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Dual feature-based and
example-based explanation
methods

Andrei Konstantinov, Boris Kozlov, Stanislav Kirpichenko,

Lev Utkin and Vladimir Muliukha*

Department of Artificial Intelligence Technologies, Peter the Great St. Petersburg Polytechnic

University, St. Petersburg, Russia

A new approach to the local and global explanation based on selecting a

convex hull constructed for the finite number of points around an explained

instance is proposed. The convex hull allows us to consider a dual representation

of instances in the form of convex combinations of extreme points of a

produced polytope. Instead of perturbing new instances in the Euclidean feature

space, vectors of convex combination coe�cients are uniformly generated from

the unit simplex, and they form a new dual dataset. A dual linear surrogate

model is trained on the dual dataset. The explanation feature importance

values are computed by means of simple matrix calculations. The approach

can be regarded as a modification of the well-known model LIME. The dual

representation inherently allows us to get the example-based explanation. The

neural additive model is also considered as a tool for implementing the example-

based explanation approach. Many numerical experiments with real datasets are

performed for studying the approach. A code of proposed algorithms is available.

The proposed results are fundamental and can be used in various application

areas. They do not involve specific human subjects and human data.

KEYWORDS

machine learning, explainable AI, neural additive network, dual representation, convex
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1 Introduction

Many machine learning models, including neural networks, have the black-box nature

due to their complexity and the obscurity of their internal workings. Therefore, to explain

how predictions are obtained for their corresponding inputs, specific explanation methods

are required. This requirement affects many applications, especially those in medicine,

finance, and safety maintenance. As a result, many successful methods and algorithms have

been developed to satisfy this requirement (Arya et al., 2019; Belle and Papantonis, 2021;

Guidotti et al., 2019; Liang et al., 2021; Molnar, 2019; Murdoch et al., 2019; Ras et al., 2022;

Zablocki et al., 2021; Zhang Y. et al., 2021).

There are many definitions and interpretations of the explanation. We understand

explanation as an answer to the question which features of an instance or a set of instances

significantly impact the black-box model prediction or which features are most relevant to

the prediction. Methods answering this question can be referred to as feature importance

methods or the feature-based explanation. Another group of explanation methods is called

the example-based explanation methods (Molnar, 2019). The corresponding methods are

based on selecting influential instances from a training set having the largest impact on

predictions to compare the training instance with the explainable one.
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FIGURE 1

Illustration of a case of out-of-domain data when generated points

may be out of the training point domain.

Feature importance explanation methods, in turn, can be

divided into two groups: local and global. Methods from the first

group explain the black-box model predictions locally around

a test instance. Global methods explain a set of instances or

the entire dataset. The well-known local explanation method

is the Local Interpretable Model-Agnostic Explanation (LIME)

(Ribeiro et al., 2016). In accordance with this method, a surrogate

model is constructed and trained, which approximates the black-

box model at a point. The surrogate model in LIME is the

linear regression whose coefficients can be interpreted as the

feature importance measures. In fact, LIME can be regarded as

a method of the linear approximation of a complex non-linear

function implemented by the black-box model at a point. LIME

is based on using a simple regression model. Agarwal et al. (2021)

proposed to generalize LIME using the generalized additive model

(GAM) (Hastie and Tibshirani, 1990) instead of the simple linear

regression and its implementation by means of neural networks

of a special form. The GAM is a more general and flexible model

in comparison with the original linear model. The corresponding

surrogate model using the GAM is called the neural additive

model (NAM).

Another important method, which is used for the

local as well as global explanations, is SHapley Additive

exPlanations (SHAP) (Lundberg and Lee, 2017; Strumbelj

and Kononenko, 2010). The method is based on applying

game-theoretic Shapley values (Shapley, 1953) which can be

interpreted as average marginal contributions of features to

the black-box model prediction. SHAP can be also viewed

as a method of the linear approximation of the black-box

model predictions.

One of the important shortcomings of LIME is that it uses

the perturbation technique which may be difficult to implement

or may be even incorrect for some datasets, for example, for

images. Moreover, it may provide incorrect results for high-

dimensional data of a complex structure. The perturbation

technique may generate a disturbed dataset especially when dealing

with image data. A slight change in the data can lead to significant

changes in images, often losing their meaning. Examples and

an analysis of this pitfall as well as other pitfalls of LIME are

considered in Molnar et al. (2020). The dual representation

proposed in the study does not deal with images and allows

us to overcome this difficulty. Another problem is that points

generated in accordance with the perturbation technique may be

located out of the training point domain, i.e., these points can

be viewed as out-of-domain (OOD) data. This case is shown in

Figure 1 where training points and generated points are depicted

by small circles and by diamonds, respectively. The explained

point is depicted by the triangle. A machine learning black-

box model learned on points from the training domain may

provide quite incorrect predictions for generated points which

are outside of the domain. As a result, the approximating linear

function constructed by using the generated points may be

also incorrect.

One of the shortcomings of SHAP is that it is also

computationally expensive when there is a large number of

features due to considering all possible coalitions whose number

is 2m, where m is the number of features. Therefore, the

computational time grows exponentially. Several simplifications

and approximations have been proposed to overcome this

difficulty (Strumbelj and Kononenko, 2010, 2011, 2014; Utkin and

Konstantinov, 2022). However, they do not cardinally solve the

problem of high-dimensional data. Moreover, there is another

difficulty of SHAP, which is rarely mentioned. According to

SHAP, the black-box model prediction is computed for instances

composed from subsets of features and some values of removing

features introduced by using some rules. If to use the example

depicted at Figure 1, then new instances in SHAP may be located

inside or outside the ring bounding the training data domain where

the black-box model provides incorrect predictions.

To partially solve the above problems, we propose a new

explanation method which is based on applying two approaches:

the convex hull of training data and the duality concept. The convex

hull machine learning methods (Yousefzadeh, 2020) analyze

relationship between a convex hull of a training set and the decision

boundaries for test instances. The duality is a fundamental concept

in various field. We use the dual representation of data assuming

the linear space in the local area around the explainable instance.

The idea behind the proposed method is very simple. We

propose to find the convex hull of a subset of training data

consisting on K instances which are close to the explainable

instance. By using extreme points of the corresponding convex

polytope, each point inside the convex hull can be expressed

through the linear combination of the extreme points. Coefficients

λ of the linear combination are proposed to be regarded as a

new feature vector which determines the corresponding point.

They can be viewed as probabilities defined in the unit simplex

of probabilities. Since the coefficients belong to the unit simplex,

then they can be uniformly generated from the simplex such

that each dual feature vector λ corresponds to the feature

vector in the Euclidean space (the feature space of training

data). A generated feature vector in the Euclidean space is

computed through extreme points of the convex hull. As a

result, we get a new dual dataset which generates instances
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in a local area around the explainable instance. The surrogate

linear model is constructed by using this new dual dataset

whose elements may have a smaller dimension defined by

K or by the number of extreme points of the convex hull.

Hence, we get important elements of the generated vectors of

coefficients. Due to the linear representation of the surrogate

(explanation) model, the important features in the Euclidean space

can be simply computed from the important dual coefficients

of the linear combinations by means of solving a simple

optimization problem.

Another important idea behind the proposed dual

representation is to consider the example-based explanation.

It turns out that the dual explanation inherently leads

to the example-based explanation when we study how

each dual feature λi contributes into predictions. The

contribution can be determined by applying well-known

surrogate methods, for example, LIME or the neural additive

model (NAM) (Agarwal et al., 2021), but the corresponding

surrogate models are constructed for features λ but not for

initial features.

For the local explanation, we construct the convex hull by using

only a part of training data. Though the same algorithm can be

successfully applied to the global explanation. In this case, the

convex hull covers the entire dataset.

Our contributions can be summarized as follows:

1. A new feature-based explanation method is proposed. It is based

on the dual representation of datasets such that generation of

new instances in carried out by means of generating points from

the uniform distribution in the unit simplex. In other words, the

method replaces the perturbation process of feature vectors in

the Euclidean space by the uniform generation of points in the

unit simplex, which is simpler and is carried out by many well-

known algorithms (Rubinstein and Kroese, 2008; Smith and

Tromble, 2004). The generation resolves the problem of out-of-

domain data and reduces the number of hyperparameters which

have to be tuned for perturbing new instances.

2. A new example-based explanation method is proposed. It is

again based on the dual representation of datasets and uses

well-known explanation models NAM, accumulated local effect

(Apley and Zhu, 2020), the linear regression model. The

explanation method provides shape function which describe

contributions of the dual features into the predictions. In sum,

the model chooses the most influential instances among a

certain number of nearest neighbors for the explained instance.

3. The proposed methods are illustrated by means of numerical

experiments with synthetic and real data. The code of the

proposed algorithm can be found in https://github.com/

Kozlov992/Dual-Explanation.

The study is organized as follows. Related work can be found in

Section 2. A brief introduction to the convex hull, the explanation

methods LIME, SHAP, NAM, and example-based methods is given

in Section 3. A detailed description of the proposed approach

applied to the feature-based explanation and the example-based

explanation is available in Section 4. Numerical experiments with

synthetic data and real data studying the feature-based explanation

are given in Section 5. Section 6 provides numerical examples

illustrating example-based explanation. Advantages and limitations

of the proposed methods are discussed in Section 7. Concluding

remarks can be found in Section 8.

2 Related work

2.1 Local and global explanation methods

The requirement of the black-box model explanation led

to development of many explanation methods. A large part of

methods follows from the original LIME method (Ribeiro et al.,

2016). These methods include ALIME (Shankaranarayana and

Runje, 2019), Anchor LIME (Ribeiro et al., 2018), LIME-Aleph

(Rabold et al., 2020), SurvLIME (Kovalev et al., 2020), LIME for

tabular data (Garreau and von Luxburg, 2020a,b), GraphLIME

(Huang et al., 2022), etc.

To generalize the simple linear explanation surrogate model,

several neural network models, including NAM (Agarwal et al.,

2021), GAMI-Net (Yang et al., 2021), and AxNNs (Chen et al.,

2020), were proposed. These models are based on applying the

GAM (Hastie and Tibshirani, 1990). Similar explanation models,

including Explainable Boosting Machine (Nori et al., 2019) and

EGBM (Konstantinov and Utkin, 2021), were developed using the

gradient boosting machine.

Another large part of explanation methods is based on the

original SHAP method (Strumbelj and Kononenko, 2010) which

uses Shapley values (Lundberg and Lee, 2017) as measures of the

feature contribution into the black-box model prediction. This part

includes FastSHAP (Jethani et al., 2022), Kernel SHAP (Lundberg

and Lee, 2017), Neighborhood SHAP (Ghalebikesabi et al., 2021),

SHAFF (Benard et al., 2022), TimeSHAP (Bento et al., 2021),

X-SHAP (Bouneder et al., 2020), ShapNets (Wang et al., 2021), etc.

Many explanation methods, including LIME and its

modifications, are based on perturbation techniques (Fong

and Vedaldi, 2019, 2017; Petsiuk et al., 2018; Vu et al., 2019), which

stem from the well-known property that contribution of a feature

can be determined by measuring how a prediction changes when

the feature is altered (Du et al., 2019). The main difficulty of using

the perturbation technique is its computational complexity when

samples are of the high dimensionality.

Another interesting group of explanation methods, called

the example-based explanation methods (Molnar, 2019), is based

on selecting influential instances from a training set having the

largest impact on the predictions and its comparison with the

explainable instance. Several approaches to the example-based

method implementation were considered in Adhikari et al. (2019),

Cai et al. (2019), Chong et al. (2022), Crabbe et al. (2021), and Teso

et al. (2021).

In addition to the aforementioned methods, there are a huge

number of other approaches to solving the explanation problem,

for example, Integrated Gradients (Sundararajan et al., 2017), and

Contrastive Examples (Dhurandhar et al., 2018). Detailed surveys

of many methods can be found in Adadi and Berrada (2018),

Arrieta et al. (2020), Bodria et al. (2023), Burkart and Huber (2021),

Carvalho et al. (2019), Islam et al. (2022), Guidotti et al. (2019), Li

et al. (2022), Rudin (2019), and Rudin et al. (2021).
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2.2 Convex hull methods and the convex
duality concept

Most papers considering the convex hull methods study the

relationship between location of decision boundaries and convex

hulls of a training set. The corresponding methods are presented

in Chau et al. (2013), El Mrabti et al. (2024), Gu et al. (2020),

Nemirko and Dula (2021a), Nemirko and Dula (2021b), Renwang

et al. (2022), Rossignol et al. (2024), Singh and Kumar (2021),

Wang et al. (2013), Yousefzadeh (2020), and Zhang X. et al. (2021).

Boundary of the dataset’s convex hull is studied in Balestriero et al.

(2021) to discriminate interpolation and extrapolation occurring

for a sample. Efficient algorithms for efficient computation of the

convex hull for training data are presented in Khosravani et al.

(2016).

The concept of duality was also widely used inmachine learning

models starting from duality in the support vector machine and

its various modifications (Bennett and Bredensteiner, 2000; Zhang,

2002). This concept was successfully applied to some types of neural

networks (Ergen and Pilanci, 2020, 2021), including GANs (Farnia

and Tse, 2018), to models dealing with the high-dimensional data

(Yao et al., 2018).

At the same time, the aforementioned approaches did not

apply to explanation models. Concepts of the convex hull and

the convex duality may be a way to simplify and to improve the

explanation models.

3 Preliminaries

3.1 Convex hull

According to Rockafellar (1970), a domain produced by a set

of instances as vectors in Euclidean space is convex if a straight

line segment that joins every pair of instances belonging to the set

contains a vector belonging to the domain. A set S is convex if, for

every pair, u, v ∈ S , and all λ ∈ [0, 1], the vector (1 − λ)u + λv

belongs to S .

Moreover, if S is a convex set, then for any x1, x2, ..., xt
belonging to S and for any non-negative numbers λ1, ..., λt such

that λ1 + ... + λt = 1, the sum λ1x1 + ... + λtxt is called a convex

combination of x1, ..., xt . The convex hull or convex envelope of

set X of instances in the Euclidean space can be defined in terms

of convex sets or convex combinations as the minimal convex set

containing X , or the intersection of all convex sets containing X ,

or the set of all convex combinations of instances in X .

3.2 LIME, SHAP, NAM, and example-based
methods

Let us briefly introduce the most popular explanation methods.

LIME (Ribeiro et al., 2016) proposes to approximate a black-

box explainable model, denoted as f , with a simple function g in

the vicinity of the point of interest x, whose prediction by means

of f has to be explained, under condition that the approximation

function g belongs to a set of explanation models G, for example,

linear models. To construct the function g, a new dataset consisting

of generated points around x is constructed with predictions

computed be means of the black-box model. Weights wx are

assigned to new instances in accordance with their proximity to

point x by using a distance metric, for example, the Euclidean

distance. The explanation function g is obtained by solving the

following optimization problem:

argmin
g∈G

L(f , g,wx)+ 8(g). (1)

Here, L is a loss function, for example, mean squared error,

which measures how the function g is close to function f at point x;

8(g) is the model complexity. A local linear model is the result of

the original LIME such that its coefficients explain the prediction.

Another approach to explaining the black-box model

predictions is SHAP (Lundberg and Lee, 2017; Strumbelj and

Kononenko, 2010), which is based on a concept of the Shapley

values (Shapley, 1953) estimating contributions of features to the

prediction. If we explain prediction f (x0) from the model at a

local point x0, then the i-th feature contribution is defined by the

Shapley value as

φi =
∑

S⊆N\{i}

|S|! (|N| − |S| − 1)!

|N|!

[

f (S ∪ {i}) − f (S)
]

, (2)

where f (S) is the black-box model prediction under condition that

a subset S of the instance x0 features is used as the corresponding

input; N is the set of all features.

It can be seen from Equation 2 that the Shapley value φi can be

regarded as the average contribution of the i-th feature across all

possible permutations of the feature set. The prediction f (x0) can

be represented by using Shapley values as follows (Lundberg and

Lee, 2017; Strumbelj and Kononenko, 2010):

f (x0) = E[f (x)]+

m
∑

j=1

φj. (3)

To generalize LIME, NAM was proposed in Agarwal et al.

(2021). It is based on the generalized additive model of the form

y(x) = g1(x1) + ... + gm(xm) (Hastie and Tibshirani, 1990) and

consists of m neural networks such that a single feature is fed to

each subnetwork and each network implements function gi(xi),

where gi is a univariate shape function with E(gi) = 0. All networks

are trained jointly using backpropagation and can learn arbitrarily

complex shape functions (Agarwal et al., 2021). The loss function

for training the whole neural network is of the form:

L =

n
∑

i=1

(

yi −

m
∑

k=1

gk(x
(i)
k
)

)2

, (4)

where x
(i)
k

is the k-th feature of the i-th instance; n is the number of

training instances.

The representation of results in NAM in the form of shape

functions can be considered in two ways. On the one hand,

the functions are more informative, and they show how features

contribute into a prediction. On the other hand, we often need

to have a single value of the feature contribution which can be

obtained by computing an importance measure from the obtained

shape function.
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NAM significantly extends the flexibility of explanation models

due to possibility to implement arbitrary functions of features by

means of neural networks.

According to Molnar (2019), an instance or a set of instances

are selected in example-based explanation methods to explain the

model prediction. In contrast to the feature importance explanation

(LIME, SHAP), the example-based methods explain a model by

selecting instances from the dataset and do not consider features

or their importance for explaining. In the context of obtained

results, the example-based methods are represented by influential

instances (points from the training set that have the largest impact

on the predictions) and by prototypes (representative instances

from the training data). It should be noted that instances used for

explanation may not belong to a dataset and are combinations of

instances from the dataset or some points in the dataset domain.

The well-known method of K nearest neighbors can be regarded as

an example-based explanation method.

4 Materials and methods

4.1 Dual explanation

Let us consider the method for dual explanation. Suppose that

there is a dataset T = {(x1, y1), ..., (xt , yt)} of t points (xi, yi), where

xi = (x
(i)
1 , ..., x

(i)
m ) ∈ X ⊂ R

m is a feature vector consisting of m

features, yi is the observed output for the feature vector xi such

that yi ∈ R in the regression problem and yi ∈ {1, 2, ...,C} in the

classification problem with C classes. It is assumed that output y

of an explained black-box model is a function f (x) of an associated

input vector x from X .

To explain an instance x0 ∈ X , an interpretable surrogate

model g for the black-box model f is trained in a local region

around x0. It is carried out by generating a new dataset S

of n perturbed samples in the vicinity of the point of interest

x0 similarly to LIME. Samples are assigned by weights wx in

accordance with their proximity to the point x. By using the black-

box model, output values y are obtained as function f of generated

instances. As a result, dataset S consists of n pairs (xi, f (xi)),

i = 1, ..., n. Interpretable surrogate model g is now trained on S .

Many explanation methods such as LIME and SHAP are based on

applying the linear regression function

g(x) = a1x1 + ...+ amxm = ax
T, (5)

as an interpretable model because each coefficient ai in g quantifies

how the i-th feature impacts on the prediction. Here a =

(a1, ..., am). It should be noted that the domain of set S coincides

with the domain of set T in the case of the global explanation.

Let us consider the convex hullP of a set ofK nearest neighbors

of instance x0 in the Euclidean space. The convex hull P forms a

convex polytope with d vertices or extreme points x∗i , i = 1, ..., d.

Then, each point x ∈ P is a convex combination of d extreme

points:

x=

d
∑

i=1

λix
∗
i , where λi ≥ 0,

d
∑

i=1

λi = 1. (6)

This implies that we can uniformly generate a vector in the

unit simplex of possible vectors λ consisting of d coefficients

λ1, ..., λd, denoted 1d−1. In other words, we can consider points

in the unit simplex 1d−1 and construct a new dual dataset

D = {(λ(1), z1), ..., (λ
(n), zn)}, which consists of vectors λ(j) =

(λ
(j)
1 , ..., λ

(j)

d
), and the corresponding values zj, j = 1, ..., n, computed

by using the black-box model f as follows:

zj = f





d
∑

i=1

λ
(j)
i x

∗
i



 , (7)

i.e., zj is a prediction of the black-boxmodel when its input is vector
∑d

i=1 λ
(j)
i x

∗
i .

In sum, we can train the “dual” linear regression model (the

surrogatemodel) for explanation on datasetD, which is of the form:

h(λ) = b1λ1 + ...+ bdλd = bλT, (8)

where b = (b1,..., bd) is the vector of coefficients of the “dual” linear

regression model.

The surrogate model can be trained bymeans of LIME or SHAP

with the dual datasetD.

Suppose that we have trained the function h(λ) and computed

coefficients b1, ..., bd. The next question is how to transform these

coefficients to coefficients a1, ..., am which characterize the feature

contribution into the prediction. In the case of the linear regression,

coefficients of function g(x) = a1x1+ ...+amxm can be found from

the condition:

g





d
∑

i=1

λ
(j)
i x

∗
i



 = h(λj), (9)

which has to be satisfied for all generated λj. This obvious condition

means that predictions of the “primal” surrogate model with

coefficients a1, ..., am has to coincide with predictions of the “dual”

model.

Introduce a matrix consisting of extreme points

X =
(

x
∗T
i

)d

i=1
. (10)

Note that, λi = 1 and λj = 0, j 6= i, for the i-th extreme point.

This implies that the condition (Equation 9) can be rewritten as

g
(

x
∗
i

)

= h(0, ..., 1i, ..., 0) = bi. (11)

By using Equation 5, we get

g
(

x
∗
i

)

= ax
∗
i
T =bi. (12)

Hence, there holds

aX = b. (13)

It follows from the above that

a = X
−1

b, (14)

where X−1 is the pseudoinverse matrix.

Generally, the vector a can be computed by solving the

following unconstrained optimization problem:

aopt = arg min
a∈Rm

‖aX− b‖2 . (15)

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1506074
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Konstantinov et al. 10.3389/frai.2025.1506074

FIGURE 2

Two cases of the explained point location and the convex polytops constructed from K nearest neighbors.

Require: Training set T ; the black-box model f;

explainable point x0; the number of nearest

neighbors K

Ensure: Important features of x0 (vector a =

(a1,...,am)
T of the linear surrogate model

coefficients)

1: Determine a set TK of K nearest neighbors for x0

adding x0 itself

2: Construct the largest convex hull P of TK

3: Find extreme points of P and their number d ≤ K + 1

4: Generate uniformly n points λ(j), j = 1,...,n, from

the unit simplex 1d−1

5: Find predictions zi of the black-box model in

accordance with associated input
∑d

i=1 λ
(j)
i x∗i for all

i = 1,...,n

6: Construct a new dual dataset D =

{(λ(1),z1),...,(λ(n),zn)}

7: Train the linear regression (Equation 8) on dataset

D and find the vector of coefficients b =

(b1,...,bd)
T

8: Find vector a by solving optimization problem

(Equation 15)

Algorithm 1. The dual explanation algorithm.

In the original LIME, perturbed instances are generated around

x0. One of the important advantages of the proposed dual approach

is the opportunity to avoid generating instances in accordance

with a probability distribution with parameters and to generate

only uniformly distributed points λ(j) in the unit simplex 1d−1.

Indeed, if we have image data, then it is difficult to perturb pixels

or superpixels of images. Moreover, it is difficult to determine

parameters of the generation to cover instances from different

classes. According to the dual representation, after generating

vectors λ(j), new vectors xj are computed by using Equation 6. This

is similar to the mixup method (Zhang et al., 2018) to some extent

that generates new samples by linear interpolation of multiple

samples and their labels. However, in contrast to themixupmethod,

the prediction is obtained as the output of the black-box model

(see Equation 7), but not as the convex combination of one-hot

label encodings. Another important advantage is that instances

corresponding to the generated set D are totally included in the

domain of the dataset T . This implies that we do not get anomalous

predictions f (xi) when generated xi is far from the domain of the

dataset T .

Another question is how to choose the convex hull of the

predefined size and, hence, how to determine extreme points x∗i of

the corresponding convex polytope. The problem is that the convex

hull has to include some number of points from dataset T and the

explained point x0. Let us consider K nearest neighbors around

x0 from T , where K is a tuning parameter satisfying condition

K ≥ d. The convex hull is constructed on these K + 1 points (K

points from T and one point x0). Then, there are d points among

K nearest neighbors which define a convex polytope and can be

regarded as its extreme points. It should be noted that d depends on

the dataset analyzed. Figure 2 illustrates two cases of the explained

point location and the convex polytopes constructed from K = 7

nearest neighbors. The dataset consists of 10 points depicted by

circles. A new explained point x0 is depicted by the red triangle.

In Case 1, point x0 lies in the largest convex polytope with d = 5

extreme points x∗1 , ..., x
∗
5 constructed from seven nearest neighbors.

The largest polytope is taken in order to envelop as large as possible

points from the dataset. In Case 2, point x0 lies outside the convex

polytope constructed from nearest neighbors. Therefore, this point

is included into the set of extreme points and d ≤ K+1. As a result,

we have d = 6 extreme points x∗1 , ..., x
∗
5 , x

∗
6 = x0.

To identify whether the newly added point can be expressed

as convex combination of the existing vectors, the Farka’s lemma

(Dinh and Jeyakumar, 2014) can be applied.

Points λ(j) from the unit simplex 1d−1 are randomly selected

in accordance with the uniform distribution over the simplex. This

procedure can be carried out by means of generating random
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numbers in accordance with the Dirichlet distribution (Rubinstein

and Kroese, 2008). There are also different approaches to generate

points from the unit simplex (Smith and Tromble, 2004).

Finally, we write Algorithm 1 implementing the

proposed method.

Figure 3 illustrates steps of the algorithm for explanation of a

prediction provided by a black-box model at the point depicted

by the small triangle. Points of the dataset are depicted by small

circles. The training dataset T and the explained point are shown

in Figure 3A. Figure 3B shows set TK of K = 13 nearest points such

that only two points (0.05, 0.5) and (1.0, 0.1) from training set T

do not belong to set TK . The convex hull and the corresponding

extreme points are shown in Figure 3C. Points uniformly generated

in the unit simplex are depicted by means of small crosses in

Figure 3D. It is interesting to point out that the generated points

are uniformly distributed in the unit simplex, but not in the convex

polytope as it is follows from Figure 3D. We uniformly generate

vectors λ, but the corresponding vectors x are not uniformly

distributed in the polytope. One can see from Figure 3D that

generated points in the initial (primal) feature space tend to be

located in the area where the density of extreme points is largest.

This is a very interesting property of the dual representation. It

means that the method takes into account the concentration of

training points and the probability distribution of the instances in

the dataset.

The difference between points generated by means of the

original LIME and the proposed method is illustrated in Figure 4

where the left picture (Figure 4A) shows a fragment of Figure 1 and

the right picture (Figure 4B) illustrates how the proposed method

generates instances.

The proposed method requires finding all the extreme points

(vertices) of the convex hull of a given point x0 ∈ R
d and its nearest

neighbors x1, x2, . . . , xn−1. When the dimension d is small, these

extreme points can be computed in time O(2O(d log d)n2) = O(n2)

(Ottmann et al., 2001). In general, determining whether xi is an

extreme point can be done by checking the condition

conv({xj}
n−1
j=0 ) 6= conv({xj}

n−1
j=0 \ {xi}), (16)

where conv(P) denotes the convex hull of the set P.

The above condition is equivalent to solving a feasibility

problem that can be formulated as a linear program. This linear

program involves n variables and n + d constraints and can be

solved using the interior-point method described in Vaidya (1989).

For each point, the time complexity of this procedure is O((n +

d)3/2n log(n)), resulting in an overall complexity of

O((n+ d)3/2n2 log(n)). (17)

In the extreme case, when d≫1, we can use the AVTA algorithm

(Awasthi et al., 2018) to approximate the set of extreme points of

{xj}
n−1
j=0 . This algorithm has the time complexity O(n2(d + t−2)),

where t ∈ (0, 1). The approximation becomes more precise as

t → 0.

The dual approach can work best when applied to analysis

of potential outliers. In that regard, the generation procedure

proposed in the study is more robust than the one used in

LIME. By choosing the generation region as the convex hull of

the explained point nearest neighbors, we reduce the likelihood

of creating additional samples that fail to align with the original

data distribution. As for hyperparameters, the number of nearest

neighbors used to construct the convex hull for the explained

point largely depends on the user’s preferences and the nature of

analyzed data. We can stop incorporating additional neighbors

when a certain threshold is reached, such as when the next nearest

neighbor is considerably more distant compared to the previous

ones. Furthermore, we can choose to exclude a new neighbor if

its data features clearly indicate that it would not contribute much

to the analysis of the explained point. The number of points to

generate can be taken as k · n, where k is a real number and n is

the number of selected neighbors. By default, k = 3. This implies

that we can increment the number of generated points until we

observe the convergence of dual coefficients. We can also modify

the distribution type employed for creating the dual dataset. For

instance, if we take new points to be generated mostly in close

proximity to the explained point x = (x1, ..., xd), we can sample

the points from the Dirichlet distribution with concentration

parameters αi = 1+ t · xi, where t > 0.

4.2 Example-based explanation and NAM

It turns out that the proposed method for the dual explanation

inherently leads to the example-based explanation. An example-

based explainer justifies the prediction on the explainable instance

by returning instances related to it. Let us consider the dual

representation (Equation 8). If we normalize coefficients b =

(b1, ..., bd) as

vi =
bi

∑d
j=1 bj

, (18)

then new coefficients (v1, ..., vd) quantify how extreme points

(x∗1 , ..., x
∗
d
) associated with (λ1, ..., λd) impact on the prediction.

The greater the value of vi, the greater contribution of x∗i into a

prediction. Hence, the linear combination of extreme points

x =

d
∑

i=1

vix
∗
i (19)

allows us to get an instance x explaining x0.

An outstanding approach considering convex combinations of

instances from a dataset as the example-based explanation was

proposed in Crabbe et al. (2021). In fact, we came to the similar

example-based explanation by using the dual representation and

constructing linear regression surrogate model for new variables

(λ1, ..., λd).

The example-based explanation may be very useful when we

apply NAM (Agarwal et al., 2021) for explaining the black-box

prediction. By using dual dataset D = {(λ(1), z1), ..., (λ
(n), zn)}, we

train NAM consisting of d subnetworks such that each subnetwork

implements the shape function hi (λi). Figure 5 illustrates a scheme

of training NAM. Each generated vector λ is fed to NAM such that

each its variable λi is fed to a separate neural subnetwork. For the

same vector λ, the corresponding instance x is computed by using

Equation 6, and it is fed to the black-box model. The loss function
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FIGURE 3

Steps of the algorithm for explanation of a prediction provided by a black-box model at the point depicted by the small triangle. (A) Training dataset

(circles) and the explainable example (triangle). (B) 13 nearest neighbors. (C) The convex hull around the explainable example. (D) Generated

examples (crosses) in the convex hull.

FIGURE 4

Generated points in the original LIME (A) and in the proposed dual method (B).

for training the whole neural network is defined as the difference

between the output z of the black-box model and the sum of shape

functions h1, ..., hd implemented by neural subnetworks for the

corresponding vector λ, i.e., the loss function L is of the form:

L =

n
∑

i=1



zi −

d
∑

k=1

hk

(

λ
(i)
k

)





2

+ αR(w), (20)

where λ
(i)
k

is the k-th element of vector λ
(i); R is a regularization

term with the hyperparameter α which controls the strength of

the regularization; w is the vector of the neural network training

parameters.

The main difficulty of using the NAM results, i.e., shape

functions hk (λk), is how to interpret the shape functions for

explanation. However, in the context of the example-based

explanation, this difficulty can be simply resolved. First, we

study how a shape function can be represented by a single

value characterizing the importance of each variable λk, k =

1, ..., d. The shape function is similar to the partial dependence

plot (Friedman, 2001; Molnar, 2019) to some extent. The
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FIGURE 5

Scheme of training NAM on the generated set of random vectors λ.

importance of a variable (λk) can be evaluated by studying

how rapidly the shape function, corresponding to the variable,

is changed. The rapid change of the shape function says

that small changes of the variable significantly change the

target values (z). The above implies that we can use the

importance measure proposed in Greenwell et al. (2018), which

is defined as the deviation of each unique variable value from

the average curve. In terms of the dual variables, it can be

written as:

I(λk) =

√

√

√

√

1

r − 1

r
∑

i=1

(

hk

(

λ
(i)
k

)

−
1

r

r
∑

i=1

hk

(

λ
(i)
k

)

)2

, (21)

where r is a number of values of each variable λk,

which are analyzed to study the corresponding shape

function.

Normalized values of the importance measures can be

regarded as coefficients vi, i = 1, ..., d, in Equation 19, i.e.,

they show how important each extreme point or how each

extreme point can be regarded as an instance which explains

instance x0.

An additional important advantage of the dual representation

is that shape functions for all variables λk, k = 1, ..., d,

have the same scale because all variables are in the interval

from 0 to 1. This allows us to compare the importance

measures I(λk) without the preliminary scaling which can make

results incorrect.

5 Numerical experiments with the
feature-based explanation

5.1 Example 1

First, we consider the following simplest example when the

black-box model is of the form:

f (x) = 10x1 − 20x2 − 2x3 + 3x4 + 0x5 + 0x6 + 0x7 + ξ

= ax+ ξ , ξ ∼ N (0, 0.1).

Let us estimate the feature importance by using the proposed

dual model. We generate n = 1000 points xi, i = 1, ...,N,

with components uniformly distributed in interval [0, 1], which are

explained. For every point xi, the dual model with K = 10 nearest

neighbors is constructed by generating 30 vectors λ(i) ∈ R
7 in the

unit simplex. By applying Algorithm 1, we compute optimal vector

a
(i) = (a1, ..., a7)

T for every point xi. We expect that the mean value

a of a(i) over all i = 1, ...,N should be as close as possible to the true

vector of coefficients a forming function f (x). The corresponding

results are shown in Table 1. It can be seen from Table 1 that the

obtained vector a is actually close to vector a.

5.2 Example 2

Let us consider another numerical example where the non-

linear black-box model is investigated. It is of the form:

f (x) = −x21 + 2x2 + ξ , ξ ∼ N (0, 0.05).

We takeN = 400 and generate two sets of points x. The first set

contains x whose features are uniformly generated in the interval

[0, 1]. The second set consists of x whose features are uniformly

generated in the interval [15, 16]. It is interesting to note that the

feature x1 is more important for the case of the second set because

x21 rapidly increases whereas x
2
1 decreases when we consider the first

set and x2 is more important in this case.

We take K = 6 and generate 30 vectors λ(i) uniformly

distributed in the unit simplex for every x to construct the linear

model h(λ(i)). Mean values of the normalized importance of

features x1 and x2 obtained for the first set are−0.3 and 0.86 and for

the second set are−0.95 and 0.37. These results completely coincide

with the importance of features considered above for two subsets.

5.3 Example 3

A goal of the following numerical example is to consider a case

when we try to get predictions for points lying outside bounds of

data on which the black-box model was trained as it is depicted in

Figure 1. In this case, the predictions of generated instances may

be inaccurate and can seriously affect quality of many explanation

models, for example, LIME, which uses the perturbation technique.

The initial dataset consists of n = 400 feature vectors x1, ..., xn
such that there holds

xi =

(

x
(1)
i

x
(2)
i

)

= ρ

(

cosϕ

sinϕ

)

, (22)
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TABLE 1 Values of the importance measures in Example 1 in accordance with the explanation approach LR.

x1 x2 x3 x4 x5 x6 x7

a 10 −20 −2 3 0 0 0

a 9.98 −20.01 −2.02 2.97 0.11 −0.02 0.03

where parameter ρ2 is uniformly distributed in interval [0, 22];

parameter ϕ is uniformly distributed in interval [0, 2π].

The observed outputs yi = f (xi) are defined as

f (xi) =
(

x
(1)
i

)2
+
(

x
(2)
i

)2
+ ξ , ξ ∼ N (0, 0.05). (23)

We use two black-box models: the KNN regressor with

k = 6 and the random forest consisting of 100 decision trees,

implemented by means of the Python Sckit-learn. The above black-

box models have default parameters taken from Sckit-learn.

We construct the explanation models at l = 100 testing points

x1,test , ..., xl,test of the form Equation 22, but with parameters ρ2

uniformly distributed in [1.92, 22] and ϕ uniformly distributed in

[0, 2π]. It can be seen from the interval of parameter ρ that a

part of generated points can be outside bounds of training data

x1, ..., xn. Figure 6 shows the set of instances for training the black-

box model and the set of testing instances for evaluation of the

explanation models.

The dual model is constructed in accordance with Algorithm 1

using K = 6 nearest neighbors. We generate 30 dual vectors

λ(j) to train the dual model. We also use LIME and generate

30 points having normal distribution N (xj,test ,6), where 6 =

diag(0.05, 0.05). Every point has a weight generated from the

normal distribution with parameter v = 0.01.

To compare the dual model and LIME, we use the mean

squared error (MSE) which measures how predictions of the

explanation model g(x) are close to predictions of the black-box

model f (x) (KNN or the random forest). It is defined as

MSE =
1

l

l
∑

j=1

(

f (xj,test)− g(xj,test)
)2
.

Values of the MSE measures for the dual explanation model

and for the original LIME, when KNN is used as a black-box

model, are 0.01 and 0.02, respectively. It can be seen from the

results that the dual model provides better results in comparison

with LIME because some generated points in LIME are located

outside the training domain. Values of the MSE measures for

the dual explanation model and for the original LIME, when

the random forest is used as a black-box model, are 0.005 and

0.014, respectively.

5.4 Example 4

Let us perform a similar experiment with real data by taking the

dataset “Combined Cycle Power Plant Data Set” (https://archive.

ics.uci.edu/ml/datasets/combined+cycle+power+plant) consisting

of 9568 instances having 4 features. We use Z-score normalization

(the mean is 0 and the standard deviation is 1) for feature vectors

from the dataset. Two black-box models implemented by using

the KNN regressor with K = 10 and the random forest regressor

consisting of 100 decision trees. The testing set consisting of l =

200 new instances is produced as follows. The convex hull of

the training set in the 4-dimensional feature space is determined.

Then, vertices of the obtained polytope are computed. Two adjacent

vertices xj1 and xj2 are randomly selected. Value λ is generated

from the uniform distribution on the unit interval. A new testing

instance xj,test is obtained as xj,test = λxj1+(1−λ)xj2 . Then, we again

select adjacent vertices and repeat the procedure for computing

testing instances l times. As a result, we get the testing set xj,test ,

j = 1, ..., l.

The dual model is constructed in accordance with Algorithm 1

using K = 10 nearest neighbors. We again generate 30 dual

vectors λ(j) to train the dual model. We also use LIME and generate

30 points having normal distribution N (xj,test ,6), where 6 =

diag(0.05, 0.05, 0.05, 0.05). Every point has a weight generated from

the normal distribution with parameter v = 0.5.

Values of theMSEmeasures for the dual explanationmodel and

for the original LIME, when KNN is used as a black-box model

trained on dataset “Combined Cycle Power Plant Data Set”, are 84

and 0173, respectively. It can be seen from the results that the dual

model provides better results in comparison with LIME because

some generated points in LIME are located outside the training

domain. Values of the MSE measures for the dual explanation

model and for the original LIME, when the random forest is used

as a black-box model, are 110 and 282, respectively. One can again

see from the above results that the dual models outperform LIME.

6 Numerical experiments with the
example-based explanation

6.1 Example 1

We start from the synthetic instances illustrating the dual

example-based explanation when NAM is used. Suppose that the

explained instance x0 belongs to a polytope with six vertices

x1, ..., x6 (d = 6). The black-box model is a function f (x) such that

f (x) = f

(

6
∑

k=1

λkxk

)

= h(λ) = h(λ1, ..., λ6)

= 15λ1 + 22λ2 + 0λ3 + 40(1− λ4) sin(3.14 · λ4)+ 0λ5 + 0λ6.

(24)

n = 2, 000 vectors λ(i) ∈ R
6, i = 1, ..., n, are uniformly generated

in the unit simplex 16−1. For each point λ(i), the corresponding

prediction zi is computed by using the black-box function h(λ).

NAM is trained with the learning rate 0.0005, with hyperparameter

α = 10−4, the number of epochs is 300, and the batch size is 128.
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FIGURE 6

Instances for training the black-box models (the left picture) and testing points for evaluation of the explanation models (the right picture).

TABLE 2 Values of the importance measures in Example 1 in accordance

with explanation approaches: ALE, LR, and NAM.

Importance measures

I(λ1) I(λ2) I(λ3) I(λ4) I(λ5) I(λ6)

ALE 0.172 0.259 0.000 0.569 0.000 0.000

LR 0.182 0.245 0.054 0.405 0.062 0.052

NAM 0.157 0.238 0.012 0.569 0.012 0.012

To determine the normalized values of the importance

measures I(λi), i = 1, ..., 6, we use three approaches. The first

one is to apply the method called accumulated local effect (ALE)

(Apley and Zhu, 2020), which describes how features influence

the prediction of the black-box model on average. The second

approach is to construct the linear regression model (LR) by using

the generated points and their predictions obtained bymeans of the

black-box model. The third approach is to use NAM.

The corresponding normalized values of the importance

measures for λ1, ..., λ6 obtained bymeans of ALE, LR, and NAM are

shown in Table 2. It should be noted that the importance measure

I(λi) can be obtained only for NAM andALE. However, normalized

coefficients of LR can be interpreted in the same way. Therefore,

we consider results of these models jointly in all tables. One can see

from Table 2 that all methods provide similar relationships between

the importance measures I(λ1), i = 1, ..., 6. However, LR provides

rather large values of I(λ3), I(λ5), I(λ6), which do not correspond

to the zero-valued coefficients in Equation 24.

Shape functions illustrating how functions of the generalized

additive model depend on λi are shown in Figure 7. It can be clearly

seen from Figure 7 that the largest importance λ2 and λ4 have

the highest importance. This implies that the explained instance is

interpreted by the fourth and the second nearest instances.

6.2 Example 2

Suppose that the explainable instance x0 belongs to a polytope

with four vertices x
∗
1 , ..., x

∗
4 (d = 4). The black-box model is a

function f (x) such that

h(λ) = λ21 + λ1λ2 − λ3λ4 + λ4.

n = 1000 points λ(i) ∈ R
4, i = 1, ..., n, are uniformly generated

in the unit simplex 14−1. For each point λ(i), the corresponding

prediction zi is computed by using the black-box function h(λ).

NAM is trained with the learning rate 0.0005, with hyperparameter

α = 10−6, the number of epochs is 300, and the batch size is 128.

Normalized values of I(λi) obtained by means of ALE, LR,

and NAM are shown in Table 3. It can be seen from Table 3 that

the obtained importance measures correspond to the intuitive

consideration of the expression for h(λ). The corresponding shape

functions for all features are shown in Figure 8.

6.3 Example 3

Suppose that the explained instance x0 belongs to a polytope

with three vertices x∗1 , x
∗
2 , x

∗
3 (d = 3):

x
∗
1 = (−1,−1)T, x∗2 = (0, 2)T, x∗3 = (1, 0)T.

The black-box model has the following function of two features

x(1) and x(2):

f (x) = 0.7 · sign(x(1))+ sign(x(2))

We generate n = 1, 000 points λ(i) ∈ R
3, i = 1, ..., n, which

are uniformly generated in the unit simplex 13−1. These points

correspond to n vectors xi ∈ R
2 defined as

xi = λ
(i)
1 · (−1,−1)T + λ

(i)
2 · (0, 2)T + λ

(i)
3 · (1, 0)T
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FIGURE 7

Six shape functions obtained in Example 1 for the example-based explanation.

TABLE 3 Values of the importance measures in Example 2 in accordance

with three explanation approaches: ALE, LR, and NAM.

Importance measures

I(λ1) I(λ2) I(λ3) I(λ4)

ALE 0.392 0.087 0.089 0.432

LR 0.357 0.081 0.112 0.450

NAM 0.306 0.134 0.202 0.358

with the corresponding values of f (xi) and shown in Figure 9. It

can be seen from Figure 9 that this example can be regarded as a

classification task with four classes. Parameters of experiments are

the same as in the previous examples, but α = 0.

Normalized values of I(λi) obtained by means of ALE, LR,

and NAM are shown in Table 4. It can be seen from Table 4 that

the obtained importance measures correspond to the intuitive

consideration of the expression for h(λ). The corresponding shape

functions for all features are shown in Figure 10.

7 Discussion

Let us analyze advantages and limitations of the proposed

methods. First, we consider advantages.

1. One of the important advantages is that the proposed methods

allow us to replace the perturbation process of feature vectors

in the Euclidean space by the uniform generation of points in

the unit simplex. Indeed, the perturbation of feature vectors

requires to define several parameters, including probability

distributions of generation for every feature, and parameters

of the distributions. The cases depicted in Figure 1 may lead

to incorrect predictions and to an incorrect surrogate model.

Moreover, if instances are images, then it is difficult to correctly

perturb them. Due to the proposed method, the perturbation

of feature vectors is avoided, and it is replaced with uniform

generation in the unit simplex, which is simple. The dual

approach can be applied to the feature-based explanation as well

as to the example-based explanation.

2. The dual representation of data can have a smaller dimension

than the initial instances. It depends on K nearest neighbors

around the explained instance. As a result, the constructed

surrogate dual model can be simpler than the model trained on

the initial training set.

3. The dual approach can be also adapted to SHAP to generate the

removed features in a specific way.

4. The proposed methods are flexible. We can change the size of

the convex hull by changing the number K. It can be applied to

different explanation models, for example, to LIME, SHAP, and

NAM. The main idea of the adaptation is to use the well-known

explanation methods. In particular, LIME can be incorporated

into the proposed method by constructing the linear regression

for the dual dataset. We can incorporate SHAP for computing

the feature contributions of the dual instances (λ(i), zi). NAM

is incorporated to compute the shape functions of features

λ
(i)
k
, k = 1, ..., d. The method can be applied to the local

and global explanations. There are different definitions of the

global explanation. One of the approaches to define the global

explanation, proposed in Ribeiro et al. (2016), is to compute

the average feature importance over the feature importances

obtained by means of the local explanation for all instances of
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FIGURE 8

Four shape functions obtained in Example 2 for the example-based explanation.

the dataset. This is a computationally difficult problem due to

two main factors: (1) constructing a convex hull on the dataset;

(2) solving the local explanation problems for all instances in

the training set. The first problem can be solved by dividing the

whole dataset into subsets with feature vectors that are close

in distance construct a convex hull for each subset and solve

the “local” problem of global explanation. This can be done,

for example, using a decision tree so that leaves of the tree

contain close instances. Another way is clustering, for which

the assumption is fulfilled that each cluster also contains close

instances. The second problem is computationally intensive. Its

efficient solution is one of the important directions for further

research.

In spite of many advantages of the dual approach, we have to

note also its limitations:

1. The advantage of the smaller dimensionality in the dual

representation is questionable for the feature-based explanation.

If we take a number of extreme points smaller than the data

dimensionality, then we restrict the set of generated primal

points by some subspace of the initial feature space. This can

be a reason of incorrect results. Ways to overcome this difficulty

are an interesting direction for further research. However, this

limitation does not impact on the example-based explanation

because we actually extend the mixup method and try to find

influential instances among nearest neighbors.

FIGURE 9

Dataset of vectors x and the corresponding values of f(x) for

Example 3.

2. Another problem is that calculation of vertices of the largest

convex hull is a computationally hard problem. This problem

does not take place for the example-based explanation when

the number of nearest neighbors is smaller than the initial data

dimensionality.
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In spite of the above limitations, the proposed approach has

many interesting properties and can be regarded as the first step

for developing various algorithms using dual representation. It can

have the biggest impact in medicine, where, on the one hand, high-

dimensional data take place, and, on the other hand, predictions

(diagnoses) need to be explained to believe in them and choose a

desirable treatment.

It has been shown in numerical examples with synthetic data

that the proposed method outperforms the separate LIME method

in terms of accuracy (see, for example, Sections 5.3, 5.4). One of

the reasons is that some generated points in LIME may be located

outside the training domain. However, LIME can be regarded as

a part of the proposed method when it is used for computing

coefficients b = (b1, ..., bd) in the dual representation. This implies

that the computation time for explanation using the proposed

method may exceed the LIME time. At the same time, instances

in the obtained dual dataset may have the smaller dimensionality in

comparison with the initial data. In this case, the computation time

of the proposed method can be comparable with the LIME time.

8 Conclusion

Feature-based and example-based explanation methods in

the framework of the dual feature representation have been

presented in the study. The methods directly follow from the

dual representation. They can be viewed as a basis for their

TABLE 4 Values of the importance measures in Example 3 in accordance

with three explanation approaches: ALE, LR, and NAM.

Importance measures

I(λ1) I(λ2) I(λ3)

ALE 0.411 0.395 0.194

LR 0.430 0.310 0.260

NAM 0.499 0.338 0.163

improvement and the development of other methods within the

dual representation.

In the example-based explanation, we used NAM as a

neural network tool for explaining predictions under condition

of considering the dual dataset with new variables (λ1, ..., λd).

However, there are effective explanation methods different from

NAM, which are based on the gradient boosting machine (Nori

et al., 2019; Konstantinov andUtkin, 2021). The combination of the

proposed approach with these methods is an interesting direction

for further research.

Another interesting direction for further research is to study

how the proposed approach adapts to the example-based image

explanation when K nearest neighbors are not determined by the

proximity of original images. The search for efficient adaptation

algorithms seems to be a relevant and interesting task.

There are interesting results in the linear programming when

the significance of dual variables is related to perturbations of

coefficients of the primal constraints (Castillo et al., 2006). This

peculiarity can be applied to develop new explanation methods.

It should be noted that many applications have features that

are not taken into account in the proposed approach, for example,

the presence of multimodal data having different dimensions.

Adaptation of the approach and the extensions oriented to specific

applications are also important issues for further research. An idea

behind the problem solution is to reduce different dimensions to

one in the dual data representation.

Adversarial settings can produce a complex cluster

structure within the feature space. A significant challenge in

such scenarios is addressing out-of-distribution points. The

proposed method can handle this problem unlike the LIME. To

enhance the robustness, we propose two hyperparameters: the

configuration of the Dirichlet distribution and the number of

the neighbors to construct the convex hull. Proper adjustment

of these hyperparameters has the potential to enhance the

method’s robustness.

The proposed results are fundamental. They are illustrated

only with synthetic data or well-known real datasets. Therefore,

we do not use personal data which require to implement robust

FIGURE 10

Three shape functions obtained in Example 3 for the example-based explanation.
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security measures to safeguard sensitive information and prevent

unauthorized access. It should be noted that one of the important

goals of the proposed results is to provide explanations for the

machine learning model decisions and actions making the models

transparent. As a result, users have a clear understanding of

how the black-box model operates and the factors influencing

its outputs. The proposed method belongs to the field of

explainable artificial intelligence; thus, we have contributed to the

development of transparent and reliable AI systems. Methods of

the prediction explanation can improve collaboration between AI

developers and domain experts as they can be used to facilitate

the feedback exchange between the AI engineer and the expert.

Our method can be more useful in domains where the example-

based explanations are in demand. The potential risks and biases

associated with the proposed method are comparable to those of

the LIME method and depend on the data scientist’s handling of

the data.
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