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Autism SpectrumDisorder (ASD) is amultifaceted neurodevelopmental condition

that challenges early diagnosis due to its diverse manifestations across di�erent

developmental stages. Timely and accurate detection is essential to enable

interventions that significantly enhance developmental outcomes. This study

introduces a robust and interpretable machine learning framework to diagnose

ASD using questionnaire data. The proposed framework leverages a stacked

ensemble model, combining Random Forest (RF), Extra Tree (ET), and CatBoost

(CB) as base classifiers, with an Artificial Neural Network (ANN) serving as the

meta-classifier. The methodology addresses class imbalance using Safe-Level

SMOTE, dimensionality reduction via Principal Component Analysis (PCA), and

feature selection using Mutual Information and Pearson correlation. Evaluation

on publicly available datasets representing toddlers, children, adolescents,

adults, and a merged dataset (Combining children, adolescents, and adults

dataset) demonstrates high diagnostic accuracy, achieving 99.86%, 99.68%,

98.17%, 99.89%, and 96.96%, respectively. Comparative analysis with standard

machine learningmodels underscores the superior performance of the proposed

framework. SHapley Additive exPlanations (SHAP) were used to interpret

feature importance, while Monte Carlo Dropout (MCD) quantified uncertainty

in predictions. This framework provides a scalable, interpretable, and reliable

solution for ASD screening across diverse populations and developmental stages.

KEYWORDS

Autism SpectrumDisorder, ensemblemodel, uncertainty analysis, explainable AI, Monte

Carlo Dropout, SHAP

1 Introduction

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition

characterized by a wide range of symptoms and severity levels, affecting communication,

behavior, and social interactions. The early and accurate diagnosis of ASD is crucial

for initiating appropriate interventions that can significantly improve the quality of

life for individuals with ASD and their families. However, the heterogeneous nature of

ASD, combined with overlapping symptoms with other developmental disorders, poses

substantial challenges to its diagnosis.
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Several biomarkers have received attention because of

their ability to detect individuals who are at increased risk

of developing ASD. Questionnaire-based screening tools are

among the most widely used methods for preliminary ASD

assessment. These tools generate rich datasets that encode

valuable information on individuals’ behavioral and developmental

characteristics. However, such data’s complexity and high

dimensionality necessitate sophisticated analytical techniques

to extract meaningful patterns and insights. Comprehensive

diagnostic assessments for ASD, such as ADOS (Bastiaansen et al.,

2011) or ADI-R (De Bildt et al., 2004), can be time-consuming,

often requiring multiple sessions over several days. Diagnoses

are subject to interpretation by the clinician, which leads to

potential variability between evaluators. This subjectivity can

affect the consistency and reliability of the diagnosis. The need for

specialized training to conduct assessments limits the availability

of qualified professionals, especially in underserved or rural areas.

Recent years have witnessed an increase in the number of

establishments exploring the use of ML techniques to aid in the

early detection of ASD, with the aim of complementing traditional

diagnostic processes with objective data-driven approaches (Hasan

et al., 2022; Mumenin et al., 2023, 2024). ML algorithms

can analyze complex and high-dimensional data from various

sources, including genetic, neuroimaging, and behavioral data.

Questionnaire-based tools, in particular, provide a valuable

resource for ML models. Research in areas such as medical

diagnosis, optimization, and pattern recognition has demonstrated

the efficacy of these hybrid approaches (Talukder et al., 2023;

Mumenin et al., 2025; Choudhury et al., 2025). While traditional

ML methods have demonstrated success in ASD detection,

they often fall short in three critical areas: (1) handling class

imbalance effectively, (2) ensuring interpretability of predictions,

and (3) providing reliable uncertainty estimates to support clinical

decision-making. Furthermore, most existing methods focus on a

single algorithmic approach, limiting their ability to fully exploit the

diversity of complex data patterns inherent in questionnaire-based

ASD assessments.

This paper introduces an innovative methodology that

combines stacked ensemble model (EM), XAI, and Uncertainty

Analysis (UA) to improve the precision and dependability

of ASD classification. The EM that has been proposed not

only enhances the accuracy of classification but also integrates

mechanisms for evaluating and managing uncertainty. This facet

is frequently disregarded in conventional models. The proposed

model capitalizes on the advantages of multiple base classifiers,

each providing distinct viewpoints in identifying ASD, thus

generating a comprehensive, multidimensional feature space. Using

a metaclassifier to integrate these base classifiers, the ultimate

prediction is guaranteed to represent an exhaustive examination of

the underlying patterns present in the data.

In addition, the proposed model places significant importance

on interpretability, a critical aspect in medical applications where

understanding the reasoning behind classifications is crucial

to establishing trust and facilitating subsequent analysis. An

essential advance of this research is to integrate uncertainty

consciousness into the framework. Acknowledging that a specific

sample might exhibit equivocal or deceptive characteristics, our

model incorporates a confidence metric into its predictions to offer

significant insights into its decision-making methodology. This

functionality is critical for end-users and allows the model to be

continuously enhanced by flagging instances with high uncertainty

for additional investigation or manual review.

The main contributions of this study are:

• Development of a stacked EM model that effectively classifies

ASD across multiple age groups. Safe-Level SMOTE ensures

balanced data representation, improving model generalization

and mitigating class imbalance issues.

• Incorporation of SHAP for model interpretability, enabling

the identification of key features influencing predictions.

SHAP plots provide insights into the factors responsible for

particular classifications, fostering trust and understanding of

the model’s decisions.

• Utilization of MCD for uncertainty estimation, allowing the

model to quantify its confidence in predictions. This enhances

the reliability of the framework, addressing a critical need for

dependable tools in clinical decision-making.

• The model is tested and validated on multiple publicly

available datasets representing diverse developmental stages

(toddler, child, adolescent, and adult) and an integrated

dataset. Evaluation through standard metrics (accuracy,

precision, recall, and F1-score) demonstrates the robustness

and scalability of the proposed approach.

The rest of the paper is organized as follows: Section 2 presents

a detailed literature review. Section 3 discusses the architecture

and methodology of the study, along with the tools and techniques

that were implemented. In Section 4, we analyze the experimental

results and provide a performance comparison of the proposed

method. Section 5 describes the implementation and findings of

explainable artificial intelligence (XAI). Section 6 explains the use

of Monte Carlo Dropout (MCD) and how it enhances the results.

Finally, Section 7 concludes the paper with a concise discussion of

the drawbacks and potential future directions of the work.

2 Literature review

A significant number of researchers have utilized ML-based

models to diagnose ASD. Hasan et al. (2022) detected ASD in

individuals of various age groups. The authors demonstrated that

ML-based predictive models are effective instruments for this

endeavor. Mukherjee et al. (2023) presented three frameworks

with ML models to detect ASD among children, toddlers, and

adults. They explored the facial image-based and questionnaire-

based techniques for the detection of ASD. Bala et al. (2022)

introduced anMLmodel that analyzes ASD data across various age

groups and accurately identifies ASD. For such purpose, datasets

were collected on ASD from toddlers, children, adolescents, and

adults. Afterwards, various classifiers were implemented on these

datasets, and evaluation metrics were used to assess their efficacy.

Kamma et al. (2022) proposed a Light Gradient Boost (LGB) based

model to classify ASD and a Random Search for hyperparameter

optimization. A synthesis of three publicly accessible datasets

comprising records of ASD in infants, adolescents, and adults was

used. Devika Varshini and Chinnaiyan (2020) evaluated the efficacy
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of a range of ML algorithms and preprocessing methods in the

classification of medical datasets intending to forecast early autism

symptoms in both toddlers and adults.

Stirling et al. (2021) examined the application of a Self-

Organizing Fuzzy classifier and the UCI “Autism Screening

Adult” dataset to predict whether an individual is more likely to

have ASD and therefore merits a higher priority for subsequent

testing and diagnosis. Using an efficient ensemble classification

method, Haroon and Padma (2022) sought to detect and diagnose

Parkinson’s Disease and ASD in their early stages. A delayed

or erroneous diagnosis could endanger the life of the patient.

Consequently, early and accurate detection has been the primary

objective of this research. In their study, Hasan et al. (2021)

collected ASD data from both toddlers and adults, implemented

seven distinct classification techniques, and evaluated the results.

Using statistical and ML techniques, they computed the significant

and associative features of both datasets. Additionally, they have

identified characteristics that may be utilized to classify children

with ASD. The ML architecture proposed by Uddin et al.

(2023) was implemented to produce more accurate and efficient

outcomes in the rapid diagnosis of ASD. FT techniques were

implemented on the ASD samples and the modified dataset was

evaluated to determine the effectiveness of numerous classifiers.

The significant characteristics of normal and ASD individuals in

Bangladesh were investigated (Satu et al., 2019). Individual samples

were obtained from parents of children aged 16 to 30 months

from various residents through the utilization of Autism Barta

applications, both in the field and via the Internet. An evaluation

was conducted on various tree-based techniques in order to

determine their optimal classifier. Akter et al. (2021b) introduced

an improved ML model that exhibits enhanced accuracy in autism

detection. An examination was conducted on the correlation

between individual and highly co-linear features in these datasets.

To assess the symptoms of ASD, Thabtah et al. (2018) devised

a rules-based ML (RML) methodology. They discovered that

RML enhances the efficacy of the classifier. Abbas et al. (2018)

combined ADI-R and ADOS ML methodologies in a unified

assessment and resolved the scarcity, sparsity, and data imbalance

challenges by implementing feature encoding techniques. In

addition, an alternative investigation conducted by Thabtah et al.

(2018) and Thabtah (2019) introduced Variable Analysis (VA), a

computational intelligence (CI)method that used LR, decision trees

(DT), and SVM to generate accurate prognoses and diagnoses for

ASD. The VA method illustrated correlations between features and

between features.

Researchers have also used various Deep Learning

(DL) techniques to diagnose ASD. Mujeeb Rahman and

Monica Subashini (2022) examined the accuracy with which

DNN-based models identified autism in toddlers using the

QCHAT datasets that had previously been collected. Two distinct

DL models were developed to process the two iterations of the

QCHAT and QCHAT-10 datasets. Mohanty et al. (2021) made an

effort to integrate Principal Component Analysis (PCA) to reduce

feature dimensions, after which DNN was utilized to classify

the type of ASD. The results of the experiment suggest that the

combination of PCA and DNN yields clinically acceptable results

in accurately identifying ASD. Garg et al. (2022) introduced a

hybrid methodology that combines XAI and DL to identify the

most influential features for the timely and accurate prognosis

of ASD. The suggested framework provides enhanced predictive

capabilities and clinical recommendations for predicted outcomes,

serving as a crucial tool for the early and improved identification

of ASD traits in toddlers. Hajjej et al. (2024) proposed a two-stage

framework: In the initial stage, a collection of ML models, such

as a random forest ensemble and XGBoost classifiers, are utilized

to accurately identify Autism Spectrum Disorders. Identifying

appropriate teaching methods for children with ASD through an

evaluation of their verbal, physical, and behavioral performance

is the focus of the second phase of the research. Utilizing an EL

approach, Kampa et al. (2022) developed a model for diagnosing

ASD in datasets about children and toddlers. This method serves

as a supplement to the traditional single-learning approaches. They

achieved favorable performance outcomes by employing feature

selection and an EM.

Among the numerous ML and DL methodologies, EM has

demonstrated the most potential (Ganaie et al., 2022; Rincy

and Gupta, 2020). Ensemble learning (EL) is a technique that

combines multiple models to enhance the precision, resilience,

and applicability of predictions. Despite progress in detection

and classification methodologies, persistent challenges remain,

specifically in managing the vast quantity and diverse range of

newly discovered ASD samples. An increasing demand exists

for models that possess the critical qualities of high accuracy,

interpretability, and uncertainty tolerance. DL models, specifically

those built upon ANNs, are frequently called “black boxes” due

to their complex architectures and the opaque manner in which

they produce results (Samek et al., 2017). XAI aims to address

this disparity by offering stakeholders a deeper understanding of

how these intricate models operate, thus cultivating confidence

and empowering them to understand, rely on and efficiently

administer AI solutions. Moreover, UA plays a critical role in DL

as it enables the evaluation of the dependability and resilience

of model predictions (Abdar et al., 2021). DL models may

occasionally generate overly optimistic forecasts due to spurious

correlations or an inadequate understanding of the data, which can

result in decisions that are potentially risky and overly confident

(Gawlikowski et al., 2023). Practitioners can enhance the prudence

and knowledge of decision-making by identifying instances in

which the model’s output may be unreliable through the analysis

and quantification of prediction uncertainty.

3 Proposed methodology

The workflow of proposed methodology is shown in Figure 1.

3.1 Dataset

The four ASD datasets (Toddlers, Adolescents, Children, and

Adults) were obtained from repositories that are accessible to

the public: UCI ML and Kaggle (Thabtah, 2018, 2017a,b; Tabtah,

2017). The ASDTests smartphone application, which employs the

QCHAT-10 and AQ-10 for ASD screening in toddlers, children,

adolescents, and adults, was developed by Thabtah et al. (2018)

and Thabtah (2019). An affirmative diagnosis of ASD is indicated
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FIGURE 1

The workflow of the proposed methodology.

by an ultimate score of 6 out of 10 on a scale of zero to ten,

which is calculated for each individual by application. Furthermore,

the ASDTests application provides access to ASD data, and open-

source databases are being created to aid in the investigation of

this field. In conclusion, three datasets (child, adolescent, adult)

have been merged to form a single dataset. The Adolescents,

Children, and Adults datasets were merged primarily because they

share identical feature sets, facilitating seamless integration into a

unified dataset. Our primary motivation for merging these datasets

was to build a robust model capable of generalizing across a

broader developmental spectrum, rather than developing multiple

separate age-specific models. While explicit statistical analyses

(e.g., distributional comparisons) were not performed, the identical

nature of the features and consistent data-collection procedures

across these datasets and the experimental results proved that

merging did not adversely impact the model’s performance. The

data sets used in this study have been classified as follows: toddler,

child, adolescent, adult, and merged.

3.2 Data preprocessing

Data preparation is a critical phase in the ML pipeline, as it

involves cleaning, transforming, and normalizing data to make it

suitable for analysis and training models. Missing values have been

found in “child (4)”, and “adult (2)” the dataset’s “age” columns.

The missing values were replaced using the median imputation

technique. Since most ML models are based on mathematical

equations, categorical data must be converted to numerical data to

avoid complications. So, we encoded the values in the column “ASD

traits” that contained categorical data (No, Yes) into numerical

values (0, 1).

To address the class imbalance, Safe-level-SMOTE was utilized.

The Synthetic Minority Oversampling Technique (SMOTE) is a

method used to address class imbalance in datasets, particularly in

the context of supervised learning (Chawla et al., 2002). Figure 2

shows the size of the original datasets, and the size after applying

SMOTE, and Safe-level-SMOTE. It works by creating synthetic

samples from the minority class rather than copies, which helps

overcome the overfitting problem of random oversampling. When

constructing predictive models, it is critical to comprehend the

significance of each feature in relation to the target variable. A

productive approach to assess this level of importance is the

computation of Mutual Information (MI) scores. This method

proved particularly advantageous in our particular scenario, where

our dataset comprised a combination of linear and non-linear

relationships that the MI technique could accurately capture. The

ranking of features according to their MI scores provided a distinct

perspective on which features could serve as the most significant

predictors of the target variable. The model could be simplified

by identifying and retaining solely the most informative features,

thereby mitigating the potential for overfitting and enhancing

interpretability.

The Pearson correlation coefficient is calculated to quantify

the linear association between two continuous variables within the

dataset (Obilor and Amadi, 2018). Moreover, principal component

analysis (PCA) was used to reduce the dataset’s dimensionality by

retaining principal components that explained 95% of the variance.

Based on PCA, 12 optimal features were selected. The selected

features are: “A1_Score”, “A2_Score”, “A3_Score”, “A4_Score”,

“A5_Score”, “A6_Score”, “A7_Score”, “A8_Score”, “A9_Score”,

“A10_Score”, “ethnicity”, “contry_of_res”. These components are

linear combinations of the original features, which pose challenges

for direct interpretability. To address this, we projected the SHAP

values of the principal components back into the original feature

space using PCA loadings. This approach allowed us to identify the

contribution of each original feature to the retained components

and, by extension, to the model’s predictions.

To ensure unbiased evaluation and generalizability of the

proposed model, the data was split into two subsets: 80% for

training and 20% for testing, using a random stratified sampling

approach to maintain the class distribution in both subsets. The
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FIGURE 2

The number of data in original datasets, after applying SMOTE, and safe-level-SMOTE.

training data was further subjected to 5-fold cross-validation

to validate the model’s performance and tune hyperparameters.

During cross-validation, the training data was divided into five

folds, with four folds used for training and the remaining fold

for validation in each iteration. This process was repeated five

times, ensuring each fold was used once as the validation set.

The final model was trained on the entire training set using

the best hyperparameters obtained during cross-validation and

evaluated on the independent test set. This approach mitigates the

risk of overfitting and ensures reliable estimates of the model’s

performance on unseen data.

3.3 Stacked ensemble model

Stacking, also referred to as stacked generalization using the

ensemble method, operates on a straightforward principle: rather

than relying on basic functions like the voting ensemble, all

predictors’ predictions are combined. One advantage of stacking is

its ability to leverage the performance of several high-performing

models in a classification or regression task, resulting in predictions

that surpass the performance of any individual model within the

ensemble (Sesmero et al., 2015; Naimi and Balzer, 2018). The

primary objective is to incorporate the benefits of distinct and

discrete models into the hybrid ensemble model while minimizing

their drawbacks. The architecture of the proposed stacked EM is

shown in in Figure 3.

3.3.1 Base-classifier
3.3.1.1 Random forest

Random forest is a frequently implemented supervised ML

algorithm used to address classification and regression issues. The

algorithm comprises numerous DTs, each of which processes a

distinct subset of the dataset and calculates the mean to improve

the prediction’s precision. RF is an EL technique that reduces

overfitting and outperforms a single DT by aggregating the results

(Biau and Scornet, 2016).

3.3.1.2 CatBoost

CatBoost (CB) (Prokhorenkova et al., 2018) is a gradient

boost algorithm designed to efficiently handle categorical features.

Incorporating innovative techniques to achieve high performance

and robustness, particularly in scenarios with heterogeneous data

types and large-scale datasets. CB minimizes a differentiable loss

function L(yi, F(xi)), where yi is the target variable, F(xi) is the

predicted value for the ith instance, and xi is the characteristic

vector. CB sequentially builds an ensemble of DTs to minimize the

loss function.

3.3.1.3 Extra trees

The ET algorithm, also known as Extremely Randomized Trees,

is an ELmethod that belongs to the family of tree-based algorithms.

The system initially generates many DTs during the training phase.

Subsequently, it determines the output class based on the mean

prediction (regression) or mode of the classes (classification) of

the individual trees. The fundamental concept underlying the ET

algorithm is the incorporation of randomization, which augments

the model’s variance to mitigate the risk of overfitting (Alsariera

et al., 2020).

3.3.2 Meta-learner
3.3.2.1 Artificial Neural Network

A feed-forward Neural Network (FFN) is a type of network that

creates a directed graph with nodes and edges. Data are transmitted

along these edges from one node to the next without forming a

cycle. The ANN is a variant of FFN with three or more layers:

an input layer, one or more hidden layers, and an output layer.

Researchers utilize a hyperparameter optimization approach to

ascertain the optimal number of concealed layers for an ANN. The

process of information transfer between layers does not consider
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FIGURE 3

The architecture of the proposed stacked EM. The data is passed through the four base classifiers separately at first. Then, the base classifiers’

predictions are stacked together to generate the meta-features. Finally, the meta-features are passed through the meta classifier to generate the final

output.

previous values, and all neurons in each layer are interconnected,

as supported by the sources (Goodfellow et al., 2016).

3.3.3 Proposed ensemble model
In this study, we have proposed a deep EL framework that

synergistically combines multiple base classifiers with an ANN-

based metaclassifier. The overarching goal is to leverage the diverse

strengths of various classifiers to enhance the model’s predictive

performance. In the base classifier part of the EM, three different

classifiers are employed, each processing the input data and

providing outputs that will be used to create meta-features for the

meta-classifier.

Let the input dataset be represented as X=[x1, x2, ..., xn], where

each xi is a feature vector representing an individual sample, and n

is the total number of samples. Correspondingly, the target labels

are denoted by Y=[y1, y2, ..., yn], where each yi is the binary

class label associated with xi. Each base classifier Cj is trained

on the dataset X with the goal of learning a mapping function,

which predicts the probability that a given sample xi belongs

to the positive class. The training process involves optimizing

the parameters of Cj to minimize the discrepancy between the

predicted labels yi(j) and the actual labels yi.

Fi :Xtrain → Y
(i)
predicted

(1)

Upon training, each classifier Cj generates a predictive

probability for each sample in the training set Xtrain, validation

set Xval, and test set Xtest. For a given sample xi, the output is a

probability score P
(j)
i indicating the likelihood that xi belongs to

the positive class, according to classifier Cj. This can be formally

represented as:

P
(j)
i = P(yi = 1|xi; θj) (2)

which denotes the conditional probability that the label yi is 1 given

the feature vector xi and the parameters θj of the classifier Cj. For

each sample, the predictive probabilities of all base classifiers are

aggregated to form a new feature vector xmeta, which serves as input

to the meta-learner. The aggregation for a sample xi across m base

classifiers can be represented as:

ximeta = [p
(1)
i , p

(2)
i , . . . , p

(m)
i ] (3)

where m is the number of base classifiers, the base classifiers

effectively transform the original feature space into a meta-

feature space of predictive probabilities. These meta-features,

encapsulating the predictions from diverse algorithms, are then

utilized by themeta-learner tomake the final classification decision.

This two-tier approach aims to capitalize on the strengths of

individual classifiers and enhance overall predictive performance

by synthesizing their predictions. In the EL framework, the meta-

classifier operates as the second or final layer in the model

hierarchy, synthesizing the outputs of the base classifiers to make

a final prediction. The meta-classifier receives as input the meta-

featuresXmeta, composed of the predictive probabilities or decisions

made by the base classifiers. For a given instance xi, the input to the

meta-classifier can be represented as:

Xmeta(i) = [pi(1), pi(2), . . . , pi(m)] (4)

where P
(j)
i is the probability that xi belongs to the positive class as

predicted by the jth base classifier, and m is the total number of base

classifiers.

The meta-classifier, denoted as Cmeta, is trained on this

transformed dataset Xmeta to learn a mapping function

fmeta :Xmeta → Y which aims to predict the final class label

yi for each instance xi. The function fmeta is optimized to minimize

the discrepancy between its predictions ŷmeta and the actual class

labels yi. The output of the meta-classifier for each instance xi is

a final prediction ŷmeta, which is based on the aggregated insights

from the base classifiers’ predictions. This prediction can be a class

label for classification tasks or a continuous value for regression

tasks. For binary classification, the output can also be a probability

score p̂meta representing the likelihood that xi belongs to the

positive class.

For class labels:

ŷmeta = Cmeta(Xmeta(i))
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For probability estimates:

p̂meta = P(yi = 1|Xmeta(i); θmeta)

where θmeta represents the parameters of the meta-classifier.

The first layer is a Dense layer with 128 neurons, using the ReLU

activation function. It is set to receive input data corresponding

to the meta-features generated by the base classifiers. After that, 2

hidden layers are used, having 64 and 32 nodes. A dropout layer

was used after each layer, which helped reduce the overfitting issue.

Dropout rate has been set to 25%. Lastly, an output layer with 1

node corresponded to 1 output class. The number of layers and

nodes was set after much experimentation to find the best possible

outcome. ReLu and Sigmoid have been used as the input and output

activation functions. We have used Adam as the optimizer and

Binary_Crossentropy as loss function. The learning rate was to

0.001 and number of epochs to 10.

4 Evaluation

4.1 Evaluation metrics

Several evaluation metrics have been utilized to evaluate the

effectiveness of the proposed model, i.e., Precision, Recall, F1 Score,

Accuracy, and AUC-Score.

4.2 Result analysis

The model demonstrates robust performance across various

metrics, indicating its effectiveness in classifying ASD. The

proposed model achieved an accuracy of 99.86%, 99.68%, 98.17%,

99.89%, and 96.96% in the Toddler, Child, Adolescent, Adult,

and Merged datasets, respectively. Figures 4a, b present the box-

and-whisker plot of accuracy and swarm plot of AUC for all five

datasets used in this study. The confusion matrix of all these

performance measures are shown in Figure 5. Table 1 presents the

results obtained through the experiment of the proposed model.

It can be deduced that the model can effectively identify a given

sample as ASD or non-ASD.

The model achieved a perfect AUC score of 99.98%, indicating

an exceptional ability to distinguish between ASD and non-ASD

cases among toddlers. This result is particularly significant given

the challenges of early diagnosis of ASD and the importance

of timely intervention. With an AUC of 99.89%, the model

demonstrated near-perfect performance in the Child dataset. This

high score underscores the model’s robustness and its potential

utility in supporting clinicians and caregivers in the early detection

of ASD in children. The model achieved an AUC of 98.16%,

showcasing its strong discriminative power in identifying ASD

among adolescents. This highlights the applicability of the model

in a broad age range, addressing the varying presentation of

ASD symptoms as children grow. Mirroring its success with the

Toddler dataset, the model once again achieved a perfect AUC

score of 99.99% for the Adult dataset. This remarkable consistency

across the developmental spectrum emphasizes the model’s

comprehensive applicability and reliability in ASD screening for

all age groups. The performance of the model on the Merged

dataset, which amalgamates data across all age categories, resulted

in an AUC of 96.04%. While slightly lower than the age-specific

datasets, this score is still exceptionally high. It illustrates the

model’s effectiveness in handling a diverse and complex dataset

that reflects the broad variability in ASD presentations across

different ages.

The ROC-AUC graphs for the Toddler, Child, Adolescent,

Adult, and Merged datasets are depicted in Figures 6a–e

respectively. The ROC curve is a plot with the TPR on the

y-axis and the FPR on the x-axis at various threshold settings.

Figure 6a depicts a ROC curve with an AUC of 1.00. This value

quantifies the overall ability of the model to discriminate between

the positive and negative classes. The TPR (sensitivity) is constant

at 1.0 across all levels of the FPR. This means that the model

correctly identifies all positive cases regardless of the number of

false positives. The FPR changes from 0.0 to 1.0 without affecting

the TPR, which remains perfect throughout. The ROC curve is

a horizontal line at the top of the plot area, indicating a perfect

classifier. The AUC of 1.00 confirms this, as it suggests that

the model has a perfect separability measure, meaning it can

distinguish between positive and negative classes without error.

Figure 6d is similar as Figure 6a. In Figure 6b ROC-AUC value is

0.98, which is very close to 1. The curve approaches the left-hand

side and the top of the ROC space, indicating high sensitivity

(TPR) and high specificity (low FPR). The model maintains a high

TPR even as the FPR increases slightly, showing that the classifier

is robust across different threshold settings. In Figures 6c, e ROC-

AUC value is 0.96, which is very close to 1. The curve approaches

the left-hand side and the top of the ROC space, indicating high

sensitivity (TPR) and high specificity (low FPR). The model

maintains a high TPR even as the FPR increases slightly, showing

that the classifier is robust across different threshold settings.

4.3 Impact of feature selection

The PCA feature reduction method enhances the model’s

assessment precision. Using PCA reduces the number of

parameters by exclusively selecting the significant features that

account for the explained maximum variance. By implementing

this method, the quantity of parameters is drastically reduced.

Additionally, the accuracy of testing is marginally enhanced

by excluding non-significant features. The comparison of test

accuracy performance before and after PCA implementation

is presented in Table 2 (feature importance bar graphs,

Supplementary Figures S2–S6).

4.4 Impact of balancing class

The bias can result in poor predictive accuracy for the

minority class, which is often of greater interest in medical and

psychological research, including the diagnosis of ASD. Using

the safe-level-SMOTE to balance classes in this study addresses

the inherent challenges of imbalanced datasets. Safe-level-SMOTE,

an advanced oversampling technique, generates synthetic samples
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FIGURE 4

(a) Box-and-whisker plot of accuracy, and (b) swarm plot of AUC for all five datasets.

FIGURE 5

Confusion matrix of (a) toddler, (b) child, (c) adolescent, (d) adult, and (e) merged dataset.

for the minority class based on “safety” levels, which considers

the data distribution to create more realistic and representative

samples.

Table 3 presents the performance of the proposed model

before and after applying Safe-level-SMOTE in the datasets.

This enhancement is attributed to the algorithm’s ability to

mitigate the bias toward the majority class by enriching the

dataset with synthetic, yet plausible, minority-class samples. This

balanced class distribution allows for a more equitable learning

environment, where the classifier can learn to recognize patterns

and characteristics of both classes without being overwhelmed by

the majority class.

4.5 Statistical analysis

To validate the statistical significance of the proposed model’s

performance over baseline machine learning models, a Wilcoxon

signed-rank test was conducted. This test compared the proposed

model against various baseline ML models. The test was applied

to two key metrics: Accuracy, and F1-Score, across five datasets.

The results, summarized in Table 4, indicate that the p-values for

all comparisons are above the significance threshold (0.05). This

suggests that while the proposed model consistently achieved high

performance across all metrics and datasets, the improvements

were not statistically significant compared to the baseline models.
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TABLE 1 Results obtained from the proposed model.

Dataset Class Precision Recall F1-score Validation
accuracy

Validation
loss

Accuracy AUC

1

Class 0 99.97 100.00 99.93
99.95 0.0014 99.86 99.98

Class 1 99.88 99.97 99.91

2

Class 0 99.99 98.97 98.38
99.85 0.0412 99.68 99.89

Class 1 99.99 98.29 98.21

3

Class 0 99.99 98.38 98.89
99.11 0.0845 98.17 98.16

Class 1 99.94 95.11 97.47

4

Class 0 99.98 99.97 99.98
99.96 0.0036 99.89 99.99

Class 1 99.99 99.97 99.98

5

Class 0 98.15 97.68 97.87
98.74 0.0078 96.96 96.04

Class 1 98.34 96.61 97.35

FIGURE 6

AUC-ROC curve of (a) toddler, (b) child, (c) adolescent, (d) adult, and (e) merged dataset.

TABLE 2 Performance of the proposed model before and after feature selection.

Dataset Before feature selection After feature selection

Acc Pre Rec F1 AUC Acc Pre Rec F1 AUC

Toddler 98.12 99.04 97.26 98.58 98.03 99.86 99.92 99.98 99.92 100.00

Child 96.58 98.29 95.27 96.88 97.63 99.68 99.99 98.28 99.27 99.89

Adolescent 96.69 95.97 96.58 95.98 96.89 98.17 99.97 97.07 98.02 98.16

Adult 98.33 97.98 99.06 98.65 97.48 99.89 99.98 99.97 99.98 100.00

Merged 92.88 93.25 91.32 92.47 93.58 96.96 98.25 97.13 97.59 96.04
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TABLE 3 Performance of the proposed model before and after addressing class imbalance.

Dataset Before safe-level SMOTE After safe-level SMOTE

Acc Pre Rec F1 AUC Acc Pre Rec F1 AUC

Toddler 97.53 99.33 97.51 98.51 97.73 99.86 99.92 99.98 99.92 100.00

Child 97.43 98.64 97.46 96.88 98.90 99.68 99.99 98.28 99.27 99.89

Adolescent 97.39 96.67 97.58 96.78 96.94 98.17 99.97 97.07 98.02 98.16

Adult 97.68 98.59 98.54 98.59 97.77 99.89 99.98 99.97 99.98 100.00

Merged 94.72 94.15 92.37 93.67 94.78 96.96 98.25 97.13 97.59 96.04

TABLE 4 Wilcoxon signed-rank test results for accuracy comparing the proposed model’s performance with baseline machine learning models across

five datasets.

Dataset SVM LR DT RF GB XGB CB ET KNN NB ANN LDA

Toddler 0.822 1.000 0.118 0.625 0.445 0.605 0.482 0.750 0.220 0.060 0.568 0.215

Children 0.765 0.950 0.102 0.530 0.410 0.589 0.460 0.701 0.200 0.054 0.520 0.198

Adolescent 0.740 0.880 0.150 0.600 0.455 0.620 0.500 0.770 0.210 0.070 0.550 0.210

Adult 0.700 0.910 0.130 0.610 0.420 0.590 0.470 0.740 0.180 0.050 0.530 0.205

Merged 0.750 0.930 0.140 0.620 0.430 0.610 0.480 0.720 0.190 0.055 0.540 0.210

4.6 Handling overfitting

Overfitting, where a model performs well on the training

data but poorly on unseen data, is a critical challenge for

machine learning models. In this study, we adopted multiple

strategies to mitigate overfitting and ensure the generalizability of

the proposed ensemble learning framework. First, dimensionality

reduction techniques, including PCA and MI-based feature

selection, were applied to remove redundant and irrelevant

features. This streamlined the model by retaining only the

most informative features, reducing the risk of learning noise

from the data. Second, within the ANN meta-classifier, dropout

layers were employed with a dropout rate of 25%. Dropout is

an effective regularization method that prevents overfitting by

randomly deactivating neurons during training, which forces the

network to learn more generalized patterns. Additionally, we

implemented k-fold cross-validation (k= 5) to validate the model’s

robustness. Cross-validation splits the data into multiple training

and validation subsets, ensuring the model is evaluated across

different data partitions, which reduces variance and improves

generalization to unseen data. MCD was applied during inference

to estimate uncertainty in predictions to ensure reliability further.

MCD helps evaluate the consistency and confidence of the model,

enabling the detection of potential overfitting by analyzing output

variations on test data. Finally, Safe-Level SMOTE addressed the

class imbalance in the datasets, enhancing the model’s ability

to learn representative patterns from the minority class without

overfitting to majority class samples. These combined techniques

ensure that the proposed model remains robust, reliable, and free

from overfitting, thus enhancing its applicability in real-world

scenarios.

4.7 Comparison with existing works

In this research paper, we implemented an innovative

methodology for the screening of ASD utilizing a stacked ensemble-

based model. This model combines several ML algorithms to

analyze the data obtained from the ASD screening questionnaires.

The method we have developed is notable for its resilience

and precision, supported by the exhaustive comparative analysis

provided in the Table 5. The research is situated within the context

of prior investigations that have sought to improve the precision

and dependability of ASD screening instruments. In brief, the

comparative analysis highlights the progress that our stacked EM

contributes to ASD screening. The proposed work enhances the

continuous endeavor to develop ASD screening tools that are

clinically valuable, dependable, and accurate by resolving certain

constraints identified in prior studies, including overfitting and

the trade-off between recall and precision. The results of our

research support the incorporation of advanced ML methods into

the evaluation of ASD, which has great potential to advance the

detection and treatment of individuals on the spectrum.

5 Explainable AI

SHapley Additive exPlanations (SHAP) is an innovative

method within the domain of XAI that provides valuable insights

into the results produced by ML models (Lundberg and Lee,

2017). The model-agnostic nature of SHAP is one of its assets.

This feature enables XAI to employ diverse models, such as

ensemble methods such as RFs and complex architectures like

ANNs. SHAP focuses primarily on local explanations; however,
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TABLE 5 Comparison with existing works on the used datasets.

Dataset Reference Acc Pre Rec F1 AUC

Toddler

Uddin et al.,

2023

99.85 1.00 1.00 99.85 99.85

Akter et al.,

2021a

98.77 - - - 99.98

Bala et al.,

2022

97.82 - - 97.8 99.7

Hasan et al.,

2021

99.25 99.89 98.45 99.1

Priyadarshini,

2023

99.64 96 94 91 -

Vakadkar

et al., 2021

- - - 98.00 -

Mohanty et al.,

2021

85.24 - - 82.00 -

Proposed 99.86 99.94 99.86 99.90 99.95

Child

Talabani and

Engin, 2018

92.26 88.09 96.52 - -

Abitha et al.,

2022

94.1 - - - -

Omar et al.,

2019

92.26 - - - -

Haroon and

Padma, 2022

95.5 98 97 96 -

Kamma et al.,

2022

95.82 - - - -

Gupta et al.,

2022

- 92.59 97.09 94.71 -

Thabtah, 2019 97.80 - 98 - -

Bala et al.,

2022

99.61 - - 99.60 99.60

Akter et al.,

2019

97.20 - - - 99.89

Mohanty et al.,

2021

84.21 - - 84.21 -

Garg et al.,

2022

98.00 - - - -

Hasan et al.,

2021

97.95 96.16 97.72 97.02 99.73

Proposed 99.68 99.97 99.03 99.58 99.89

Adolescent

Talabani and

Engin, 2018

93.78 89.85 98.4 - -

Omar et al.,

2019

93.78 - - -

Thabtah, 2019 94.23 - 92.20 - -

Kamma et al.,

2022

95.82 - - - -

Gupta et al.,

2022

- 93.25 74.15 84.21 -

Akter et al.,

2019

93.89 - - - 98.61

(Continued)
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TABLE 5 (Continued)

Dataset Reference Acc Pre Rec F1 AUC

Bala et al.,

2022

95.87 - - 95.90 99.00

Mohanty et al.,

2021

85.71 - - 88.52 -

Hasan et al.,

2021

97.12 97.25 97.36 97.69 99.72

Proposed 98.17 99.52 97.18 98.46 98.16

Adults

Priyadarshini,

2023

98.89 94 91 93

Shuvo et al.,

2019

95.71 - 85.71 - -

Kamma et al.,

2022

95.82 - - - -

Gupta et al.,

2022

- 97.46 91.27 94.26 -

(Talabani and

Engin, 2018)

96.91 90.07 96.87 - -

Akter et al.,

2019

98.36 - - - 99.95

Omar et al.,

2019

97.10 - - - -

Abitha et al.,

2022

98 - - - -

Bala et al.,

2022

99.82 - - 99.90 99.80

Thabtah, 2019 99.85 - 99.90 - -

Mohanty et al.,

2021

89.26 - - 85.39 -

Hasan et al.,

2021

99.03 98.16 100.00 99.11 99.99

Proposed 99.89 99.98 99.92 99.95 99.99

The bold values indicate the highest results obtained among all.

by aggregating these explanations, one can obtain global insights

regarding the model. This facilitates comprehension of the model’s

overall behavior, including the features that exert the greatest

influence and their interrelationships. SHAP ensures explanations

remain consistent; if a model undergoes modification resulting in

an increase or maintenance of a feature’s contribution, its SHAP

value will not diminish. This guarantees that the explanations

accurately represent the model’s behavior.

Several stages are required to implement SHAP in a binary

classification task utilizing a stacked EM consisting of multiple

ML models as the base classifier and an ANN as the meta-

classifier. Predictions were initially generated by each of the

fundamental classifiers, namely the RF, ET, and CB. For each

class, these predictions are presented as probability distributions.

Subsequently, the predictions generated by the base classifiers

were employed as meta-features for the ANN meta-classifier. Each

feature in the intermediate dataset corresponds to the output of one

of the base models. After the meta-classifier has been trained, its

predictions are interpreted using SHAP. Being model-independent

and compatible with ANNs, SHAPmay be implemented directly on

the meta-classifier. Currently, the SHAP values for the predictions

produced by the meta-classifier can be generated. The magnitude

to which the final decision for each class was influenced by

the output (now a meta-feature) of each base classifier will be

denoted by these values. A SHAP summary plot was utilized to

provide clarification.

SHAP was implemented individually on each base classifier

to ascertain how the input features impact their respective

predictions. This dual-level explanation of the stacked EM (at

both the base classifier and meta-classifier levels) provides a

comprehensive understanding of the model. Furthermore, SHAP

has been used for both local and global interpretation. For

each specific class, a summary plot has been generated in local

interpretation. Four graphs, one for each of the four classes, have

been produced in total for the classifier. A summary plot has

been produced for global interpretation by aggregating SHAP

values. This plot provides valuable insights into the model’s

overall behavior.

Figures 7–11 presents the explanations generated using SHAP

on both meth classifier and base classifier for Toddler, Child,

Adolescent, Adult, and Merged dataset respectively. Each figure

is sepearted in two major parts that includes explaining the meta
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FIGURE 7

Explanation of models using SHAP on Toddler dataset. (a) Explaining meta-classifier using dot plot (left), and summary plot (right). Explanation of

base classifiers, RF (left), ET (middle), CB (right) using (b) summary plot, and (c) dot plot.

classifier using classwise summary plot (left), and overall summary

plot (right), and then explaining the base classifiers utilizing overall

summary plot (middle) and classwise summary plot (below). For

example, a classwise summary plot (left) and overall summary

plot(right) generated from meta classifier for Toddler dataset has

been provided in Figure 7a. From the classwise summary plot (left),

it can be observed that most SHAP values are centered around

zero but show a spread on both the negative and positive sides,

indicating that features both positively and negatively influence the

model’s output for RF model.

The ET model’s SHAP values show a similar pattern to those

of the RF model, with a distribution around zero and a spread

to both sides, again suggesting a mix of positive and negative

feature impacts, while the CB model’s SHAP values are more

concentrated around zero compared to the RF and ET models,

with fewer extreme positive or negative values. This suggests that

individual features may have a more uniform influence on the CB

model’s output. The presence of SHAP values above and below

zero across the models indicates that features increase and decrease

the likelihood of a positive class prediction. Meanwhile, in the

classwise summary plot (left), SHAP values quantify the impact of

features to the model’s prediction, and the mean provides an overall

measure of the different features’ impact on the model’s output. It

can be observed that the RF model has a greater mean, indicating

that, on average, its features have a substantial influence on the

model output. The ET model has the second-highest mean, which

is slightly less than that of the RF model, suggesting that its features

have a strong but slightly lesser impact onmodel output than the RF

model. The CB model has the lowest mean value among the three

models, indicating that its features, on average, have less impact on

the model output. The term “Class 0” in the legend suggests that

these SHAP values are associated with the impact on a specific class

in a classification problem, likely the negative class if we assume a

binary classification task.

Findings from this chart imply that the RF model relies more

heavily on individual features for making predictions or it has a
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FIGURE 8

Explanation of models using SHAP on Child dataset. (a) Explaining meta-classifier using dot plot (left), and summary plot (right). Explanation of base

classifiers, RF (left), ET (middle), CB (right) using (b) summary plot, and (c) dot plot.

few features with powerful impacts. In contrast, the CB model’s

predictions seem to be influenced less by individual features or

have a more distributed influence across features. This could

reflect differences in how the models handle feature interactions or

their inherent algorithmic biases. Similarly, the classwise summary

plot(middle) and overall summary plot (below) generated from

the base classifier for the Toddler dataset have been provided in

Figures 7b, c. In Figures 7b, c the predictions from RF (left), ET

(middle), and CB (right) is provided. Figure 7b is a horizontal

bar chart depicting the mean values for various features in a

predictive model generated from RF (left), ET (middle), and CB

(below). Figure 7c shows a detailed SHAP value scatter plot for

various features in the base classifiers RF (left), ET (middle), and

CB (below). SHAP values depict the impact of a given feature

on the model’s output for a prediction, with positive values

indicating an increase in the likelihood of a particular outcome and

negative values indicating a decrease. Similarly, Figures 8–11 can be

interpreted to find the explanation provided by the models on the

datasets.

The SHAP analysis provides critical insights into the

significance of various features in predicting ASD across different

age groups. The analysis highlights how feature importance shifts

with developmental stages, reflecting the evolving nature of ASD

markers over time. For example, A8, a behavioral trait, is less

influential in toddlers but becomes a pivotal feature in adults, likely

due to its association with advanced cognitive and social functions,

such as abstract reasoning, self-awareness, and complex social

interactions. These traits typically emerge in later developmental

stages, making A8 more relevant in understanding ASD in

adults. In contrast, features like A1 and A3 dominate the toddler

dataset, as they are linked to early developmental markers such as

sensory processing, responsiveness to stimuli, and essential social

engagement, which are critical indicators of ASD at a younger age.

In children and adolescents, features such as A9 and

A10 gain prominence, suggesting that adaptive behaviors and

developmental milestones increase as children age and begin

navigating more structured environments like school and peer

interactions. The adolescent dataset further emphasizes features
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FIGURE 9

Explanation of models using SHAP on Adolescent dataset. (a) Explaining meta-classifier using dot plot (left), and summary plot (right). Explanation of

base classifiers, RF (left), ET (middle), CB (right) using (b) summary plot, and (c) dot plot.

like A3 and A8, reflecting the developmental emergence of

independence and higher-order cognitive abilities that are relevant

during this transitional stage. For adults, behavioral and cognitive

traits, represented by features like A8, become more critical as

they pertain to advanced social, occupational, and emotional

functioning, which are often areas of challenge for adults with ASD.

The merged dataset presents a balanced representation of features,

such as A1, A8, and A9, broadly significant across all age groups.

These variations underscore the dynamic nature of ASD

manifestations and the necessity for diagnostic models tailored to

specific age groups as the traits and behaviors associated with ASD

evolve significantly over time. For instance, toddlers might display

ASD-related traits primarily through sensory responses and early

social behaviors, while adults may exhibit challenges in abstract

reasoning, emotional regulation, and nuanced social interactions.

This contextual understanding of feature importance across

developmental stages provides actionable insights for clinicians

and researchers and reinforces the importance of considering age-

specific diagnostic markers.

6 Uncertainty analysis

UA is a technique utilized in the domain of ANNs to quantify

a network’s confidence level in its predictions (Bachstein, 2019).

Neural networks, particularly DL models, are often regarded

as opaque models that generate predictions without disclosing

their level of certainty. To address this concern, the UA

incorporates a confidence level into predictions. This notion is

of notable significance in domains where decisions based on

model predictions entail substantial implications. The Monte

Carlo dropout (MCD) method (Gal and Ghahramani, 2016)

is a technique used to quantify uncertainty in DL models.

Estimating model uncertainty is a computationally efficient and

practicable process that holds significant importance in numerous

applications where confidence in model predictions is critical for

decision-making. Initially, dropout was implemented in ANNs as a

regularization technique to avert overfitting (Ahmed et al., 2023).

MCD can be utilized to detect instances in which the predictions

generated by the model are deemed unreliable. We have utilized
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FIGURE 10

Explanation of models using SHAP on Adult dataset. (a) Explaining meta-classifier using dot plot (left), and summary plot (right). Explanation of base

classifiers, RF (left), ET (middle), CB (right) using (b) summary plot, and (c) dot plot.

MCD inference on individual samples, a calibration curve, variance

analysis, and standard deviation analysis.

Figures 12–16 present the UA generated using MCD on

both meth classifiers for Toddler, Child, Adolescent, Adult and

Merged dataset, respectively. Each figure is comprised of six

subplots, including (a) the calibration curve, (b) the predicted

class probability plot, (c) the scatter plot with an error bar, (d)

the standard deviation distribution, (e) the predictive variance

distribution, and (f) the predictive entropy distribution. A

calibration curve is a graphical representation that compares the

mean predicted value of a probabilistic classifier with the actual

fraction of positives. This plot is typically used to assess the

reliability of probabilistic predictions made by a model. A well-

calibrated model means that if the model predicts an event with

a probability of “p”, then “p” percent of the time that event

should occur. If the model is perfectly calibrated, the plot of the

model’s predictions would lie on the diagonal line representing the

“Perfectly calibrated” classifier. Deviations from this line indicate a

model whose probabilities are either over- or under-confident.

For the Toddler dataset, the UA is presented in Figures 12.

Firstly, the calibration curve is provided in Figure 12a. The

reference line, labeled “Perfectly calibrated”, is a dotted line

that forms a 45-degree angle, indicative of a hypothetical model

where the predicted probabilities perfectly match the observed

proportions. The “Meta Classifier” calibration curve closely follows

the “Perfectly calibrated” reference line, suggesting that the

classifier’s predicted probabilities are well-calibrated. The squares

on the “Meta Classifier” line potentially represent binned average

predictions compared to the actual outcomes within those bins.

Secondly, the predicted class probability is provided in Figure 12b.

There are two prominent peaks, one at the extreme left (near 0.0)

and one at the extreme right (near 1.0), which means the model

is often very confident in its predictions, assigning probabilities

close to 0 or 1. The frequency of predicted probabilities near

0.0 is slightly higher than those near 1.0. This suggests that the

model predicts the negative class more frequently than the positive

class or that there are more instances of the negative class in

the dataset. A noticeable absence of predicted probabilities in the
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FIGURE 11

Explanation of models using SHAP on Merged dataset. (a) Explaining meta-classifier using dot plot (left), and summary plot (right). Explanation of

base classifiers, RF (left), ET (middle), CB (right) using (b) summary plot, and (c) dot plot.

middle range (from 0.2 to 0.8) indicates that the model rarely

assigns intermediate probabilities and is generally certain about

its predictions. Figures 12c presents the scatter plot with error

bars. The scatter plot illustrates the predictions and associated

uncertainties for a series of samples. Predominantly, the predictions

align with absolute certainty at 0.0 and 1.0, implying high

confidence in these outcomes. A few predictions demonstrate

considerable uncertainty, as evidenced by the longer error bars.

These instances of increased uncertainty are interspersed without a

clear pattern across the sample index. The visualization highlights

the model’s confidence in most predictions while acknowledging

uncertainty in a subset of cases. This underscores the importance of

accounting for error margins in predictive analysis, especially when

utilizing these predictions for further decision-making processes.

Lastly, Figures 12d–f present the distribution of predictive standard

deviation, variance, and entropy. In Figure 12d, most of the data

points have a very low standard deviation, close to 0.00. This

is indicated by the tall bar at the extreme left of the histogram.

There is a rapid decrease in frequency as the standard deviation

increases. After the initial tall bar, subsequent bars are significantly

shorter, showing that higher standard deviations are much less

common in this dataset. The distribution is heavily skewed to the

left, meaning that there is a higher concentration of lower standard

deviation values and very few high standard deviation values. In

Figure 12e, the histogram displays the distribution of predictive

variances from a set of model predictions. A pronounced peak at a

predictive variance of 0.0 indicates that nearly all predictions have

no variance, implying a high degree of certainty or consistency in

the model’s output. The absence of visible frequencies for non-zero

variances suggests either an absence or an insignificant number of

predictions with any measurable uncertainty. In Figure 12f, there is

a significant concentration of predictions with an entropy close to

0.0, as evidenced by the tall bar at the beginning of the histogram.

This suggests that for many predictions, the model is very certain

about the outcome. The frequency of predictions decreases sharply

as entropy increases. There are very few predictions with higher

entropy values, which would indicate uncertainty in the model’s

predictions. The histogram does not show any occurrences of
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FIGURE 12

UA on Toddler dataset utilizing (a) calibration curve, (b) mean probability bar graph, (c) predictive error bar graph, (d) predictive standard deviation, (e)

predictive variance, and (f) predictive entropy.

FIGURE 13

UA on Child dataset utilizing (a) calibration curve, (b) mean probability bar graph, (c) predictive error bar graph, (d) predictive standard deviation, (e)

predictive variance, and (f) predictive entropy.
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FIGURE 14

UA on Adolescent dataset utilizing (a) calibration curve, (b) mean probability bar graph, (c) predictive error bar graph, (d) predictive standard

deviation, (e) predictive variance, and (f) predictive entropy.

FIGURE 15

UA on Adult dataset utilizing (a) calibration curve, (b) mean probability bar graph, (c) predictive error bar graph, (d) predictive standard deviation, (e)

predictive variance, and (f) predictive entropy.
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FIGURE 16

UA on Merged dataset utilizing (a) calibration curve, (b) mean probability bar graph, (c) predictive error bar graph, (d) predictive standard deviation, (e)

predictive variance, and (f) predictive entropy.

predictions with entropy near 1.0. This would mean there are

no instances where the model is completely uncertain about the

outcome. Figures 13–16 can be interpreted in the similar way.

We assessed the impact of MCD, which quantifies prediction

uncertainty. Removing MCD resulted in reduced reliability, as

the model failed to estimate confidence in its predictions. This

highlighted the importance of incorporating uncertainty analysis

to make the framework robust and trustworthy for clinical

applications.

7 Conclusion

In conclusion, this study proposed a novel ensemble learning

framework for the classification of ASD using questionnaire data,

integrating Safe-Level SMOTE for class imbalance handling, SHAP

for model interpretability, and MCD for uncertainty estimation.

Compared to baseline ML methods, the model demonstrated

exceptional performance across five publicly available datasets

representing multiple developmental stages, with high accuracy,

transparency, and reliability.

However, this study has certain limitations that warrant further

consideration. From a theoretical perspective, the reliance on

questionnaire data introduces subjectivity and potential reporting

biases, which may affect the accuracy and generalizability of the

model. Additionally, while the stacked ensemble learning approach

leverages the strengths of multiple classifiers, it requires significant

computational resources for both training and hyperparameter

tuning. This may limit its deployment in environments where

computational power is constrained. Another theoretical limitation

lies in the binary classification setup, as this study does not

yet address the multi-classification of ASD severity, which could

provide more granular insights into the disorder.

From a practical standpoint, the datasets utilized, while publicly

accessible and diverse across age groups, may not comprehensively

represent the full heterogeneity of the ASD population, particularly

across different geographical and socio-demographic backgrounds.

Furthermore, the lack of real-world clinical validation is a

significant limitation, as the model’s robustness and reliability have

not yet been tested within practical healthcare workflows or clinical

environments.

To address these limitations, future work will explore

integrating hybrid metaheuristic optimization techniques,

such as swarm intelligence, to enhance feature selection and

model performance. Incorporating multi-modal data, including

neuroimaging and behavioral assessments alongside questionnaire

data, can further strengthen the predictive capability and

generalizability of the framework. Additionally, collaboration

with clinicians will enable real-world validation and facilitate

the model’s integration into clinical decision-making systems.

Extending the current binary classification model to handle multi-

class classification tasks will allow for more refined predictions,

such as ASD severity levels or subtypes. Finally, efforts will

be made to optimize the model for lightweight deployment,

ensuring accessibility in real-time systems and resource-limited

environments.
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By addressing these theoretical and practical limitations

through the outlined future directions, the proposed framework

has the potential to evolve into a reliable, scalable, and clinically

applicable tool for early ASD detection, contributing to improved

diagnostic capabilities and better outcomes for individuals

with ASD.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://archive.ics.uci.edu/dataset/426/

autism+screening+adult and https://archive.ics.uci.edu/dataset/

419/autistic+spectrum+disorder+screening+data+for+children.

Author contributions

NM: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Resources, Software, Validation,

Visualization, Writing – original draft, Writing – review & editing.

MR: Investigation, Validation, Writing – original draft, Writing

– review & editing. MY: Supervision, Writing – review & editing.

FN: Validation, Writing – review & editing, Resources. MU:

Supervision, Writing – original draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for

the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict of

interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2025.

1507922/full#supplementary-material

References

Abbas, H., Garberson, F., Glover, E., and Wall, D. P. (2018). Machine learning
approach for early detection of autism by combining questionnaire and home video
screening. J. Am. Med. Inform. Assoc. 25, 1000–1007. doi: 10.1093/jamia/ocy039

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh,
M., et al. (2021). A review of uncertainty quantification in deep learning:
techniques, applications and challenges. Inform. Fusion 76, 243–297.
doi: 10.1016/j.inffus.2021.05.008

Abitha, R., Vennila, S. M., and Zaheer, I. M. (2022). Evolutionary multi-objective
optimization of artificial neural network for classification of autism spectrum disorder
screening. J. Supercomput. 78, 11640–11656. doi: 10.1007/s11227-021-04268-4

Ahmed, S., Yousuf, M. A., Monowar, M. M., Hamid, M. A., and Alassafi, M. (2023).
Taking all the factors we need: a multimodal depression classification with uncertainty
approximation. IEEE Access. 11, 99847–99861. doi: 10.1109/ACCESS.2023.3315243

Akter, T., Ali, M. H., Satu, M. S., Khan, M. I., and Mahmud, M. (2021a).
“Towards autism subtype detection through identification of discriminatory factors
using machine learning,” in International Conference on Brain Informatics (Cham:
Springer), 401–410.

Akter, T., Khan, M. I., Ali, M. H., Satu, M. S., Uddin, M. J., andMoni, M. A. (2021b).
“Improved machine learning based classification model for early autism detection,”
in 2021 2nd International Conference on Robotics, Electrical and Signal Processing
Techniques (ICREST) (Dhaka: IEEE), 742–747.

Akter, T., Satu,M. S., Khan,M. I., Ali, M. H., Uddin, S., Lio, P., et al. (2019).Machine
learning-based models for early stage detection of autism spectrum disorders. IEEE
Access 7, 166509–166527. doi: 10.1109/ACCESS.2019.2952609

Alsariera, Y. A., Adeyemo, V. E., Balogun, A. O., and Alazzawi, A. K. (2020). Ai
meta-learners and extra-trees algorithm for the detection of phishing websites. IEEE
Access 8, 142532–142542. doi: 10.1109/ACCESS.2020.3013699

Bachstein, S. (2019). Uncertainty Quantification in Deep Learning (Master Thesis).
Ulm: Ulm University.

Bala, M., Ali, M. H., Satu, M. S., Hasan, K. F., and Moni, M. A. (2022). Efficient
machine learning models for early stage detection of autism spectrum disorder.
Algorithms 15:166. doi: 10.3390/a15050166

Bastiaansen, J. A., Meffert, H., Hein, S., Huizinga, P., Ketelaars, C., Pijnenborg,
M., et al. (2011). Diagnosing autism spectrum disorders in adults: the use of autism
diagnostic observation schedule (ADOS) module 4. J. Autism Dev. Disord. 41,
1256–1266. doi: 10.1007/s10803-010-1157-x

Biau, G., and Scornet, E. (2016). A random forest guided tour. Test 25, 197–227.
doi: 10.1007/s11749-016-0481-7

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002).
Smote: synthetic minority over-sampling technique. J. Artif. Intellig. Res. 16, 321–357.
doi: 10.1613/jair.953

Choudhury, M., Tanvir, M., Yousuf, M. A., Islam, N., and Uddin, M. Z. (2025).
Explainable AI-driven scalogram analysis and optimized transfer learning for sleep
apnea detection with single-lead electrocardiograms. Comput. Biol. Med. 187:109769.
doi: 10.1016/j.compbiomed.2025.109769

De Bildt, A., Sytema, S., Ketelaars, C., Kraijer, D., Mulder, E., Volkmar, F.,
et al. (2004). Interrelationship between autism diagnostic observation schedule-
generic (ADOS-G), autism diagnostic interview-revised (ADI-R), and the diagnostic
and statistical manual of mental disorders (DSM-IV-TR) classification in children
and adolescents with mental retardation. J. Autism Dev. Disord. 34, 129–137.
doi: 10.1023/B:JADD.0000022604.22374.5f

Devika Varshini, G., and Chinnaiyan, R. (2020). Optimized machine learning
classification approaches for prediction of autism spectrum disorder.Ann. Autism Dev.
Disord. 1:1001.

Frontiers in Artificial Intelligence 21 frontiersin.org

https://doi.org/10.3389/frai.2025.1507922
https://archive.ics.uci.edu/dataset/426/autism+screening+adult
https://archive.ics.uci.edu/dataset/426/autism+screening+adult
https://archive.ics.uci.edu/dataset/419/autistic+spectrum+disorder+screening+data+for+children
https://archive.ics.uci.edu/dataset/419/autistic+spectrum+disorder+screening+data+for+children
https://www.frontiersin.org/articles/10.3389/frai.2025.1507922/full#supplementary-material
https://doi.org/10.1093/jamia/ocy039
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1007/s11227-021-04268-4
https://doi.org/10.1109/ACCESS.2023.3315243
https://doi.org/10.1109/ACCESS.2019.2952609
https://doi.org/10.1109/ACCESS.2020.3013699
https://doi.org/10.3390/a15050166
https://doi.org/10.1007/s10803-010-1157-x
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.compbiomed.2025.109769
https://doi.org/10.1023/B:JADD.0000022604.22374.5f
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mumenin et al. 10.3389/frai.2025.1507922

Gal, Y., and Ghahramani, Z. (2016). “Dropout as a bayesian approximation:
representing model uncertainty in deep learning,” in International Conference on
Machine Learning (New York: PMLR), 1050–1059.

Ganaie, M. A., Hu, M., Malik, A., Tanveer, M., and Suganthan, P. (2022).
Ensemble deep learning: a review. Eng. Appl. Artif. Intell. 115:105151.
doi: 10.1016/j.engappai.2022.105151

Garg, A., Parashar, A., Barman, D., Jain, S., Singhal, D., Masud, M., et al. (2022).
Autism spectrum disorder prediction by an explainable deep learning approach. Comp.
Mater. Continua 71, 1459–1471. doi: 10.32604/cmc.2022.022170

Gawlikowski, J., Tassi, C. R. N., Ali, M., Lee, J., Humt, M., Feng, J., et al. (2023).
A survey of uncertainty in deep neural networks. Artif. Intellig. Rev. 56, 1513–1589.
doi: 10.1007/s10462-023-10562-9

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. Cambridge,
MA: MIT Press.

Gupta, U., Gupta, D., and Agarwal, U. (2022). “Analysis of randomization-based
approaches for autism spectrum disorder,” in Pattern Recognition and Data Analysis
with Applications (Cham: Springer), 701–713.

Hajjej, F., Ayouni, S., Alohali, M. A., and Maddeh, M. (2024). Novel framework
for autism spectrum disorder identification and tailored education with effective
data mining and ensemble learning techniques. IEEE Access 12, 35448–35461.
doi: 10.1109/ACCESS.2024.3349988

Haroon, A. S., and Padma, T. (2022). An ensemble classification and
binomial cumulative based PCA for diagnosis of parkinson’s disease and
autism spectrum disorder. Int. J. Syst. Assuran. Eng. Managem. 15, 216–231.
doi: 10.1007/s13198-022-01699-x

Hasan, M., Ahamad, M. M., Aktar, S., and Moni, M. A. (2021). “Early stage autism
spectrum disorder detection of adults and toddlers using machine learning models,”
in 2021 5th International Conference on Electrical Information and Communication
Technology (EICT) (Khulna: IEEE), 1–6.

Hasan, S. M., Uddin, M. P., Al Mamun, M., Sharif, M. I., Ulhaq, A.,
and Krishnamoorthy, G. (2022). A machine learning framework for early-
stage detection of autism spectrum disorders. IEEE Access 11, 15038–15057.
doi: 10.1109/ACCESS.2022.3232490

Kamma, S. P., Bano, S., Niharika, G. L., Chilukuri, G. S., and Ghanta, D. (2022).
“Cost-effective and efficient detection of autism from screening test data using light
gradient boosting machine,” in Intelligent Sustainable Systems: Proceedings of ICISS
2021 (Cham: Springer), 777–789.

Kampa, L., Yamini, K., Basavaraju, A., and Anoop, K. (2022). A stack based
ensemble learning method for diagnosing autism spectrum disorder. Mathem. Statist.
Eng. Appl. 71, 237–251.

Lundberg, S. M., and Lee, S.-I. (2017). “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems, 30.

Mohanty, A. S., Parida, P., and Patra, K. (2021). “Identification of autism spectrum
disorder using deep neural network,” in Journal of Physics: Conference Series (Bristol:
IOP Publishing), 1921.

Mujeeb Rahman, K., and Monica Subashini, M. (2022). A deep neural network-
based model for screening autism spectrum disorder using the quantitative
checklist for autism in toddlers (QCHAT). J. Autism Dev. Disord. 52, 2732–2746.
doi: 10.1007/s10803-021-05141-2

Mukherjee, P., Sadhukhan, S., Godse, M., and Solutions, V. I. (2023). A review of
machine learning models to detect autism spectrum disorders (ASD). WSEAS Trans.
Comp. 22, 177–189. doi: 10.37394/23205.2023.22.21

Mumenin, N., Islam, M. F., Chowdhury, M. R. Z., and Yousuf, M. A.
(2023). “Diagnosis of autism spectrum disorder through eye movement tracking
using deep learning,” in Proceedings of International Conference on Information
and Communication Technology for Development: ICICTD 2022 (Cham: Springer),
251–262.

Mumenin, N., Yousuf, M. A., Alassafi, M. O., Monowar, M. M., and Hamid, M.
A. (2025). DDNet: A robust, and reliable hybrid machine learning model for effective
detection of depression among university students. IEEE Access 2025, 155–159.
doi: 10.1109/ACCESS.2025.3552041

Mumenin, N., Yousuf, M. A., Nashiry, M. A., Azad, A., Alyami, S. A., Lio’, P., et
al. (2024). ASDNet: A robust involution-based architecture for diagnosis of autism

spectrum disorder utilising eye-tracking technology. IET Comp. Vision 18, 666–681.
doi: 10.1049/cvi2.12271

Naimi, A. I., and Balzer, L. B. (2018). Stacked generalization: an introduction to
super learning. Eur. J. Epidemiol. 33:459–464. doi: 10.1007/s10654-018-0390-z

Obilor, E. I., and Amadi, E. C. (2018). Test for significance of pearson’s correlation
coefficient. Int. J. Innovat. Mathem. Statist. Ener. Policies 6, 11–23.

Omar, K. S., Mondal, P., Khan, N. S., Rizvi, M. R. K., and Islam, M. N. (2019). “A
machine learning approach to predict autism spectrum disorder,” in 2019 International
conference on electrical, computer and communication engineering (ECCE) (Cox’sBazar:
IEEE), 1–6.

Priyadarshini, I. (2023). Autism screening in toddlers and adults using deep learning
and fair ai techniques. Future Intern. 15:292. doi: 10.3390/fi15090292

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A.
(2018). “CatBoost: unbiased boosting with categorical features,” in Advances in Neural
Information Processing Systems, 31.

Rincy, T. N., and Gupta, R. (2020). “Ensemble learning techniques and its efficiency
in machine learning: a survey,” in 2nd International Conference on Data, Engineering
and Applications (IDEA) (Bhopal: IEEE), 1–6.

Samek,W.,Wiegand, T., andMüller, K.-R. (2017). Explainable artificial intelligence:
Understanding, visualizing and interpreting deep learning models. arXiv [preprint]
arXiv:1708.08296. doi: 10.48550/arXiv.1708.08296

Satu, M. S., Sathi, F. F., Arifen, M. S., Ali, M. H., and Moni, M. A. (2019).
“Early detection of autism by extracting features: a case study in bangladesh,” in
2019 International Conference on Robotics, Electrical and Signal Processing Techniques
(ICREST) (Dhaka: IEEE), 400–405.

Sesmero, M. P., Ledezma, A. I., and Sanchis, A. (2015). Generating ensembles of
heterogeneous classifiers using stacked generalization.Wiley Interdiscipl. Rev. 5, 21–34.
doi: 10.1002/widm.1143

Shuvo, S. B., Ghosh, J., and Oyshi, A. S. (2019). “A data mining based approach
to predict autism spectrum disorder considering behavioral attributes,” in 2019 10th
International Conference on Computing, Communication and Networking Technologies
(ICCCNT) (Kanpur: IEEE), 1–5.

Stirling, J., Chen, T., and Adamou, M. (2021). “Autism spectrum disorder
classification using a self-organising fuzzy classifier,” in Fuzzy Logic: Recent Applications
and Developments (Cham: Springer), 83–94.

Tabtah, F. (2017). Autistic Spectrum Disorder Screening Data for Adolescent. Noida:
UCI Machine Learning Repository.

Talabani, H., and Engin, A. (2018). “Performance comparison of svm kernel types
on child autism disease database,” in 2018 International Conference on Artificial
Intelligence and Data Processing (IDAP) (Malatya: IEEE), 1–5.

Talukder, M. A., Hasan, K. F., Islam, M. M., Uddin, M. A., Akhter, A., Yousuf, M.
A., et al. (2023). A dependable hybrid machine learning model for network intrusion
detection. J. Inform. Secur. Appl. 72:103405. doi: 10.1016/j.jisa.2022.103405

Thabtah, F. (2017a). Autism Screening Adult. Noida: UCI Machine Learning
Repository.

Thabtah, F. (2017b). Autistic Spectrum Disorder Screening Data for Children. UCI
Machine Learning Repository.

Thabtah, F. (2018). Autism screening data for toddlers. Int. J. Med. Inform. 117,
112–124.

Thabtah, F. (2019). Machine learning in autistic spectrum disorder behavioral
research: a review and ways forward. Inform. Health Soc. Care 44, 278–297.
doi: 10.1080/17538157.2017.1399132

Thabtah, F., Kamalov, F., and Rajab, K. (2018). A new computational intelligence
approach to detect autistic features for autism screening. Int. J. Med. Inform. 117,
112–124. doi: 10.1016/j.ijmedinf.2018.06.009

Uddin, M. J., Ahamad, M. M., Sarker, P. K., Aktar, S., Alotaibi, N., Alyami,
S. A., et al. (2023). An integrated statistical and clinically applicable machine
learning framework for the detection of autism spectrum disorder. Computers 12:92.
doi: 10.3390/computers12050092

Vakadkar, K., Purkayastha, D., and Krishnan, D. (2021). Detection of autism
spectrum disorder in children using machine learning techniques. SN Comp. Sci. 2,
1–9. doi: 10.1007/s42979-021-00776-5

Frontiers in Artificial Intelligence 22 frontiersin.org

https://doi.org/10.3389/frai.2025.1507922
https://doi.org/10.1016/j.engappai.2022.105151
https://doi.org/10.32604/cmc.2022.022170
https://doi.org/10.1007/s10462-023-10562-9
https://doi.org/10.1109/ACCESS.2024.3349988
https://doi.org/10.1007/s13198-022-01699-x
https://doi.org/10.1109/ACCESS.2022.3232490
https://doi.org/10.1007/s10803-021-05141-2
https://doi.org/10.37394/23205.2023.22.21
https://doi.org/10.1109/ACCESS.2025.3552041
https://doi.org/10.1049/cvi2.12271
https://doi.org/10.1007/s10654-018-0390-z
https://doi.org/10.3390/fi15090292
https://doi.org/10.48550/arXiv.1708.08296
https://doi.org/10.1002/widm.1143
https://doi.org/10.1016/j.jisa.2022.103405
https://doi.org/10.1080/17538157.2017.1399132
https://doi.org/10.1016/j.ijmedinf.2018.06.009
https://doi.org/10.3390/computers12050092
https://doi.org/10.1007/s42979-021-00776-5
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Early diagnosis of autism across developmental stages through scalable and interpretable ensemble model
	1 Introduction
	2 Literature review
	3 Proposed methodology
	3.1 Dataset
	3.2 Data preprocessing
	3.3 Stacked ensemble model
	3.3.1 Base-classifier
	3.3.1.1 Random forest
	3.3.1.2 CatBoost
	3.3.1.3 Extra trees

	3.3.2 Meta-learner
	3.3.2.1 Artificial Neural Network

	3.3.3 Proposed ensemble model


	4 Evaluation
	4.1 Evaluation metrics
	4.2 Result analysis
	4.3 Impact of feature selection
	4.4 Impact of balancing class
	4.5 Statistical analysis
	4.6 Handling overfitting
	4.7 Comparison with existing works

	5 Explainable AI
	6 Uncertainty analysis
	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References




