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Electromyography (EMG) signals have gained significant attention due to their 
potential applications in prosthetics, rehabilitation, and human-computer 
interfaces. However, the dimensionality of EMG signal features poses challenges 
in achieving accurate classification and reducing computational complexity. To 
overcome such issues, this paper proposes a novel approach that integrates 
feature reduction techniques with an artificial neural network (ANN) classifier to 
enhance the accuracy of high-dimensional EMG classification. This approach 
aims to improve the classification accuracy of EMG signals while substantially 
reducing computational costs, offering valuable implications for all EMG-related 
processes on such data. The proposed methodology involves extracting time and 
frequency domain features from twelve channels of EMG signals, followed by 
dimensionality reduction using techniques such as PCA, LDA, PPCA, Lasso and 
GPLVM, and classification using an ANN. Our investigation revealed that LDA is 
not appropriate for this dataset. The dimensionality reduction models did not 
have any significant effect on the accuracy, but the computational cost decreased 
significantly. In individual comparisons, GPLVM had the shortest computational 
time (29 s), which was significantly less than that of all the other models (p < 0.05), 
with PCA following at approximately 35 s and Relief at approximately 57 s, while 
PPCA took approximately 69 s, and Lasso exhibited higher computational costs 
than all the models but lower computational costs than did the original set. Using 
the best-performing features, all possible sets of 2, 3, 4 and 5 features were tested, 
and the 5-feature set exhibited the best performance. This research demonstrates 
the effectiveness of dimensionality reduction and feature selection in improving 
the accuracy of movement recognition in myoelectric control.
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1 Introduction

Electromyography (EMG) is a powerful tool that has 
revolutionized research and healthcare in the field of applied health. 
It is a diagnostic technique that is used to record and evaluate the 
electrical activity of skeletal muscle. The importance of EMG signals 
in research and healthcare cannot be underestimated. They play a vital 
role in understanding the neuromuscular system and can help 
diagnose and sometimes even predict various neuromuscular 
disorders, such as Parkinson’s disease (Adem et al., 2022), muscular 
dystrophy (Quijano-Roy et al., 2004), myasthenia gravis (Baruca et al., 
2016), and amyotrophic lateral sclerosis (Sonoo et al., 2009). These 
signals help clinicians identify the specific muscles affected by the 
disorder and assess the severity of the conditions (Dai et al., 2022; 
Nazmi et al., 2016). EMG signals are also used to guide treatments 
such as physical therapy, electrical stimulation, and surgery. In 
rehabilitation, EMG signals can be used to evaluate the effectiveness 
of physical therapy interventions and monitor progress (Dai et al., 
2022). EMG signals can provide real-time feedback on muscle 
activation patterns and help patients learn to activate specific muscles 
or muscle groups correctly. This feedback can improve motor control 
and enhance the effectiveness of rehabilitation programs, leading to 
better outcomes for patients (Nazmi et  al., 2016). In myoelectric 
control, EMG signals are used to control prosthetic devices. These 
signals are recorded from residual muscles in the amputated limb and 
transferred to the prosthetic device, allowing the user to control the 
device’s movements. The EMG signals can be processed in real time 
to translate the user’s muscle activity into prosthetic movement, 
providing a more natural control interface. This can significantly 
improve the functionality and usability of prosthetic devices, allowing 
users to perform daily activities more effectively (Chen et al., 2023).

In the field of EMG signal processing, feature extraction is the 
most crucial step for extracting useful and important information 
from complex signals. Numerous studies have been conducted to 
identify new features that can belong to the time domain, frequency 
domain, or time-frequency domain (Chen et al., 2023; Abbaspour 
et al., 2020; Phinyomark et al., 2014; Chen et al., 2006; Too et al., 
2019b; Danneels et al., 2002; Too et al., 2019c; Naik et al., 2016; Sachin, 
2015; Rehman, 2018; Waris et al., 2018; Jochumsen et al., 2018; Zia ur 
Rehman et al., 2018; Waris et al., 2019; Daffertshofer et al., 2004). 
However, most of the features are redundant, and using redundant 
features together could decrease the classification accuracy. Therefore, 
it is crucial to select appropriate features to achieve optimal 
performance. Researchers have made significant progress in 
identifying suitable feature sets and studying their effects on 
classification accuracy in recent years. The importance of feature 
reduction lies in its ability to address the issue of high dimensionality, 
which can lead to overfitting, reduced classification accuracy, and 
increased computational complexity. Feature reduction techniques 
can help overcome this problem by reducing the dimensionality of the 
feature space, thereby improving classification accuracy and reducing 
computational complexity (Too et al., 2019a; Phinyomark et al., 2012; 
Phinyomark et al., 2012). Several dimensionality reduction techniques 
can effectively reduce the number of features while retaining the most 
informative features. In Zhang et al. (2012), implemented PCA on 
their EMG data consisting of 512 samples and observed a success rate 
of 99.8%, indicating the effectiveness of PCA in accurately controlling 
multiple finger movements using EMG signals. In Yang et al. (2013), 

employed the wavelet packet transform to extract features from sEMG 
signals and subsequently applied nonparametric discriminant analysis 
(NDA) for feature reduction together with a support vector machine 
(SVM) for classification. Their approach achieved an impressive 
average accuracy of 98 to 99% per subject. These results demonstrate 
the potential of using a combination of these methods for accurate 
EMG pattern recognition. In Junior et al. (2020), compared various 
techniques of feature reduction for surface electromyography (sEMG) 
signals obtained from an armband. They employed both feature 
selection and dimensionality reduction methods, along with seven 
classifiers, to recognize six different gestures performed by 13 subjects. 
The researchers found that the highest accuracy of 94% was achieved 
by combining the support vector machine classifier with 
dimensionality reduction. In Chu et al. (2007), compared LDA, PCA, 
NLDA, and self-organizing feature map (SOFM) methods for the 
classification of features extracted from four-channel EMG signals 
using WPT. They found that LDA had the best accuracy and real-time 
performance but required calculating the within-class scatter matrix, 
which may be singular if there is high feature redundancy. To address 
this issue, a combination of PCA and SOFM was proposed, which 
showed improved performance over PCA alone in terms of 
myoelectric control. This highlights the importance of using 
appropriate feature reduction methods for improving the accuracy of 
sEMG signal classification.

Most previous studies have focused on subject-specific EMG 
classification, whereas this study emphasizes generalized movement 
classification, which is particularly relevant in robotics and prosthetics. 
In this study, self-acquired data from an online database is used. The 
aim of this study is to enhance the performance of classifiers for 
myoelectric control in generalized devices, including prosthetic limbs, 
exoskeletons, rehabilitation robots, and assistive robotic systems, 
while identifying optimal feature sets. Six dimensionality reduction 
techniques such as Principal Component Analysis (PCA), Linear 
Discriminant Analysis (LDA), Probabilistic PCA (PPCA), Gaussian 
Process Latent Variable Models, Lasso and Relief were applied and 
their effect on classification accuracies and computational cost is 
observed. While optimal feature sets are identified using exhaustive 
feature selection. The most suitable feature sets are identified from 40 
well-known electromyography features. The comparison between 
feature selection methods and dimensionality reduction techniques 
focused on model accuracy and computational time. Overall, the work 
emphasizes generalized movement classification rather than subject-
specific approaches. Figure 1 illustrates the study’s workflow.

2 Materials and methods

2.1 Data acquisition

This research utilizes two different datasets. Dataset 1 utilizes the 
online Ninapro database, specifically the second database known as 
DB2 (Atzori et al., 2014). The dataset consists of EMG signal data from 
40 healthy individuals recorded using the Delsys Trigno Wireless 
EMG system with a sampling rate of 2 kHz. This work is based on the 
data from 10 of these subjects and examines EMG signals during six 
distinct movements: abduction and flexion of all fingers (AF, FF), 
wrist extension (WE), wrist radial deviation (WRD), wrist ulnar 
deviation (WUD), and wrist extension with a closed hand (WE). Each 
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movement was repeated six times, with each repetition lasting for 5 s 
and 3 s of rest between repetitions.

The second dataset was EMG signals collected from ten able-
bodied subjects aged between 20 and 35 years (three men/seven 
women,). The procedures were in accordance with the Declaration of 
Helsinki and the local ethics committee of the National University of 
Sciences and Technology, Islamabad, Pakistan (approval number ref. 
# BMES/REC/22/027). Subjects provided their written, informed 
consent prior to the experimental procedures. The subjects had no 
history of upper extremity or other musculoskeletal disorders. Ot 
Bioelectronica was used for recording EMG signals at a 2 kHz sampling 
rate. Eight pairs of differential electrodes were positioned below the 
radio humeral joint at equal intervals; two pairs were positioned on the 
flexor and extensor digitorium and one pair was placed on the biceps 
brachii. Six movements were required of the subjects:

 • wrist extension (WE)
 • wrist radial deviation (WRD)
 • wrist ulnar deviation (WUD)
 • wrist extension with a closed hand (WE)
 • Abduction of all fingrers (AF)
 • Fingers Flexed together in a wrist (FF)

Figure 2 illustates the movements performed by subjects. Every 
movement was performed four times, with a three-second break in 
between each five-second repetition.

2.2 Pre-processing and feature extraction

Initially, the raw EMG data were preprocessed by applying 
denoising filters. A notch filter was applied to remove 50 Hz 
powerline interference, and a fourth-order Butterworth bandpass 
filter was utilized to permit frequencies within the range of 20–500 Hz 
(Naik et  al., 2016). After filtration, the data were segmented into 
overlapping segments of 250 ms with 50% overlap. There are three 
different types of features of EMG signals: the time domain, frequency 
domain, and time-frequency domain. In this work, thirty-four time 
domain and six frequency domain features were extracted 
(Abbaspour et al., 2020; Phinyomark et al., 2014; Chen et al., 2006; 
Too et al., 2019b; Danneels et al., 2002; Too et al., 2019c; Naik et al., 
2016; Sachin, 2015; Rehman, 2018; Waris et al., 2018; Jochumsen 
et al., 2018; Zia ur Rehman et al., 2018; Waris et al., 2019; Spiewak, 
2018). The features are listed in Table 1.

2.3 Feature ranking

After feature extraction, each feature was ranked individually 
based on its performance. For this, one feature at a time was used as 
input to the neural network classifier, and its classification accuracy 
was evaluated. Features that achieved an accuracy above the 80% 
threshold were considered the best performing. This ranking process 
was performed using data from a single subject to assess the individual 

FIGURE 1

(A) Flowchart illustrating the process of filtering, segmenting, dimensionality reduction, and exhaustive feature selection techniques applied to raw 
EMG data, with subsequent comparison of the resulting sets. (B) Feature extraction, ranking, and selection process leading to the creation of different 
feature combinations for classification, followed by comparison using ANOVA to determine optimal feature sets.
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feature performance. All the other features with accuracies less than 
the threshold were eliminated from data set.

2.4 Dimensionality reduction techniques

After feature ranking, all features that performed above the 
threshold were extracted from all subjects across all movements. A 
generalized approach was applied, where data from all subjects were 
combined and used to classify the movements, rather than 
performing classification for each subject individually. The dataset, 
consisting of 10 subjects, 5 movements, 12 muscles, and 15 features 
per muscle signal, resulted in a high-dimensional and complex data 
structure. This led to decreased classification accuracy and 
increased classifier processing time. Several existing works (Too 
et al., 2019a; Phinyomark et al., 2012; Phinyomark et al., 2012) have 
reported the existence of many redundant features in EMG signals, 
which degrade signal classification accuracy. To increase the 
classification accuracy, dimensionality reduction techniques can 
be  used. In this work, five dimensionality reduction techniques 

were employed, namely, principal component analysis, linear 
discriminant analysis, probabilistic PCA, least absolute shrinkage 
and selection, the Relief algorithm and Gaussian process latent 
variable models (GPLVMs).

PCA is a well-known unsupervised linear dimensionality 
reduction technique that enables the transformation of high-
dimensional data into a lower-dimensional space while maintaining 
crucial information (Daffertshofer et al., 2004). The main goal of PCA 
is to identify the most important features that have high covariance 
and use them to transform data into a new vector space with 
uncorrelated features. The set of new features captures the main trends 
in key data from the original data, thus making it simpler to visualize 
and analyze it (Daffertshofer et  al., 2004). Linear Discriminant 
Analysis (LDA) is a widely known supervised statistical technique 
used for classification and dimensionality reduction. It works by 
projecting high-dimensional data onto a linearly low-dimensional 
space that represents discriminative information in the data. This is 
done by trying to maximize class separability while minimizing 
within-class scatter. LDA finds applications in many areas such as 
image processing, speech recognition, bioinformatics etc. due to its 

FIGURE 2

Movements performed by subjects.
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simplicity and ease of computation which makes it widespread for 
various tasks in an analysis of data (Tharwat et al., 2017).

Probabilistic PCA on the other hand is an extension of principal 
component analysis and is also a linear dimensionality reduction 
technique. This method uses a probabilistic model to transform data 
through linear transformations from high dimensions to lower ones 
unlike the PCA. It assumes that there exists low dimensional subspaces 
subject to additional Gaussian noises that generate such observations. 
PPCA estimates this low-dimensional subspace as well as the linear 
transformation by adding Gaussian noise to a linear transformation 
of the low-dimensional subspace through expectation maximization 
algorithm (EM). The noise covariance matrix and model parameters 
are estimated alternately via the EM technique. The resulting 
low-dimensional representation of the data preserves its essential 
features (Tipping and Bishop, 1999).

The GPLVM is a nonlinear technique used for mapping high-
dimensional data into a low-dimensional latent space. It works 
similarly to PPCA except that GPLVM is nonlinear. The GPLVM uses 
a nonlinear function, which is modeled as a Gaussian process 
(Lalchand et al., 2022). The mapping parameters between the latent 
and observed variables are treated as random variables with a prior 
distribution, allowing GPLVMs to capture complex relationships 
between the variables. The prior distribution is often chosen as a 
Gaussian distribution, which enables efficient computation via 
Gaussian process regression. By incorporating a prior distribution on 
the mapping parameters, GPLVMs can perform Bayesian inference to 
estimate the posterior distribution of the mapping parameters given 
the observed data, allowing for probabilistic estimates of the mapping 
parameters and uncertainty in the model.

Kira and Rendell (1992) introduced the Relief algorithm. It 
functions as an independent assessment method for feature selection. 
Relief computes a surrogate statistic for each feature, aiding in the 
estimation of feature ‘quality’ or ‘relevance’ to the target concept, such 
as predicting the endpoint value. These statistics are denoted as feature 
weights (weights of feature ‘A’) or, more informally, as feature ‘scores’, 
which span a continuum from poor to excellent performance (Kira 
and Rendell, 1992).

Least absolute shrinkage and selection operator (LASSO) is a 
popular technique used in machine learning and statistics for selecting 
a subset of features from a larger set of available features 
(Muthukrishnan and Rohini, 2016). The functions through adding a 
penalty toward the standard objective function of linear regression, 
which penalizes regression coefficients’ absolute magnitudes. What 
this does is to promote sparsity of the solution which means that many 
of the coefficients are driven to zero and in effect, only a subset of 
original features are selected. Lasso feature selection is particularly 
useful in high-dimensional datasets where there are more features 
than samples, as it can help identify most important predictors while 
discarding irrelevant or redundant ones. It can also be  used for 
prevention of overfitting and improvement in interpretation by 
LASSO feature selection (Fonti and Belitser, 2017).

2.5 Exhaustive feature selection

Exhaustive feature selection is a brute-force approach used 
frequently in machine learning for systematically evaluating all 
possible feature combinations from a given dataset (Bouzoubaa 

TABLE 1 Features.

Sr No Features Sr No Features

1 Integrated Emg (iEMG) 21 Maximum Fractal Length (MFL)

2 Root Mean Square (RMS) 22 Log Difference Absolute Mean Value (LDAMV)

3 Variance (VAR) 23 Log of coefficient of variation (LCOV)

4 Waveform Length (WL) 24 Wilson Amplitude (WA)

5 Zero Crossing (ZC) 25 Average Amplitude Change (AAC)

6 Slope Sign Change (SSC) 26 Coefficient Of Variation (CV)

7 Mean Absolute Deviation (MAD) 27 Hjorth Mobility (Hmob)

8 Simple Square Integral (SSI) 28 Absolute Value Of The Summation Of Square Root (ASS)

9 Average Energy (AE) 29 Approximate Entropy (AE)

10 Skewness (Skew) 30 Cardinality (CARD)

11 Modified Mean Absolute Value 1 (MMAV1) 31 Interquartile Range (IQ)

12 Modified Mean Absolute Value 2 (MMAV2) 32 Integrated Absolute Value (IAV)

13 3RD Temporal Moment (TM3) 33 Kurtosis (Kurt)

14 4TH Temporal Moment (TM4) 34 Maximum Energy (ME)

15 5TH Temporal Moment (TM5) 35 Peak Frequency (PF)

16 Standard Deviation (std) 36 Mean Power (MP)

17 V Order (Vo) 37 Mean Frequency (MF)

18 Log Detector (LD) 38 Frequency Ratio (FR)

19 Difference Absolute Mean Value (DAMV) 39 Total Power (TP)

20 Difference Absolute Standard Deviation Value (DAVSR) 40 Modified Mean Frequency (Mmf)

https://doi.org/10.3389/frai.2025.1506042
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Nayab et al. 10.3389/frai.2025.1506042

Frontiers in Artificial Intelligence 06 frontiersin.org

et al., 2020). Unlike other methods for selecting features that rely 
on heuristic algorithms or statistical measures, exhaustive feature 
selection looks exhaustively through all possible feature subsets to 
identify one that optimizes a predefined criterion like model 
performance or predictive accuracy. Although exhaustive feature 
selection guarantees finding the optimal subset of features it 
becomes computationally expensive as the number of features 
increases making it impractical for datasets with a large number of 
features. Despite its computational cost, exhaustive feature 
selection is valuable in scenarios where model interpretability and 
the identification of the best-performing feature subset 
are paramount.

2.6 Classification

A feature set is constructed for movement classification following 
feature extraction. An ANN was used as a classifier in this evaluation. 
ANNs are a widespread machine learning method that can figure out 
intricate linkages and patterns. The composition and operation of the 
human brain serve as an inspiration for them. An ANN is made up 
of layers of connected nodes, or neurons. From the input layer, where 
data are introduced through one or more hidden layers, to the output 
layer, where predictions or classifications are formed, information 
travels through the network. Activation functions are used by each 
neuron to change the input data, and during training, weights—a 
measure of the strength of connections between neurons—are 
modified to reduce error between the expected and actual outputs. In 
this study, a three-layer ANN was used, with each layer containing 20 
neurons. The activation function applied was the Rectified Linear 
Unit (ReLU), and the model was trained for 1,000 iterations. The 
same ANN was applied after all feature selection and dimensionality 
reduction methods were performed. All dimensionality reduction 
and feature selection methods were evaluated using the 
ANN. Classification accuracies were recorded both before and after 

dimensionality reduction and then compared to evaluate 
their performance.

In this study, we employed 5-fold cross-validation to evaluate the 
model’s performance. The dataset was divided into 5 equal folds, and 
for each iteration, one fold was used for testing while the remaining 
four folds were used for training. This process was repeated 5 times, 
ensuring that each fold served as the testing set once. The average 
performance across all folds was then reported, providing a more 
robust estimate of the model’s generalization capability.

2.7 Statistical analysis

For the dimensionality reduction techniques, the computational 
cost and accuracies were recorded. The pre-and post-reduction 
accuracies were compared to observe any significant differences. 
Similarly, all dimensionality reduction techniques were compared to 
evaluate which performed better in terms of both accuracy and 
computational cost. After exhaustive feature selection, the top 10 sets 
of all the combinations were compared by using statistical analysis. 
ANOVA was used to analyze and choose the best combination. The 
best feature sets were choosen based on the classification accuracies. 
One-way ANOVA was used to analyze the results and determine any 
statistically significant differences. Since the data followed a nominal 
distribution, ANOVA was an appropriate choice.

3 Results

To observe the similarities and importance of the extracted 
features, 3D scatter plots were generated. The scatter plots of DAMV, 
IAV, IQ, ZC, WL and MAV are shown in Figure 3. The scatter plots 
show that the majority of the data points are closely cluttered together, 
which indicates the presence of redundancy in the EMG data 
(Figure 3).

FIGURE 3

Scatter plot of EMG features for 1 movement.
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3.1 Feature ranking and elimination

All forty-one features were evaluated by using ANN. They were 
ranked based on their classification accuracies. LDAMV had the 
highest classification accuracy (89%), while cardinality and the WAM 
were the worst-performing features, with classification accuracies 
lower than 20%. Figure  4 shows classification accuracy of each 
individual feature.

Out of 40 features, all the features for which the classification 
accuracy was less than 85% were eliminated, and only 16 features 
remained. The remaining features were the modified mean absolute 
value, interquartile, mean absolute deviation, integral absolute value, 
integrated EMG, V order, mean absolute value, standard deviation, 
difference absolute mean value, waveform length, difference absolute 
standard deviation value, absolute value of the summation of square 
root, maximum fractal length, and log difference absolute mean value. 
The trend of feature performance was the same in both datasets.

3.2 Comparison of feature sets with 
different dimensionality reduction 
techniques

After conducting feature elimination, a feature vector comprising 
16 features from 11 different channels and representing 6 distinct 
classes extracted from the EMG signals across 10 subjects was 
generated. Subsequently, various feature selection and reduction 
techniques were applied to this dataset, and their performance was 
evaluated based on computational cost and classification accuracy. 
Given the aim of developing a generalized model, data from all 
subjects were amalgamated.

Initially, an artificial neural network (ANN) was employed to 
assess the feature vector post elimination, yielding an accuracy of 
88.7%. However, the computational time required for training and 
evaluating the ANN was approximately 115 s. LDA failed to perform 

on a large dataset such as this one. Subsequently, PCA was applied, 
resulting in an accuracy of 88.23% and a substantial reduction in 
computational time to 35 s (p < 0.05). Similarly, PPCA applied to the 
original feature vector improved the accuracy to approximately 90%, 
while reducing the computation time significantly to 69 s (p < 0.05).

When GPLVM was applied to the original feature vector, the 
accuracy remained relatively constant, yet the computation time 
decreased significantly to only 29 s (p < 0.05). Relief algorithm 
application resulted in an accuracy of 89.3% with a computation time 
reduction to 57 s (p < 0.05). Additionally, the Lasso application yielded 
an accuracy of 89%, accompanied by a notable reduction in 
computation time to 90 s (p < 0.05). One-way ANOVA showed no 
significant difference among the accuracies of all the tested techniques.

The feature selection methodologies had a negligible impact on the 
classification accuracy but had a considerable influence on the 
computational expense. Across the spectrum of models, a marked 
reduction in computational costs was evident compared to the original 
feature set. Notably, Lasso exhibited significantly diminished costs 
relative to the original dataset, albeit with higher expenses than other 
methodologies. PPCA demonstrated a reduction in computational 
overhead compared to both Lasso and the original set, albeit remaining 
higher than alternative approaches. Relief exhibited substantially reduced 
costs in comparison to Lasso, PPCA, and GPLVM, although it surpassed 
PCA in computational expenses. PCA demonstrated diminished 
computational costs across models, except for GPLVM, which emerged 
as the frontrunner with significantly reduced expenses compared to all 
counterparts. Figure  4 illustrates the classification accuracies and 
computational costs for each dimensionality reduction technique.

3.3 Exhaustive feature selection

Exhaustive feature selection was systematically applied to the 
datasets, employing sets comprising two, three, four, and five features. 
Through exhaustive exploration, all possible combinations of these 

FIGURE 4

Feature wise classification accuracy.
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(A) Displays the classification accuracy, while (B) illustrates the computational time.

feature sets were obtained, facilitating a comprehensive evaluation of 
performance based on classification accuracies. The computational 
expenditure associated with exhaustive feature selection surpassed 
that of all other models; however, this was justified by the significantly 
higher accuracies achieved. Following feature selection, the cost of 
model training was reduced to a mere second.

Furthermore, the best-performing sets comprising two, three, 
four, and five features are delineated in the subsequent section.

3.3.1 Two-feature combinations
There are a total of 120 combinations of the 16 features, each of 

which contains 2 features. All feature sets were evaluated using an 
ANN. The classification accuracy ranged from 85.39 to 91.87%. The 
best-performing feature sets were chosen based on the classification 
accuracies. The top 10 sets of both datasets are depicted in Table 2. 
Their classification accuracies are plotted in Figures 6, 7.

3.3.2 Three-feature combinations
There are a total of 560 combinations of the 16 features, each of 

which contains 3 features. All feature sets were evaluated using an 
ANN. The classification accuracy ranged from 85.58 to 92.40%. The 
best-performing feature sets were chosen based on the classification 
accuracies. The top 10 sets from both datasets are shown in Table 3. 
Their classification accuracies are plotted in Figures 5, 6.

3.3.3 Four-feature combinations
There were a total of 1,820 combinations of the 16 features, each 

of which contained 4 features. All feature sets were evaluated using an 
ANN. The classification accuracy ranged from 85.37 to 92.48%. The 

best-performing feature set was chosen based on the classification 
accuracies. The top 10 sets of both datasets are shown in Table 4, and 
the classification accuracies are plotted in Figures 5, 6.

3.3.4 Five-feature combinations
There were a total of 4,368 combinations of the 16 features, each 

of which contained 5 features. All feature sets were evaluated using an 
ANN. The classification accuracy ranged from 83.5 to 92.38%. The 
best-performing feature sets were chosen based on the classification 
accuracies. The top 10 sets are shown in Table 5. Their classification 
accuracies are plotted in Figures 6, 7.

TABLE 2 Optimal two-feature sets.

Sets Features

Dataset 2 Dataset 2

Set 1 IAV, LDAMV MAD, LDAMV

Set 2 ASS, MFL IEMG, LDAMV

Set 3 MAV, LDAMV RMS, LDAMV

Set 4 MAD, LDAMV DASDV, LDAMV

Set 5 MMAV, LDAMV VO, LDAMV

Set 6 Vo, LDAMV IQ, MFL

Set 7 IQ, MFL LDAMV, MAV

Set 8 MAV, MFL IQ, LDAMV

Set 9 IEMG, LDAMV IEMG, MFL

Set 10 ASS, LDAMV ASS, LDAMV
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3.4 Comparison of feature sets

The classification accuracy of feature sets comprising 2, 3, 4, and 
5 features was compared to determine the optimal number of features. 
ANOVA tests were conducted on both datasets to compare the 
accuracy of different feature sets, which were significantly different 
(p < 0.002). Both datasets exhibited statistically significant differences 
among all combinations (p < 0.05). The two-feature set significantly 
differed from the three-feature set (p < 0.05), and the three-feature 
set also showed significant differences compared to the four-feature 
set (p < 0.05), which, in turn, significantly differed from the five-
feature set (p < 0.05). The average classification accuracy increased 
with an increase in the number of features in the set. In conclusion, 
the findings suggest that using a feature set comprising 5 features 
yields the highest classification accuracy in both datasets.

4 Discussion

This study highlights the emphasis of dimensionality reduction 
and feature selection. This study took a comprehensive approach by 
applying dimensionality reduction methods and exhaustive feature 
selection to the whole dataset. Unlike other works, which often use 
subject-specific techniques, our model is intended for use on a wide 
range of subjects and performs excellently regardless of one’s age or 
sex. This wider scope permits for a more adaptive, more generalized 
model that can be applied in many different situations and populations. 
Employing these advanced methodologies across the entire dataset 
created an all-inclusive robust model that overcame the restrictions 
set forth in subject-specific analyses.

We have developed an advanced and automated feature extraction 
method for improving our application. This was because we recognized 
that different data sets require unique set of features to attain optimum 
results, hence necessitating the use of a complex technique. It is 
designed to extract many features from data and subsequently rank 
them according to their usefulness in a given task. This enabled us to 

choose the most appropriate feature reducing time and thus improved 
over all accuracy and performance of our software intelligently through 
automation. Such inclusion of this automated approach for selecting 
features not only made it possible for us to address diverse datasets but 
also improved the robustness and reliability of our work; hence making 
our study a significant contribution toward development of feature 
extraction techniques (Figure 7).

Our investigation suggested that employing dimensionality 
reduction techniques such as PCA, GPLVM, lasso, relief, and PPCA 
can notably enhance both accuracy and reduce processing time. 
However, LDA may not be suitable for this type of analysis. Although 
these reduction techniques did not notably increase the classification 
accuracy, they significantly reduced the computational costs. They 
performed well, particularly improving classification accuracy when 
applied to larger datasets. Comparing each model individually, 
we found significantly lower computational times. The GPLVM had 
the shortest computational cost at 29 s, which was significantly less 
than that of all the other models (p < 0.05). PCA took approximately 
35 s, which was significantly greater than that of GPLVM but notably 
less than that of the other models. Relief took approximately 57 s, 
which was significantly greater than that of GPLVM and PCA but less 
than that of the other models. PPCA took approximately 69 s, which 
was significantly greater than that of Relief, GPLVM, and PCA but 

FIGURE 6

Classification accuracies of the top sets of all combinations for 
dataset 1.

TABLE 3 Optimal three feature sets.

Sets Features

Dataset 1 Dataset 2

Set 1 VO, DAMV, LDAMV MAV, DASDV, MFL

Set 2 MAV, MFL, LDAMV STD, ASS, LDAMV

Set 3 IEMG, MFL, LDAMV RMS, ASS, LDAMV

Set 4 IEMG, DASDV, LDAMV MAD, DASDV, MFL

Set 5 MAD, DAMV, LDAMV MMAV, DASDV, MFL

Set 6 MAV, DAMV, LDAMV MMAV, DAMV, MFL

Set 7 MAV, STD, MFL LD, DAMV, MFL

Set 8 LD, DAMV, LDAMV RMS, MFL, LDAMV

Set 9 MMAV, IEMG, LDAMV WL, ASS, LDAMV

Set 10 RMS, DASDV, LDAMV IQ, MFL, LDAMV

TABLE 4 Optimal 4 feature sets.

Sets Features

Dataset 1 Dataset 2

Set 1 IEMG, Std, WL, LDAMV MAD,IAV,MFL, LDAMV

Set 2 IAV, WL, DASDV, MFL MAD,STD, DASDV, LDAMV

Set 3 IEMG, Vo, MFL, LDAMV WL,DASDV, ASS, MFL

Set 4 RMS, WL, ASS, MFL IAV,STD,ASS,LDAMV

Set 5 RMS, LDAMV,MAV, DASDV IAV,STD, DASDV, MFL

Set 6 STD,WL, ASS, MFL DAMV,WL, ASS, MFL

Set 7 MMAV, Vo, WL, DASDV IAV,IEMG,WL, LDAMV

Set 8 MAD, DAMV, DASDV, ASS IAV,RMS, DASDV,LDAMV

Set 9 IAV, Vo, MAV, DAMV MAD,VO, STD, DAMV

Set 10 RMS, MAV, DAMV, LDAMV MAV,DAMV,MFL,LDAMV
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FIGURE 8

Average classification accuracies of all combinations* Significant differences between all sets of features of the datasets. The p value is less than 0.01.

less than that of the other models. Although the computational cost 
of Lasso was greater than that of all other models, it was lower than 
that of the original set.

All these models are viable for dimensionality reduction, with 
GPLVM emerging as the best model according to our study. However, 
for the highest accuracy, exhaustive feature selection remains the best 
model despite its high cost. The observed outcome might be attributed 
to the utilization of unsupervised dimensionality reduction 
techniques, which inherently aim to map high-dimensional data onto 
lower-dimensional spaces. Consequently, the selected features, while 
deemed optimal, may not possess substantial variance or 
discriminatory power in the reduced space. This could explain the 
observed limitation in capturing diverse patterns or distinguishing 
characteristics within the data (Figure 8).

The number of features used and the types of considered features 
play a crucial role in the classification of hand gestures. This is why 
the features were initially ranked, and those performing poorly were 
subsequently eliminated from the set. Therefore, the number of 
features used depends on different factors, such as the type of activity, 
muscle, sampling frequency, and type of feature in a combination. 
Figure  9 illustrates the effect of the number of features on the 
classification accuracy. The classification accuracies generally show 
an upward trend from 2 to 10 features, followed by a slight decrease 
when there are more than 9 features in a set. This trend could 
be attributed to feature redundancy. In this work, we used exhaustive 
feature selection to obtain 10 high-performing sets of 2, 3, 4 and 5 
combinations. Even though the protocols for both dataset acquisition 
and processing were the same, they still had different high-
performing sets, as shown in Tables 2–4.

TABLE 5 Optimal five feature sets.

Sets Features

Dataset 1 Dataset 2

Set 1 MMAV, WL, DASDV,ASS, 

LDAMV

MMAV, RMS, MAV,ASS, LDAMV

Set 2 MFL, RMS, DAMV,LDAMV, 

MMAV

IQ, IEMG, MAV, MFL, LDAMV

Set 3 MMAV, MAD, IEMG, DASDV, 

LDAMV

IQ, MAD, RMS, MFL, LDAMV

Set 4 IQ, IAV,RMS, MFL, LDAMV MMAV,LD,RMS, MFL, DAMV

Set 5 IQ,IEMG, RMS,DASDV, LDAMV MMAV, MAV,WL, ASS, MFL

Set 6 IQ, Vo, MAV, DAMV, LDAMV IQ, LD, DASDV, ASS, LDAMV

Set 7 IQ, WL, ASS, MFL, LDAMV IQ, MAD, WL, ASS, MFL

Set 8 IQ, MAD, DASDV, MFL, LDAMV IQ, LD, IEMG, DAMV, LDAMV

Set 9 IQ, Vo, DASDV, ASS, LDAMV MMAV,IQ, RMS, ASS, LDAMV

Set 10 MMAV, MAD, WL, DASDV, 

LDAMV

MMAV, LD, STD, MFL, LDAMV

FIGURE 7

Classification accuracies of the top sets of all combinations for 
dataset 2.
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This study utilized data from 12 muscles to analyze five different 
movements. Among these, some muscles were identified as 
dominant for specific movements, while others were not. Even if a 
muscle is not dominant for a particular movement, it often plays a 
supporting or stabilizing role. The interplay between muscles is 
complex, as most movements require some degree of co-activation 
to ensure smooth and coordinated motion. To further reduce 
computational time, future studies could investigate whether 
classification accuracies remain consistent when the number of 
muscles analyzed is reduced or when only a subset of muscles is 
selected for the analysis.

5 Conclusion

This work provides evidence that by using dimensionality reduction 
techniques, higher-dimensional features extracted from multiple EMG 
channels can improve the accuracy of classification in EMG signal 
analysis. The use of such feature selection also significantly improved 
the classification accuracy, with the 5-feature set exhibiting the best 
performance. These findings have implications for developing more 
accurate and efficient algorithms for myoelectric control applications.
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Number of features and their effect on classifier performance.
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