
Frontiers in Artificial Intelligence 01 frontiersin.org

Transfer learning-based hybrid 
VGG16-machine learning 
approach for heart disease 
detection with explainable 
artificial intelligence
Eshetie Gizachew Addisu 1*, Tahayu Gizachew Yirga 2, 
Hailu Gizachew Yirga 3 and Alemu Demeke Yehuala 4

1 Department of Information Systems, College Informatics, University of Gondar, Gondar, Ethiopia, 
2 Department of Computer Science, College of Natural and Computational Science, Mekdela Amba 
University, Tulu Awuliya, Ethiopia, 3 Department of Computer Science, College of Informatics, 
University of Gondar, Gondar, Ethiopia, 4 Department of Surgery, College of Medicine and Health 
Science, University of Gondar, Gondar, Ethiopia

Heart disease is a leading cause of mortality worldwide, making accurate early 
detection essential for effective treatment and management. This study introduces 
a novel hybrid machine-learning approach that combines transfer learning using 
the VGG16 convolutional neural network (CNN) with various machine-learning 
classifiers for heart disease detection. A conditional tabular generative adversarial 
network (CTGAN) was employed to generate synthetic data samples from actual 
datasets; these were evaluated using statistical metrics, correlation analysis, and 
domain expert assessments to ensure the quality of the synthetic datasets. The 
dataset comprises tabular data with 13 features, which are reshaped into an 
image-like format and resized to 224x224x3 to meet the input requirements of 
the VGG16 model. Feature extraction is performed using VGG16, and the extracted 
features are then fused with the original tabular data. This combined feature set 
is then used to train various machine learning models, including Support Vector 
Machines (SVM), Gradient Boosting, Random Forest, Logistic Regression, K-nearest 
neighbors (KNN), and Decision Trees. Among these models, the VGG16-Random 
Forest hybrid achieved notable results across all evaluation metrics, including 92% 
accuracy, 91.3% precision, 92.2% recall, 91.82% specificity, 92.2% sensitivity, and 
91.75% F1-score. The hybrid models were also evaluated using unseen datasets 
to assess the generalizability of the proposed approaches, with the VGG16-
Random Forest combination showing relatively promising results. Additionally, 
explainability is integrated into the model using SHAP values, providing insights into 
the contribution of each feature to the model’s predictions. This hybrid VGG16-ML 
approach demonstrates the potential for highly accurate and interpretable heart 
disease detection, offering valuable support in clinical decision-making processes.
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1 Introduction

The term “heart disease” has become increasingly common, with 
the World Heart Federation (WHF, 2021) projecting that the number 
of related deaths will rise to 22.5 million by 2025. These alarming 
statistics highlight the urgent need for scientific research and medical 
breakthroughs aimed at preventing and mitigating the impact of 
cardiovascular diseases globally. Key risk factors contributing to the 
development of cardiovascular diseases include high blood pressure, 
excess body weight and obesity, abnormal lipid profiles, irregular 
glucose levels or diabetes, tobacco use or smoking habits, physical 
inactivity or sedentary lifestyles, alcohol consumption, and high 
cholesterol levels.

The most crucial organ in the human body is the heart, making 
comprehensive early evaluation and accurate prognosis of heart 
disease vital. To address this, conducting thorough research on the 
subject is essential. The primary reason patients succumb to these 
illnesses is the typically late prediction of the conditions. Therefore, it 
is essential to develop reliable methods for early heart disease 
prediction (Chudhey et al., 2022).

Early diagnosis of heart disease is crucial in the medical field, as 
it can save lives and prevent severe consequences (Mulyani et  al., 
2024). The complexity of heart diseases, coupled with the financial 
burden of healthcare, highlights the need for effective digital solutions 
to enhance cardiovascular health and wellness. Deploying artificial 
intelligence (AI)-based, task-specific solutions equipped with 
explainability mechanisms can help mitigate the shortcomings and 
biases of the existing healthcare system.

In the current medical landscape, artificial intelligence-aided 
frameworks can help diagnose individuals with heart diseases, 
enhancing the likelihood of favorable health outcomes. Numerous 
studies on emerging AI techniques have focused on the classification 
and prognosis of heart diseases (Shrivastava et  al., 2023). While 
several machine-learning approaches have been deployed to identify 
heart diseases (Khan Mamun and Elfouly, 2023), the majority of 
these approaches demonstrate low accuracy, lack the integration of 
optimal feature extraction techniques from convolutional neural 
networks (CNN) into machine-learning predictive models, and fail 
to provide transparency in the reasoning behind their predictions, 
which is crucial for understanding and validating the predicted 
outcomes. Hybrid approaches that combine the strengths of deep 
learning and machine learning are increasingly promising for early 
heart disease prediction. This study presents a hybrid deep learning 
and machine learning technique with an explainable paradigm-based 
approach for heart disease identification aimed at addressing existing 
shortcomings and challenges. The proposed model leverages the 
advanced feature extraction capability of the Visual Geometry Group 
(VGG16) with predictive machine learning algorithms, utilizing a 
transfer learning mechanism to enhance the accuracy of heart 
disease diagnosis.

VGG16 is a pre-trained, specific type of convolutional neural 
network architecture. Its capacity to extract significant features from 
data has made it more well-known in recent years (Bakar et al., 2023). 
The CNN-based VGG16 is used for improved performance since it is 
trained on millions of ImageNet datasets. CNNs are able to extract 
pertinent features from raw data automatically without the need for 
human feature engineering from datasets such as images (Mulyani 
et al., 2024). This increases the accuracy of disease classification by 

enabling CNNs to recognize intricate patterns and relationships in 
the data.

Machine learning (ML) is the application of artificial intelligence 
that deals with creating a model that can learn and predict outcomes 
based on historical data and experiences by training and testing with 
features of these datasets. It has been shown that machine learning 
methods are very useful predictors (Subramani et  al., 2023). ML 
approaches leverage their potential classification performance in 
different domains, including heart disease detection. The accuracy of 
ML models is determined by the size of datasets used for training; the 
more datasets used, the more accurate the machine learning model 
will be. Transfer learning is a machine learning technique wherein 
insights from one task or dataset are applied to enhance model 
performance on a different or related dataset, and it is an ideal solution 
when the size of the dataset is an issue. Combining the sophisticated 
feature extraction capabilities of a CNN-based pre-trained model with 
the potential classification performances of ML techniques by applying 
transfer learning mechanisms for heart disease detection is a 
novel approach.

Therefore, the main aim of this study was to design a transfer 
learning-based hybrid VGG16-ML model that can leverage the 
strengths of powerful deep learning feature extraction capability, 
machine learning’s classical classification, and interpretability 
performance to provide a robust solution for heart disease detection. 
The proposed hybrid predictive model can explain how deep learning 
and tabular features contribute to the model’s decision-making 
process by integrating the so-called artificial intelligence 
explainability(XAI) methods. XAI consists of tools and architectures 
designed to make ML classifiers more transparent and provide a 
similar context for the reasoning behind a particular prediction. These 
resources are frequently employed to transparently illustrate the 
hidden black-box patterns of artificial intelligence. Building trust and 
confidence to accept forecasts from a decision support system requires 
the use of XAI approaches. SHapley Additive exPlanations (SHAP) 
were integrated into this study. SHAP is a mathematical tool for 
explaining machine learning models that allow one to compute the 
contribution of each feature to the prediction using SHAP values 
(Lundberg and Lee, 2017). Consequently, SHAP was utilized in this 
study to clarify how the hybrid heart disease predictive model reaches 
a decision.

The study aims to detect heart disease levels systematically and 
use an efficient transfer learning-based hybridized model by 
integrating the strengths of both deep learning and machine learning 
approaches. The goals intended to be achieved through this study 
were listed as follows: (i) to efficiently preprocess and transform the 
tabular datasets into images to extract features. (ii) To propose a 
hybrid model comprising VGG16 with a Support Vector Machine 
(SVM) to classify heart disease. (iii) To propose a hybrid model 
comprising VGG16 with Random Forest (RF) for classifying heart 
disease types. (iv) To propose a hybrid model comprising VGG16 with 
K-Nearest Neighbour (KNN) for classifying heart disease types. (v) 
To propose a hybrid model comprising VGG16 with Logistic 
Regression (LR) to classify heart disease types. (vi) To propose a 
hybrid model comprising VGG16 with Gradient Boosting (GB) to 
classify heart disease types. (vii) To propose a hybrid model 
comprising VGG16 with a Decision Tree (DT) for classifying heart 
disease types. (viii) To employ hyper-parameter tuning to optimize 
the performance of the proposed various hybrid models. (ix) To 
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analyze the model performance based on various metrics such as 
accuracy, precision, recall, F1-score, sensitivity, specificity, and 
computational time in seconds. (viii) To employ XAI techniques on 
the proposed hybrid models. (ix) To compare and analyze the 
performance of proposed models with standalone supervised machine 
learning classifiers without VGG16 feature extractors. (x) Various 
evaluation mechanisms should be  employed to evaluate the 
effectiveness of this hybrid approach.

2 Related studies

In the medical domain, specifically in the field of heart disease, 
researchers have carried out many studies by incorporating artificial 
intelligence techniques, including deep neural networks and machine 
learning techniques. Hence, different model development techniques, 
datasets, and feature engineering methods have been used, resulting 
in varying outcomes. Some of the studies related to the proposed 
methods have been highlighted below.

Anbazhagan et  al. (2024) proposed a hybrid approach that 
combines machine learning and deep learning techniques for early 
heart disease prediction by integrating the XGBoost-LSTM model to 
comply with the interpretability of XGBoost with the temporal 
modeling capabilities of LSTM models to analyze structured and 
unstructured data. The hybrid approach was proposed to carry out 
heart disease prediction by initially applying XGBoost to generate 
predictions and capture intricate connections as feature extractions 
from the structured data, followed by recording temporal relationships 
from time series data relevant to the final prediction of heart disease 
using LSTM. That study utilized data from the UCI machine learning 
repository, feature engineering guided by domain expertise, and 
transfer learning. This hybrid early heart disease prediction approach 
achieves superior results over standalone machine learning models in 
accuracy, precision, sensitivity, and F1-score evaluation metrics.

A hybrid model of CNN-bidirectional long-short-term 
memory(CNN-BiLSTM) was investigated on tabular datasets 
collected from Cleveland UCI datasets for heart disease, aiming at 
building an efficient heart disease prediction model(Shrivastava et al., 
2023). Data preprocessing techniques were employed over publicly 
available datasets to handle the data imbalance and missing data value 
concerns. In addition, an extra tree classifier was used to select 
relevant features and eliminate the least important ones from publicly 
available datasets. The CNN model was used to extract features, and 
finally, the classification process was performed by the Bi-LSTM 
model. Even though the dataset is small, promising results on 
accuracy, precision, recall, and F1-score were achieved during an 
experiment on the datasets.

An ensemble learning-based hybrid deep learning model for early 
heart disease detection was developed in Egypt by integrating two 
optimized and pre-trained models with a support vector machine, 
namely CNN with Long-Short Term Memory (LSTM) and CNN with 
Gated Recurrent Unit (GRU), to enhance heart disease prediction 
using simple data and symptoms (Almulihi et al., 2022). This ensemble 
learning model uses recursive feature elimination for feature selection 
purposes, and it is compared with some machine learning models 
(Almulihi et al., 2022). The result from the proposed model achieved 
better performance due to the optimization techniques used for the 
deep learning and machine learning models (Almulihi et al., 2022).

Mandava et al. (2023) investigated inclusive machine learning 
and deep learning methods to predict cardiovascular disease in 
Bangladesh with the main intention of helping medical practitioners 
and improving the accuracy of prediction models to lower severe 
risks from heart disease. In that study, heart disease predictive 
models have been created and analyzed using various machine 
learning approaches with an accuracy of 96.7%, indicating that 
deep learning algorithms can help with the recognition, 
categorization, and quantification of patterns found in medical 
imaging, which can enhance patient assessment and diagnosis by 
considering past medical records and evaluation patterns (Mandava 
et al., 2023).

Bharti et al. (2021) explored the application of machine learning 
and deep learning in a combined fashion by integrating with a 
multimedia technology like a mobile device for improved heart 
disease prediction and making a comparison and analysis by UCI 
machine learning heart disease datasets. In their study, mainly 
machine learning and deep learning techniques are compared with 
datasets with outlier detection and preprocessing and without outlier 
detection and preprocessing. Deep learning algorithms with isolation 
forest techniques for outlier detection and lasso algorithms for feature 
selection achieve promising accuracy (Bharti et al., 2021).

A study conducted in Nepal used ensemble learning to predict 
potential heart risk, employing five supervised machine learning 
algorithms combined with publicly available UCI heart disease 
datasets to build an ensemble model (Adhikari and Shakya, 2022). The 
authors concluded that the ensemble model achieves better accuracy 
compared to individual supervised machine learning models. 
Specifically, the base ensemble model reached an accuracy of 96.43%, 
while the voting-based ensemble model achieved an accuracy 
of 96.10%.

Mehmood et al. (2020) investigated early heart failure predictive 
methods to help patients and medical practitioners using a 
convolutional neural network and named it CardioHelp. The aim of 
the authors of the study was to exploit a convolutional neural network 
for temporal data modeling on heart disease datasets to predict heart 
failure, and the result achieved outperformed currently existing 
methods with an accuracy result of 97% (Mehmood et al., 2020).

Hossain et al. (2023) conducted a study to process sequential data 
and identify dependencies and patterns across time, using an LSTM 
network in conjunction with a CNN aimed to extract pertinent 
features from the input data. This work sheds light on how a hybrid 
deep learning model, in conjunction with explainable artificial 
intelligence and feature engineering, may enhance the precision and 
comprehensibility of heart disease prediction (Hossain et al., 2023). 
The resulting model was tested using a publicly accessible dataset, and 
the suggested CNN-LSTM outperformed the state-of-the-art models 
in identifying people with heart disease with a high accuracy of 73.52 
and 74.15%, with and without feature engineering techniques, 
respectively. This study explores the role of explainable AI in knowing 
the most relevant features in heart disease detection and the power of 
hybrid deep learning models for enhanced early heart disease 
detection (Hossain et al., 2023).

Uma Maheswari et al. (2021) investigated the performance of 
three machine learning techniques on heart disease prediction, 
namely random forest, decision tree, and hybrid of decision tree and 
random forest on Cleveland heart disease datasets. The result gained 
from the experiment conducted by that study shows that the hybrid 
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model outperforms the random forest and decision tree models with 
an accuracy result of 88.7% (Uma Maheswari et al., 2021).

Mohan et  al. (2019) proposed an innovative idea of applying 
machine learning techniques to identify significant features, resulting 
in an enhanced accuracy of heart disease prediction. Thus, various 
machine learning classification techniques and features were 
combined in different ways to introduce a heart disease predictive 
model with an enhanced accuracy performance of 88.7% by 
hybridizing random forest with a linear model (Mohan et al., 2019).

In a study by Shah et  al. (2020), various supervised machine 
learning algorithms such as Naïve Bayes, decision tree, K-nearest 
neighbor, and random forest have been examined using publicly 
available Cleveland heart disease datasets to present a heart disease 
predictive model with various attributes. The primary objective of this 
study was to estimate the likelihood of patients developing heart 
disease, with the K-nearest neighbors algorithm achieving better 
accuracy results.

Louridi et al. (2021) conducted a study to develop a machine 
learning-driven intelligent medical system designed to assist in 
assessing a patient’s cardiac health and support physicians in 
accurately diagnosing cardiovascular disorders. The author addressed 
the issues of imbalanced and missing data in the publicly accessible 
Framingham and UCI heart disease datasets by employing various 
data processing techniques. They selected the optimal method for 
predicting cardiovascular disease using machine learning. The efficacy 
of the proposed system was evaluated using various metrics, including 
accuracy, sensitivity, F-measure, and precision, demonstrating that the 
suggested technique significantly outperforms alternative models.

Machine learning models based on related parameters have been 
built for heart disease prediction, with 14 features having a relation 
with cardiovascular disease (Singh and Virk, 2023). In this research 
work, UCI heart disease datasets and supervised machine learning 
algorithms such as random forest, support vector machine, Naïve 
Bayes, and decision tree were used to develop the predictive model. 
Standard machine learning methods were used to identify the 
correlation between different attributes on the datasets, which has a 
significant role in the probability of predicting heart disease. The 
random forest algorithm gives relatively better accuracy and less 
computation time for heart disease prediction, as shown in the 
experimental result.

In Bangladesh, a study was conducted to build heart disease 
predictive models with local datasets of 564 instances and 18 attributes 
using machine learning algorithms. The main objective was 
identifying the most relevant features in heart disease prediction, and 
the model was trained with supervised machine learning techniques, 
including K-nearest neighbor, decision tree, Naïve Bayes, support 
vector machine, and logistic regression. According to the result of the 
study, the support vector machine outperforms the other algorithms, 
and an accuracy result of 91% was achieved (Shaw and Patidar, 2023).

A heart disease prediction model based on an ensemble technique 
using extra tree classifier methods for feature selection targeted at 
selecting the most relevant feature combination for enhanced early 
heart disease prediction was proposed. To build the proposed model, 
K-Nearest Neighbour, support vector machine, Naïve Bayes, decision 
tree, logistic regression, and Vote classifiers are examined on Cleveland 
and Statlog datasets by three different scenarios. Hence, the classifiers 
were tested with all the main 13 features of the dataset, with nine feature 
combinations and six feature combinations. In the end, the relatively 

best F1 score and accuracy result was achieved from the Vote classifier 
using nine and six feature combinations (Baranidharan et al., 2019).

In conclusion, various studies have been conducted for early heart 
disease prediction using machine learning and deep learning 
techniques. Promising performances were attained from multiple 
approaches. The majority of researchers highlight and recommend the 
utilization of the best capabilities of machine learning and deep learning 
techniques, appropriate feature extraction, and hyperparameter tuning 
mechanisms to create a hybridized model for enhanced early heart 
disease predictions. Moreover, several studies have been conducted to 
build heart disease predictive models with rigorous feature engineering 
mechanisms from publicly available heart disease datasets, but no study 
was focused on integrating the feature extraction capability of deep 
learning methods and classification capabilities of machine learning 
techniques to build a transfer learning-based hybrid model for 
improved robust heart disease detection. Thus, this study aims to build 
a hybrid model of deep learning, and machine learning approaches for 
heart disease prediction using explainable artificial intelligence 
techniques to show the transparency of how the proposed models reach 
the prediction of heart disease decision-making processes.

3 Materials and methods

3.1 Materials

The datasets for this study were used from the publicly available 
Kaggle data repository, comprising 1,025 and an additional 1,100 
synthetic data generated from the original data samples, and 14 features 
were used for this study, as described in Table 1. The original dataset 
(1,025) consists of four databases, namely Cleveland, Hungary, 
Switzerland, and Long Beach V. It contains 76 attributes, including the 
predicted attribute, but all published experiments refer to using a subset 
of 14 of them, including the target column. Synthetic data could 
be generated in different domains, including in medicine, similar to 
synthesizing breast cancer datasets if the dataset size is limited, and a 
conditional tabular generative adversarial network (CTGAN) is an ideal 
solution to generate additional tabular datasets for this study (Inan et al., 
2023). The dataset for this study includes 2,125 total 1,176 instances of 
suffering from heart disease and 1,049 instances of healthy heart 
datasets. The focus on generating and using synthetic data addresses the 
issues with small datasets and opens up possibilities for more extensive 
study in the area of heart attack prediction(Singh and Kirar, 2024).

3.2 Methodology

This study achieved its overall goal through the progressive 
application of the following methodologies. To realize the proposed 
hybrid heart disease predictive model, as depicted in Figure 1, these 
series of activities have been used as a general methodology for the study.

3.2.1 Data preprocessing

3.2.1.1 Data preparation
Data preprocessing is a crucial initial step in machine learning 

before analyzing data or developing a model. Data preprocessing was 
carefully performed to address issues such as missing values, 

https://doi.org/10.3389/frai.2025.1504281
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Addisu et al. 10.3389/frai.2025.1504281

Frontiers in Artificial Intelligence 05 frontiersin.org

imbalanced distributions, and outliers, ensuring a high-quality dataset 
for the proposed model.

3.2.1.2 Data normalization
There are well-known data normalization techniques such as 

min-max normalization, decimal scaling, unit vector normalization, 
Z-score normalization, and log transformation. In this study, min-max 
normalization was selected due to its capability to carry out linear 
modifications on the original data to equalize value comparisons 
between data before and after the process (Ahsan et al., 2023). We used 
the min-max normalization technique to scale our input data into 
ranges of 0 to 1. 

Min-Max normalization transforms the original input data in to 
suitable format to improve data consistency and this method can be 
expressed in the formula indicated on Equation 1 (Henderi, 2021):

 

( )
( ) ( )

min
new

max min
X X

X
X X=
−

−  
(1)

Where Xnew = The new value generated by normalizing the original.

X = The original value of data.
max(X) = The maximum value in the original dataset.
min(X) = The minimum value in the original datasets.

3.2.1.3 Data conversion
Data conversion involves the process of transforming tabular data 

into images, which are vital input formats for VGG16. This process of 
data conversion improves the effectiveness of the VGG16 model in 
extracting features from data that originally did not have spatial 
correlation by converting them into compacted grayscale images. The 
results achieved by Jain et al. (2022), which investigated the application 
of a novel approach to adopt deep learning methods on small tabular 
datasets using transfer learning, inspired us to conduct this study. In 
their study, different techniques, including image generator for tabular 
data (IGTD), representation of features as images with neighborhood 
dependencies (REFINED), and supervised tabular machine learning 
(SuperTML), were incorporated to convert tabular datasets into 
two-dimensional image representations in order to prepare image 
inputs for image classification tasks. The classification result achieved 
in this way by using a transfer learning approach on small datasets 
outperforms the classification result achieved by the conventional 
machine learning classifiers. In a study by Damri et al. (2024), the 
results of experiments highlighted that transforming tabular data into 
an image-like format for image classification using deep learning 
approaches outperforms conventional machine learning classifiers on 
structured data. Encouraged by these findings to leverage CNN-based 
techniques such as VGG16 for feature extraction from originally tabular 
datasets, this study undertook the transformation of tabular datasets 
into images. The transformation involved specific preprocessing steps 
aimed at integrating the efficiency of deep learning approaches while 
addressing the challenges associated with small and tabular datasets.

 (a) Reshaping the data: This process involves a set of activities 
required to transform the original tabular dataset into 
two-dimensional image-like formats in order to produce 
relevant inputs for the VGG16 pre-trained models. To do this, 
we  incorporate the following three core steps to create an 
image-like format that retains the spatial relation and 
interaction of features within the dataset. First, to group 
features together based on their similarity, hierarchical 
clustering was applied to the correlation matrix values 
(revealing how the features from the dataset are related to each 
other). For this purpose, a pairwise correlation was computed 
between all features using a Pearson correlation, and to 
perform the hierarchical clustering, the distance matrix was 
computed from the correlation matrix. Finally, the order of 
features was extracted from the resulting clustering. Second, 
features of the datasets were reordered based on resulting 
ordered feature indices from the generated hierarchical 
clustering. This procedure allows us to retain general spatial 
relations and interactions represented by the features of the 
datasets. This reordering of features’ positions on the dataset 
helps us to represent similar features close together in the 
formulation of proposed image-like formats. Third, converting 
the dataset into a two-dimensional image format was the next 
task. To do this, the reordered feature values of each sample 
from the dataset were reshaped into a 4 × 4 grid (each row of 
the tabular dataset is mapped into the two-dimensional matrix 

TABLE 1 Description of heart disease datasets.

Attributes Description Type

Age Age of the patient in a year. Numerical

Sex Gender of the patient. Male:0 and female:1 Nominal

cp Types of chest pain.

0: typical angina

1: atypical angina

2: non-anginal pain

3: asymptomatic

Nominal

trestbps Blood pressure at resting mode in mm/HG. Numerical

chol Serum cholesterol in mg/dl. Numerical

fbs Blood sugar levels on fasting greater than 

120 mg/dL.

1: for satisfying and 0: failed to satisfy the 

condition, respectively

Nominal

restecg Electro diagram results at rest:

0: normal

1: having ST-T wave abnormality

2:showing left ventricular hypertrophy

Nominal

thalach Maximum heart rate Numerical

exang Angina induced by exercise: 0:no, 1:yes Nominal

oldpeak Exercise-induced ST depression in relation to 

the state of rest

Numerical

slope ST segment in terms of slope during exercise.

0: up sloping, 1:flat, 2:down sloping

Nominal

ca The number of major vessels(0–3) Nominal

thal Thalassemia:

0:NULL, 1:normal 2:fixed defect, 3:reverseible 

defect

Nominal

taregt Results of the instances provide: 1: patient 

suffering heart disease, 0: patient is normal

https://doi.org/10.3389/frai.2025.1504281
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Addisu et al. 10.3389/frai.2025.1504281

Frontiers in Artificial Intelligence 06 frontiersin.org

or format, and the respective normalized feature value 
represents the color intensity). In doing that, since the number 
of features does not fit perfectly in the grid, padding was 
necessary in order to fill the fourth row’s last three columns 
with zero values (zero padding).

 (b) Resize the image and apply color channels: After reshaping, 
we resized the 4 × 4 image into a 224 × 224 format with three 
channels (224 × 224 × 3) to match the input requirements for 
the VGG16 model for better implementation of transfer 
learning. During this resizing, we retained the original pixel 
intensity values through interpolation, preserving the grayscale 
representation of each feature. Finally, the image transformed 
from the tabular datasets, which preserved the spatial relation 
between features through a hierarchical clustering process, was 
produced to be  used as valid input for VGG16 feature 
extraction processes.

3.2.2 The proposed model development

3.2.2.1 Feature extraction
The heart disease datasets converted into the images in the 

previous steps were fed into the VGG16 pre-trained model, whose top 
layer was frozen to extract general features through convolutions 
without training from scratch. The VGG16 model’s convolution 
operation applies filters to the input image to extract essential features. 
Filters are capable of extracting specific patterns such as textures, 
edges, and other complex shapes while the network goes deeper. The 
output of the VGG16’s final convolutional layer was used as a feature 
vector learned from the input images as high-level representations 
from the network.

3.2.2.2 Data fusion
Data fusion involves the process of combining features 

extracted from the VGG16 model with the original tabular 

features. Such approaches in building hybrid machine learning 
predictive models allow us to leverage both the deep learning 
capabilities of VGG16 and the structured information in tabular 
data to enhance prediction accuracy. Finally, the combined 
enriched feature set representation incorporates both structured, 
manually recorded clinical data and the abstract, high-level 
patterns extracted by the VGG16 model with a more comprehensive 
view of each instance. Hence, the number of columns increases due 
to column-wise concatenation of both features for single 
instance representation.

3.2.2.3 The proposed VGG16-machine learning models
Machine learning algorithms such as super vector machine, 

logistic regression, decision tree, random forest, and K-nearest 
neighbor were trained and tested with the combined features of both 
raw tabular features and VGG16-extracted features. VGG16 is 
basically used to extract essential features from the input data through 
convolutional operations. The filters in the VGG16 convolution 
processes capture and learn the patterns on the data inputs to identify 
the most relevant features (Torres et al., 2021). The output from the 
VGG16 convolution process is then given to machine learning 
component classifiers. Machine learning technologies are the ideal 
and most convenient techniques for disease prediction, such as in 
classifying heart disease (Ahmad and Polat, 2023).

Moreover, as the term “composition” suggests, the proposed 
hybrid VGG16 machine learning model primarily consists of two 
major components designed to optimize heart disease prediction. The 
first component is the CNN-based VGG16 pre-trained model for 
feature extraction. The second component is machine learning for 
heart disease classification. These two main components were 
examined over the publicly available Kaggle heart disease datasets 
with some adjustments and transformations as preprocessing 
methods. To do that, the raw tabular heart disease datasets were 
converted into image-like data and resized into standard input shapes, 
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FIGURE 1

Workflow of the study.
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and VGG16, frozen in its top layer, was fed the adjusted image without 
training. Then, the outputs of VGG16 extracted from the images are 
combined with preprocessed tabular data versions. Finally, various 
machine learning approaches have been trained and analyzed over the 
combined datasets based on different evaluation metrics.

Furthermore, after the various machine learning approaches have 
been analyzed using different evaluation metrics, a hybrid VGG16-
random forest model with hyperparameter tuning achieves the 
promising result of 92% accuracy, 91.3% precision, 92.2% recall, 
91.75% F1-score, 92.2% sensitivity, and 91.82% specificity.

3.2.2.4 Integrate XAI technique
As was proposed in the early stage, an explainable artificial 

intelligence (XAI) technique was also integrated with the proposed 
hybrid VGG16-ML heart disease detection model to determine the 
influence of each feature of datasets on the prediction of any heart 
disease outcomes. There are various types of XAI; we used SHapley 
Additive exPlanations (SHAP) for this study. It is one of the most 
known XAI methods in describing the machine learning model 
prediction results, which strengthens the knowledge of which feature 
was highly influential on the model’s prediction outcome and why a 
model made such particular predictions (Khorram et al., 2021). It is 
also utilized as a tool to interpret the final predictions and to gain 
valued insights into highly contributing features for the machine 
learning algorithms classification process in this study (Islam et al., 
2023). Finally, the contribution of each feature on the dataset is 
visualized using SHAP to show their contribution to the respective 
target classification. Equation 2 below shows the general formula for 
how the SHAP value is calculated from the feature and input 
data point.
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Where,
ƒ = Black-box model.
φi = Shapley value of any feature i.
x = Input data point.
ź = the subset.
x’ = Simplified data input.
ƒx (ź) = with feature i.
ƒx(ź/i) = without feature i.
Equation 2 is used to determine the impact of an individual 

feature by evaluating all possible subsets of features that contain that 
particular feature. The feature’s impact is then weighted based on the 
number of subsets in which it appears and averaged across all possible 
subsets. This results in a single SHAP value for each feature, which can 
be used to interpret the model’s prediction for a specific case, as it is 
represented in Figure 2.

The plot in Figure 2 provides insight into how various features 
impact the model’s prediction of heart disease versus no heart 
disease. The x-axis represents the SHAP value, which indicates the 
impact of each feature on the model’s prediction. Positive SHAP 
values (points on the right) push the model toward predicting heart 
disease, while negative SHAP values (points on the left) push the 
model toward predicting no heart disease. The y-axis lists the features 
(such as cp, oldpeak, thal, sex, and so on), ordered from the most 

impactful at the top to the least impactful at the bottom. The color of 
the points represents the actual feature values, where red indicates 
high feature values and blue represents low feature values. This color 
coding helps to visualize how each feature’s value influences the 
model’s decision.

In general, some features like chest pain type, oldpeak, and 
thalassemia show a strong impact on predicting heart disease. High 
values for these features are associated with the presence of heart 
disease. In contrast, features such as age, chol, and restecg seem to 
have less influence on the prediction, as their SHAP values are closer 
to zero.

4 Results

4.1 Datasets

The heart disease datasets from Kaggle comprising 1,025 
publicly available and 1,100 synthetic data samples with 14 
features were used for this study. The actual dataset consists of 
four databases, namely Cleveland, Hungary, Switzerland, and 
Long Beach V. It contains 76 attributes, including the predicted 
attribute, but all published experiments use a subset of 14 of them, 
including the target column. The “target” field refers to the 
presence of heart disease in the patient with two categorical values 
(0 and 1), where 0 represents healthy cardiac status, whereas 1 
indicates signals of infected cardiac statuses. Experiments have 
been conducted using Jupyter Notebook (Anaconda3) in 
Python programming.

The generated synthetic data was then evaluated through 
correlation analysis, standard statistical metrics, comparison with the 
actual data, and expert evaluation to assess its quality, to produce 
realistic synthetic data resembling the distribution of the original 
dataset, and to ensure the similarity between the original and synthetic 
data. To do this, a set of preprocessing activities has been applied to 
the original data, such as cleaning any missing, incorrect, or outlier 
values using standard techniques and feature and label separation. 
Subsequently, CTGAN was trained on the original data using 
hyperparameters such as learning rate, epoch, and batch size to 
generate 1,100 synthetic samples.

Subsequently, to evaluate the quality and similarity of the 
synthetic data with the actual datasets, correlation analysis was 
conducted between the synthetic data and the original dataset to 
evaluate how well the synthetic data retained the relationships 
between features. As indicated in Figure 3, the average mean absolute 
error (MAE) across all features was found to be 0.03, suggesting that 
the synthetic data was highly accurate and closely approximated the 
actual data. Additionally, the synthetic data were evaluated by 
domain experts with authors who assessed its plausibility and 
relevance to the application. The domain experts confirmed that the 
synthetic data was realistic and could be used for further analysis, 
confirming the CTGAN model’s ability to generate useful and 
credible synthetic data.

As shown in Figure 4, a baseline analysis was also conducted to 
evaluate the average MAE of feature correlations within the original 
data by splitting it into two sets: training and testing (50:50). The 
feature correlations in both the training and testing sets were 
visualized. The average MAE correlation between the synthetic and 
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original data closely matched that of the baseline analysis, even 
showing slightly lower values. This suggests that the synthetic data 
generated are highly similar to the original data in terms of feature 
value distribution.

Furthermore, to evaluate the statistical distribution of numerical 
features and frequency distribution of categorical features on the 
synthetic data, standardized statistical metrics such as the Kolmogorov–
Smirnov test (KS) and Chi-Square (CS) tests were performed. The KS 
test is used to validate whether the synthetic and original data’s 
numerical features preserve the same distribution. CS tests also assess 
the association of nominal features on both synthetic and original 
datasets. In the evaluation of the quality of the synthetic data using 
statistical tests such as KS and CS tests, the p value should be above the 
statistical significance cut-off (0.05), as indicated in most theories of 
statistical tests, to ensure a similar distribution of synthetic and original 
data(Andrade, 2019). Hence, the p value for our dataset’s statistical tests 
indicated in Figure 5 validates that the synthetic datasets are almost 
similar to the original datasets.

4.2 Performance evaluation metrics

The dataset was assessed using six hybrid classification 
algorithms, which were compared through 5-fold cross-validation 
to identify the most effective approach based on various statistical 
metrics, including accuracy. The algorithm evaluated includes 
VGG16-SVM, VGG16-GB, VGG16-DT, VGG16-LR, VGG16-RF, 

and VGG16-KNN. Different performance metrics were employed 
to measure the effectiveness of each hybrid approach. Various 
statistical measurement methods have been examined to determine 
the performance of different hybrid models. Accuracy, precision, 
recall, F-measure, sensitivity, and specificity were the main 
evaluation metrics utilized in this study. The predicted values 
generated during the testing processes, such as True Positive (TP), 
True Negative (TN), False Positive (FP), and False Negative (FN), 
are utilized to determine the results of evaluation metrics, as shown 
in Figure  6. Figure  6 shows the confusion matrix result of the 
proposed model over the test dataset. Detailed description of those 
evaluation metrics used to evaluate the performances of the models 
discussed as follow in Equations 3–8:

 (1) Accuracy: It represents the ratio of data points accurately 
predicted out of the total number of data points, expressed as 
the number of correctly predicted instances.

 
Accuracy TP TN

TP TN FP FN
+

=
+ + +  

(3)

 (2) Precision: is the proportion of correctly predicted positive 
observations out of all the positive predictions made 
(Chandrasekhar and Peddakrishna, 2023).

 
Precision TP

TP FP
=

+  
(4)

FIGURE 2

Feature impacts on predicting a case of heart disease.
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 (3) Recall: It is the proportion of instances correctly predicted as 
positive that actually belong to the positive class (Haq 
et al., 2020).

 
Recall TP

TP FN
=

+  
(5)

 (4) F1 score is often called the F-measure, and it is the weighted 
harmonic mean of both precision and recall (Biswas and 
Samanta, 2021).

 
F1 score 2 Precision X RecallX

Precision Recall
− =

+  
(6)

FIGURE 3

MAE of correlations by features between synthetic and actual datasets.

FIGURE 4

Average MAE correlation of features within the original dataset.
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 (5) Sensitivity is the proportion of actual positive samples correctly 
identified as positive in the test.

 
Sensitivity TP

TP FN
=

+  
(7)

 (6) Specificity is the ratio of the number of true negative samples 
to the total number of samples that were tested as negative.

 
Specificity TN

FP TN
=

+  
(8)

In Figure 6, the performance of the hybrid VGG16-RF is given 
with confusion matrices, which indicate the capability of the 
model in predicting heart disease situations using cleaned data in 
healthy or infected classes. The terms true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN) are used 
to incorporate different evaluation metrics over the models 
analyzed in this study. Hence, both TP and TN terms represent 
correctly classified samples, while FP and FN refer to cases where 
the models made incorrect predictions. Figure  6 shows the 
confusion matrix result of the proposed model over the test 
dataset using actual and predicted values.

4.3 Experimental results

As depicted in Figure 7, different models have been examined 
for heart disease detection tasks by combining the strengths of 
both machine learning and deep learning approaches to build the 
hybrid model. The analyzed models in terms of accuracy, 
precision, recall, F1-score, and specificity are shown in Figure 7. 
The hybrid models, such as VGG16-GB, VGG16-SVM, VGG16-
DT, VGG16-LR, VGG16-RF, and VGG16-KNN, have been applied 
using 5-fold cross-validation techniques on the preprocessed 
datasets used for this study. This section elucidates the 
classification performance report observed from these various 
hybridization techniques. The results show the overall 
performance of the six models, including accuracy, precision, 
recall, F1-score, sensitivity, and specificity, achieved during the 
analysis of the test datasets.

FIGURE 5

Evaluation of synthetic data quality with standard statistical metrics.

FIGURE 6

VGG16-RF model confusion matrix result.
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4.4 Comparative evaluation results of 
models

Table  2 shows the examined model’s accuracy result with the 
respective best parameters used during the hyperparameter tuning 
process. The datasets were split into five folds to apply a K-fold cross-
validation testing mechanism to test the models using test data splits. 
Comparative evaluation results of the model’s accuracy result, with 
respective best parameters, are presented in Table 2. Additionally, 
Table  3 presents the confusion matrix results, which show the 
effectiveness of different hybrid models in detecting heart disease 
cases in normal or infected classes in terms of TP, TN, FP, and FN with 
their respective accuracy results.

4.5 Testing the proposed models with 
unseen datasets

Conducting test mechanisms with unseen datasets was essential 
to assess the generalization capability of models after training the 
hybrid VGG16-ML models on training datasets. It was crucial to 
assess their performance on an entirely new dataset to evaluate 
generalizability and robustness. For this purpose, we tested the saved 
hybrid models on the Statlog heart disease dataset, which is obtained 
from the Kaggle website. The unseen Statlog dataset contains 270 
samples of heart datasets and is slightly different compared to the 
initial training dataset. To ensure consistency, we  applied 
preprocessing steps that mirrored those used during training, such as 
carefully handling missing values, feature encoding, outlier detection, 
normalization, and tabular data conversion. All models saved during 
the training are tested with the unseen datasets, and as indicated in 
Figure 8, the proposed hybrid VGG16-RF performs well and looks 
suitable for real-world deployment (Table 4).

As depicted in Table 5, the VGG16-RF model exhibited strong 
performance accuracy, sensitivity, specificity, precision, and F1-score 
on the unseen data sets, with minor drops in accuracy and sensitivity. 
However, its high specificity on the Statlog dataset demonstrates the 
model’s ability to generalize reasonably well to new data. This stability 

FIGURE 7

Accuracy, precision, recall (sensitivity), F1-score, and specificity results of hybrid models.

TABLE 2 Best parameters and respective accuracy results of different 
models.

Models Best parameters Accuracy result

VGG16-Random 

Forest

max_depth = None, n_

estimators = 50

92.00%

VGG16-Logistic 

Regression

C = 1, solver = liblinear 90.59%

VGG16-Decision 

Tree

max_depth = None, min_

samples_split = 2

85.18%

VGG16-KNN n_neighbors = 5, 

weights = uniform

79.76%

VGG16-Gradient 

Boosting

learning_rate = 0.1, n_

estimators = 50

91.29%

VGG16-SVM C = 0.1, and kernel = linear 87.76%

TABLE 3 Confusion matrix results of hybrid models.

Hybrid 
models

TP TN FP FN

VGG16-RF 183 190 31 21

VGG16-LR 190 181 24 30

VGG16-DT 157 188 57 23

VGG16-SVM 183 178 31 33

VGG16-GB 171 188 43 23

VGG16-KNN 173 178 41 33
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could be  attributed to RF’s ensemble approach, which provides 
robustness to data variations.

5 Discussions

5.1 Interpretation of the result

The main objective of this study was to address the effectiveness 
of the transfer learning approach on machine learning techniques 
such as SVM, GB, RF, DT, KNN, and LR in heart disease detection 
processes. The driving point here was to integrate the feature 
extraction capabilities of pre-trained convolutional neural networks 
with machine learning techniques and verify which hybridization 
method will achieve better classification accuracy in heart disease 
predictions. As findings, promising results have been achieved by 
building a hybrid model of the VGG16 feature extractor with classical 
machine learning classification techniques for the heart disease 
prediction domain. The result achieved by the hybrid approach in 
terms of accuracy, precision, recall, F1-score, and specificity is 
discussed as follows.

The VGG16-SVM model performs promisingly in terms of an 
accuracy of 87.76%, sensitivity of 88.78%, specificity of 86.82%, 
precision of 86.26%, and an F1-score of 87.50%. These results indicate 
that VGG16-SVM, while performing reasonably well, is somewhat 

limited by slightly lower specificity and precision than ensemble 
methods. The use of VGG16 features enables the SVM classifier to 
classify with a high degree of sensitivity, indicating that it effectively 
identifies positive cases (cases with heart disease). However, its 
specificity and precision suggest it may be prone to misclassifying 
some negative cases as positive. Adjustments to the train VGG16-SVM 
with a much larger data size and applying regularization parameters 
may further optimize its performance.

The VGG16-GB achieves a strong balance between accuracy, 
recall, and specificity, making it an ideal model for heart disease 
detection, especially when compared to simpler models like DT or 
KNN. Gradient Boosting performed relatively well in heart disease 
detection, achieving an accuracy of 91.29, recall of 91.22, specificity of 
91.36, precision of 90.78, and an F1-score of 91.00. VGG16-GB’s 
metrics demonstrate that it is well-suited for heart disease detection, 
particularly given its high accuracy and balanced sensitivity and 
specificity. It is a sequential approach to model improvement, where 
each tree corrects the errors of its predecessor, allowing VGG16-GB 
to capture subtle data patterns and enhance predictive accuracy. The 
balance between sensitivity and specificity further suggests that this 
model is capable of minimizing both false negatives and false positives, 
which is beneficial for the early detection and accurate diagnosis of 
heart disease. Its robustness in minimizing false positives and 
negatives, coupled with techniques like SHAP for interpretability, 
makes it a valuable model in medical applications like heart 
disease detection.

FIGURE 8

Performances of the proposed models with unseen datasets.
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The VGG16-RF classifier achieved relatively promising scores of 
accuracy of 92.00%, sensitivity of 92.20%, specificity of 91.82%, 
precision of 91.30%, and an F1-score of 91.75%. These results highlight 
the VGG16-RF model’s robustness in heart disease detection. The high 

sensitivity and specificity scores indicate the model’s capability to 
reduce both false positives and false negatives effectively, which is 
critical in clinical decision-making. The ensemble nature of RF allows 
it to capture complex interactions within the dataset, and the use of 
multiple decision trees contributes to its resilience against overfitting. 
This performance underscores the suitability of RF in medical 
applications where predictive accuracy and reliability are paramount. 
The depth of the trees was not restricted (max_depth = None), 
allowing the model to fully explore the data patterns. The random 
forest classifier is beneficial for heart disease detection due to its ability 
to process both continuous and categorical data, effectively model 
nonlinear patterns, and adjust hyperparameters to enhance 
performance (Mulyani et al., 2024). As an ensemble method, it merges 
multiple decision trees, which improves its accuracy and robustness, 
making it a powerful tool for complex medical data.

The VGG16-LR also delivers an accuracy of 90.59%, a sensitivity 
of 89.76%, a specificity of 91.36%, a precision of 90.64%, and an 
F1-score of 90.20%. These metrics indicate that VGG16-LR performs 
well, particularly in maintaining a balance between sensitivity and 
specificity. The model’s linear nature aligns well with the features 
extracted by VGG16, suggesting that the processed data possesses a 
degree of linear separability that LR can effectively capture. The near-
equal values of sensitivity and specificity imply that the model can 
accurately identify both positive and negative cases, making it a 
reliable choice for diagnostic purposes in medical settings. The fact 
that it achieved metrics identical to those of more complex models 
demonstrates that the core information is already well-captured by the 
preprocessing pipeline.

The VGG16-DT achieved an accuracy of 85.18%, a sensitivity of 
86.34%, a specificity of 84.09%, a precision of 83.49%, and an F1-score 
of 84.89%. The VGG16-DT model provides moderate performance, 
with balanced sensitivity and specificity but somewhat lower precision. 
The metrics indicate that the DT model captures basic patterns within 
the data but may be  prone to overfitting, especially when left 
unrestricted in depth. This can lead to reduced generalization, as 
evidenced by the relatively lower specificity. Decision trees tend to 
overfit when left unrestricted (max_depth = None), and their 
performance on unseen data can degrade. In practice, tuning for 
depth and regularization is critical to avoid overfitting.

The VGG16-KNN’s performance is significantly lower than that 
of the other models, with an accuracy of 79.76. Moreover, VGG16-
KNN’s metrics suggest that its performance is somewhat limited in 
this application. The model’s lower sensitivity and specificity indicate 
challenges in maintaining high predictive accuracy, particularly in 
distinguishing between positive and negative cases. KNN’s reliance on 
instance-based learning may be less effective in the high-dimensional 
feature space derived from VGG16, which could explain the reduced 

TABLE 4 Performances of VGG16-ML models over unseen Statlog datasets.

Models Accuracy Sensitivity Specificity Precision F1-score

VGG16-RF 88.89 80.95 93.94 89.47 85.00

VGG16-LR 79.63 66.67 87.88 77.78 71.79

VGG16-GB 83.33 71.43 90.91 83.33 76.92

VGG16-SVM 85.19 76.19 90.91 84.21 80.0

VGG16-DT 72.22 61.90 78.79 65.00 63.41

VGG16-KNN 87.04 80.95 90.91 85.00 82.93

TABLE 5 Comparisons of performances of VGG16-ML approaches against 
standalone Ml classifiers without VGG16.

Models Evaluation 
metrics

Hybrid 
VGG16-ML

Without 
VGG16

SVM Accuracy 87.76 58.35

Recall 88.78 81.43

Specificity 86.82 35.81

Precision 86.26 55.34

F1-Score 87.50 65.90

Random Forest Accuracy 92.00 90.59

Recall 92.20 90.48

Specificity 91.82 90.70

Precision 91.30 90.48

F1-Score 91.75 90.48

Gradient 

Boosting

Accuracy 91.29 86.82

Recall 91.22 86.67

Specificity 91.36 86.98

Precision 90.78 86.67

F1-Score 91.00 86.67

Logistic 

Regression

Accuracy 90.59 79.06

Recall 89.76 77.62

Specificity 91.36 80.47

Precision 90.64 79.51

F1-Score 90.20 78.55

KNN Accuracy 79.76 73.88

Recall 78.05 71.43

Specificity 81.36 76.28

Precision 79.60 74.63

F1-Score 78.82 72.99

Decision Tree Accuracy 85.18 85.65

Recall 86.34 83.81

Specificity 84.09 87.44

Precision 83.49 86.70

F1-Score 84.89 85.23
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accuracy and F1 score. While KNN may offer simplicity, its 
performance in this setting indicates it may not be ideal for heart 
disease detection, where reliable classification is essential.

5.2 Comparisons of hybrid approaches 
with standalone ML methods without 
VGG16

An experimental analysis was conducted by comparing the 
effectiveness of hybrid approaches with traditional machine learning 
methods without the VGG16 feature extraction processes by utilizing 
similar datasets. The hybrid approach is especially useful for models 
that rely on more complex feature representations, validating the 
effectiveness of transfer learning in heart disease detection. The hybrid 
models outperform their respective standalone traditional models, 
especially SVM and logistic regression models. Even though the 
random forest and decision tree stand-alone models achieve good 
performances, the hybrid model version exhibits even higher 
consistency in recall, precision, and F1-score. KNN shows a slight 
drop in performance when using VGG16, indicating that not all 
models benefit equally from feature extraction through the VGG16 
pre-trained model. On the other hand, the integration of VGG16 
feature extraction as a complementary addition enhances the 
standalone classifier’s performance, as demonstrated by SVM.

As presented in Figure 9 and Table 5, the VGG16-ML hybrid 
approach provides a considerable boost in performance, especially in 
models that are more sensitive to feature extraction, such as SVM and 
Logistic Regression. On the other hand, random forests and decision 
trees perform well with or without VGG16. Overall, the findings of 
this study demonstrate that combining complementary techniques 
with the classical classification strengths of traditional machine 
learning models can effectively address the key challenges encountered 
in the heart disease detection domain.

5.3 Comparison of model complexity with 
standalone ML classifiers

In comparing the hybrid VGG16-ML models with standalone 
classifiers, the hybrid approach involving VGG16 typically exhibits a 
higher computational cost in terms of both processing time and 
memory usage. VGG16, as a deep learning model, requires significant 
resources for feature extraction, leading to increased processing times 
compared to standalone classifiers without feature extraction, as 
shown in Figure  10. Standalone models like DT, LR, and KNN 
demonstrate minimal processing times and memory demands, 
making them computationally efficient but potentially less effective in 
capturing complex patterns.

However, the hybrid VGG16-ML models justify their higher 
resource requirements by leveraging deep feature extraction to 
improve classification performance. By utilizing VGG16, the hybrid 
models gain a richer feature representation, which enhances their 
predictive power, particularly in complex, high-dimensional data 
scenarios like image-based or structured medical data. This makes the 
hybrid approach more suitable for applications where accuracy and 
interpretability supported by VGG16’s extracted features and XAI 
methods like SHAP are prioritized over computational speed. Thus, 

the trade-off between computational cost and predictive capability 
underlines the value of the hybrid VGG16-ML models, particularly 
for healthcare decision support systems where accuracy can outweigh 
the need for faster processing.

5.4 Comparison with the state-of-the-art

Heart disease detection using supervised machine learning 
methods is a well-explored field of research. Despite some unresolved 
challenges in this area, significant progress has been made with 
promising outcomes. In recent times, the application of hybrid deep 
learning-machine learning techniques to leverage their 
complementary strengths for heart disease detection has gained 
popularity. This study employed deep learning techniques for feature 
extraction from non-image data, integrating them with machine 
learning classifiers to predict heart conditions through transfer 
learning approaches. The research introduces novel methodologies, 
and the promising and directive results obtained are compared with 
state-of-the-art methods, as demonstrated in Table 6.

The proposed hybrid VGG16-machine learning approach 
addresses key limitations observed in existing studies investigated for 
early prediction of heart disease by employing a hybrid of deep 
learning-machine learning approaches, including the study by 
Anbazhagan et al. (2024). In terms of data size, our study significantly 
expands the dataset size by employing CTGAN techniques, with 1,025 
to 2,125 observations, to enhance the robustness and generalizability 
capability of the model. In contrast, the (Anbazhagan et al., 2024) 
model is limited to analyzing 918 samples only, which may restrict its 
applicability to diverse populations. A critical distinction of the 
proposed approach is also its evaluation of unseen datasets, using the 
publicly available Statlog dataset to assess its generalization capability. 
The results achieved during the test of the proposed model with these 
new and slightly different datasets confirm the model’s ability to 
maintain high predictive accuracy, generalizability capability, and 
reliability across different data distributions, underscoring its 
robustness in real-world scenarios. Such evaluations have not yet been 
employed on the recently conducted integrating machine learning-
deep learning hybrid approaches for heart disease prediction 
AI-based solutions.

Our proposed hybrid of the VGG16-RF approach reshapes tabular 
data into an image-like format, enabling effective feature extraction 
using VGG16. This innovative adaptation demonstrates the versatility 
of transfer learning models in handling non-image data. Moreover, 
the combination of VGG16-extracted features with traditional 
machine learning classifiers, such as Random Forest, achieves 
competitive performance metrics, including 92% accuracy, 91.3% 
precision, and 92.2% recall. These results are comparable to or exceed 
those of the (Anbazhagan et  al., 2024) model, which reported an 
accuracy of 93.4%, a sensitivity of 89.4%, and a precision of 91%. XAI 
is a critical aspect of similar models that have been developed recently. 
In a study by Anbazhagan et  al. (2024), the model relies on the 
inherent interpretability of XGBoost. Our study integrates SHAP 
values as an XAI component to provide granular insights into feature 
importance. This ensures transparency in model predictions, 
facilitating trust and acceptance among healthcare professionals.

Furthermore, the use of CTGAN in this proposed approach for 
data augmentation demonstrates the scalability of our approach, 
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enabling its application in different domains where the size of 
datasets is an issue. Such techniques bring contributions that are 
particularly relevant in medical research areas, where obtaining 
large observations and annotated datasets is often challenging. By 
addressing these limitations and incorporating rigorous evaluation 
of unseen datasets, the proposed hybrid VGG16-machine Learning 
approach represents a significant advancement in AI-driven heart 
disease detection.

The hybridization of VGG16’s feature extraction capabilities 
with supervised machine learning classifiers offers a powerful 
approach to handling non-image data in predictive tasks like heart 
disease detection. This method leverages the strengths of both deep 
learning and traditional machine learning techniques, creating a 
model that benefits from the advanced feature extraction capabilities 

of VGG16 and the robust classification performance of supervised 
algorithms like random forest, gradient boosting, and SVM. The 
integration of transfer learning allows pre-trained weights from 
image datasets to be applied to non-image data. This reduces the 
need for large datasets in medical applications, where data scarcity 
is often an issue. The pre-trained VGG16 model serves as an efficient 
feature extractor, reducing training time while improving 
feature quality.

Generally, hybridizing VGG16’s deep feature extraction 
capabilities with supervised machine learning classifiers results in an 
effective system for heart disease detection and similar tasks. The deep 
learning model’s ability to capture complex, high-level features, 
combined with the classification strength of traditional machine 
learning algorithms, leads to outstanding performance results. This 

FIGURE 9

Comparison of Hybrid VGG16-ML and standalone classifiers performances.
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FIGURE 10

Comparison of VGG16-ML with individual classifiers’ complexity. (A) Processing time of ML classifiers. (B) Memory usage of ML classifiers. (C) Training 
time, evaluation time, CPU usage, and memory usage of VGG16-ML approaches.

TABLE 6 Comparison of the proposed approaches with the state-of-the-art.

Study Datasets Methodology Accuracy 
with 
unseen 
datasets

Hybridize 
with ML

Accuracy 
(in %)

Precision 
(in %)

Recall 
(in %)

F1-
score 
(in %)

Specificity 
(in %)

Anbazhagan 

et al. (2024)

Tabular XGBoost-LSTM Undetermined Yes 93.4 91 89.4 92 90

Mulyani 

et al. (2024)

Tabular CNN end-to-end Undetermined No 100 100 100 100 Undetermined

Hossain 

et al. (2023)

Tabular CNN-LSTM Undetermined No 74.15 81.82 72.07 76.62 77.11

Shrivastava 

et al. (2023)

Tabular CNN-BiLSTM Undetermined No 96.66 96.84 96.66 96.63 Undetermined

The 

proposed 

method

Tabular VGG16-RF 89% Yes 92.00 90.64 89.76 90.20 91.82
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approach offers a promising solution for predictive analytics in 
domains where data may be limited, but accuracy is paramount, such 
as medical diagnostics.

6 Conclusion

This study explored heart disease detection by integrating 
deep learning techniques with supervised machine learning 
classifiers through a transfer learning approach. The hybrid 
approach utilizing VGG16 for feature extraction and supervised 
classifiers such as SVM, gradient boosting, random forest, logistic 
regression, KNN, and decision tree was thoroughly evaluated. The 
findings indicate that the hybrid approach significantly surpasses 
traditional machine learning classifiers, particularly in heart 
disease predictions. Notably, the VGG16-Random Forest hybrid 
model delivered perfect performance across all metrics, with 
100% accuracy, precision, recall, F1-score, and specificity. This is 
a substantial improvement compared to the performance of the 
same classifiers when used independently without deep learning-
based feature extraction.

Limitations and future directions: Even though the proposed 
hybrid of the deep learning and machine learning approach with XAI 
achieves promising performance on heart disease detection, 
we acknowledge issues of computational costs (may pose challenges 
during deployment in resource-constrained settings), limited 
evaluation of robustness (robustness against noisy inputs was not 
explicitly analyzed), XAI scope(integration of hybrid argumentation-
based XAI was not explored), and data size and diversity(larger data 
size and demographic as well as clinical diversity were not addressed) 
as potential limitations of this study.

The key insight observed in this study was that applying 
pre-trained models like VGG16’s deep feature extraction potentially 
enhances the performance of machine learning models, enabling 
them to better capture complex relationships in the data. The study 
highlights the effectiveness of combining deep learning feature 
extraction with machine learning classifiers through a transfer 
learning mechanism, especially in cases involving non-image data. 
The hybrid VGG16-ML models with suitable data conversion methods 
and hyperparameter tuning techniques provide a significant 
performance boost, allowing for highly accurate and reliable heart 
disease detection. These results emphasize the potential of hybrid 
models in medical diagnostics, suggesting that future research on 
hybrid argumentation-based and SHAP explanation approaches, 
using more diverse clinical populations and datasets to validate 
models’ generalization capability and optimize models’ computational 
costs, should continue to explore better integration of deep learning 
and machine learning techniques to address other complex prediction 
tasks in healthcare.
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