, comparable to the 
vocabulary size of the BERT language model; and (2) a bi-directional 

transformer-based model, Stim-BERT, which captures both short- and 
long-term context in input data, successfully recovered neural spectral 
data lost during brain stimulation and significantly outperformed 
interpolation methods.

TABLE 4 Performance of Stim-BERT and other methods on arbitrarily masked individual tokens.

Context window for 
interpolation

Stim-BERT Interpolation Random

Mean SEM Mean SEM Mean SEM

1 29.312 0.073 22.283 0.071 2.244 0.018

2 28.801 0.073 23.431 0.071 2.211 0.018

3 28.82 0.074 23.818 0.072 2.233 0.018

4 28.797 0.073 23.937 0.071 2.217 0.018

5 28.714 0.073 23.812 0.071 2.239 0.018

The context length for the interpolation method is increased up to five tokens on either side of the masked token.

FIGURE 7

(A) Time series iEEG with stimulation artifact. (B) Time series signals are tokenized with 3 frequency bands, tokens with stimulation artifact are masked, 
and the activity is reconstructed with Stim-BERT. (C) Time series signals are tokenized with 4 frequency bands, tokens with stimulation artifact are 
masked, and the activity is reconstructed with Stim-BERT. On the y-axis, low is delta, theta, and alpha bands, medium is beta band, and high is gamma 
band.
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