
Frontiers in Artificial Intelligence 01 frontiersin.org

MAD-Onto: an ontology design
for mobile app development
Bilal Abu-Salih *, Marwan Al-Tawil , Ansar Khoury ,
Dana A. Al-Qudah , Isra’a Abu Zaid , Marwa Alabdale and
Dima Azar

King Abdullah II School of Information Technology, The University of Jordan, Amman, Jordan

Introduction: Mobile app development has rapidly evolved into a crucial
aspect of modern technology, driving innovation across various industries
and transforming user experiences globally. The dynamic nature of mobile
technology requires developers to navigate a complex landscape of platforms,
devices, and user requirements. Effective management and sharing of knowledge
are essential to address these challenges, ensuring streamlined development
processes and enhanced collaboration among stakeholders.

Methods: To this end, ontologies have emerged as powerful tools for structuring
and standardizing domain-specific knowledge. This paper introduces MAD-onto,
a comprehensive ontology designed specifically for the mobile app development
domain. The ontology is constructed by identifying key concepts, defining classes
and their hierarchies, establishing class properties, and creating instances relevant
to mobile app development. To ensure robustness, the ontology is evaluated
using a multi-criteria evaluation metric, focusing on consistency, completeness,
conciseness, expandability, and sensitiveness. Additionally, SWRL rules are applied
to validate and enforce logical constraints within the ontology.

Results: Through these rigorous evaluation methods, MAD-onto demonstrates
its utility in providing a structured framework for the mobile app development
lifecycle, facilitating better decision-making, collaboration, and efficiency.

Discussion: The findings highlight the significance of ontology-driven
approaches in addressing the complexities of mobile app development and set
a foundation for future research and advancements in this field.

KEYWORDS

mobile app development, ontology design, knowledge representation, SWRL rules,
emerging technologies

1 Introduction

The rapid evolution of mobile technologies has led to an exponential increase in the
development and usage of mobile application (Pahlavan and Krishnamurthy, 2021). In this
highly competitive environment, developers constantly seek innovative solutions to enhance
app functionality, user engagement, and overall performance (Zhang et al., 2023; Hsu, 2023;
Khan et al., 2023). However, the vast array of tools, frameworks, and best practices available
presents a significant challenge in identifying the most suitable options for specific
development needs (Yahya et al., 2023; Goh et al., 2023; Nazir et al., 2024; Sidiq et al., 2024).
Addressing this challenge requires a comprehensive, structured approach to managing and
utilizing the extensive knowledge base of mobile app development. To navigate this complex
environment, developers should consider certain structured approaches including the
following aspects: (1) Before starting the development process, it is crucial to understand the
target audience, their needs, and the competitive landscape (Asamoah et al., 2024). (2)
Developers have to decide whether to build a native, hybrid, or web-based application, each

OPEN ACCESS

EDITED BY

Xiaoming Zhang,
Hebei University of Science and Technology,
China

REVIEWED BY

Dimitris Apostolou,
University of Piraeus, Greece
Hu Liang,
Qilu University of Technology, China
Wenbin Zhao,
Shijiazhuang Tiedao University, China

*CORRESPONDENCE

Bilal Abu-Salih
 b.abusalih@ju.edu.jo

RECEIVED 09 October 2024
ACCEPTED 21 January 2025
PUBLISHED 03 February 2025

CITATION

 Abu-Salih B, Al-Tawil M, Khoury A,
Al-Qudah DA, Abu Zaid I, Alabdale M and
Azar D (2025) MAD-Onto: an ontology design
for mobile app development.
Front. Artif. Intell. 8:1508225.
doi: 10.3389/frai.2025.1508225

COPYRIGHT

© 2025 Abu-Salih, Al-Tawil, Khoury,
Al-Qudah, Abu Zaid, Alabdale and Azar. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 03 February 2025
DOI 10.3389/frai.2025.1508225

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1508225&domain=pdf&date_stamp=2025-02-03
https://www.frontiersin.org/articles/10.3389/frai.2025.1508225/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1508225/full
mailto:b.abusalih@ju.edu.jo
https://doi.org/10.3389/frai.2025.1508225
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1508225

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 02 frontiersin.org

with its own set of advantages and trade-offs (Carbajal, 2024). (3)
Developers have to select appropriate tools and frameworks such as
iOS, Android, React Native, Unity, Xamarin, and Cordova, which
cater to different development needs. (4) Developers have to
implement best practices such as strategic planning, competitor
analysis, prioritizing design, creating mockups and prototypes,
choosing the right technology, and conducting multiple tests (Larrea
et al., 2024). (5) Developers have to stay updated with trends and
emerging technologies, and keep abreast of the latest trends and
insights in mobile app development frameworks to ensure the use of
modern and efficient technologies.

Ontologies have emerged as a powerful tool for organizing and
structuring domain-specific knowledge, enabling more efficient
retrieval and application of information (Abu-Salih, 2022; Abu-Salih
and Alotaibi, 2023; Al-Hassan et al., 2023; Abu-Salih et al., 2023). In
the context of mobile app development, an ontology can serve as a
knowledge-based framework to support personalized
recommendations. For instance, by understanding the user’s
preferences and behavior within the app, the ontology can provide
recommendations tailored to the user’s specific needs and interests.
Ontologies can also enhance semantic search capabilities. By mapping
these behaviors onto the ontology, the app can provide more relevant
search results, improving the user experience. Moreover, ontologies
can improve the overall development process. Developers can use the
ontology to understand the target audience, their needs, and the
competitive landscape. They can also decide whether to build a native,
hybrid, or web-based application, each with its own set of advantages
and trade-offs. Developers can select appropriate tools and
frameworks such as iOS, Android, React Native, Unity, Xamarin, and
Cordova, which cater to different development needs. They can
implement best practices such as strategic planning, competitor
analysis, prioritizing design, creating mockups and prototypes,
choosing the right technology, and conducting multiple tests.
Developers can stay updated with trends and emerging technologies,
and keep abreast of the latest trends and insights in mobile app
development frameworks to ensure the use of modern and
efficient technologies.

This paper presents MAD-Onto, a domain-specific ontology
designed to encapsulate the diverse and complex knowledge associated
with mobile app development. MAD-onto aims to standardize and
formalize the terminology, concepts, and relationships pertinent to
this domain, thereby providing a robust foundation for developing
intelligent systems and applications. The evaluation of MAD-onto
encompasses several dimensions, including consistency, completeness,
conciseness, expandability, and sensitivity. Consistency checks involve
the use of automated reasoning tools such as FaCT++, HermiT, Pellet,
RacerPro, and TrOWL to detect any logical contradictions within the
ontology. Completeness is assessed by comparing the ontology against
a set of predefined requirements or benchmarks established by
domain experts, ensuring that all necessary concepts and relationships
are captured. Conciseness is verified by ensuring that the ontology
includes only essential concepts and relationships, avoiding
redundancy and facilitating ease of use. Expandability is evaluated by
examining the ontology’s ability to accommodate new concepts and
relationships without significant restructuring, thus ensuring its
adaptability to evolving domain knowledge. Sensitivity analysis is
conducted to determine how changes to the ontology impact its core
structure, ensuring robustness and flexibility. Additionally, various

quantitative metrics such as Vocabulary Size (VS), Connectivity Ratio
(CR), Tree Impurity (TIP), and Entropy of Ontology Graph (EOG) are
employed to provide a comprehensive evaluation of the ontology’s
structure and complexity. This multi-faceted evaluation approach
ensures that MAD-onto is not only theoretically sound but also
practically useful, reliable, and adaptable to the dynamic nature of
mobile app development. The evaluation of MAD-onto also
incorporates the use of SWRL (Semantic Web Rule Language) rules
to further ensure the ontology’s robustness and correctness. SWRL
rules allow for the expression of complex logic that goes beyond the
capabilities of OWL (Web Ontology Language), providing a means to
enforce constraints and verify logical consistency within the ontology.
The key contributions of this paper are summarised as follows:

 • MAD-onto offers a domain-specific ontology that captures the
complexities of mobile app development, including emerging
technologies such as augmented reality, artificial intelligence,
and blockchain.

 • Unlike previous ontologies, MAD-onto integrates SWRL rules to
enforce logical constraints, such as task sequencing, resource
allocation, and skill matching.

 • Mad-onto is evaluated using a robust set of metrics, including VS,
TIP, CR, and EOG. These metrics ensure the ontology’s
consistency, completeness, and adaptability.

The remainder of this paper is organized as follows: Section 2
provides a detailed overview of the related work in the field of mobile
app development and ontologies. Section 3 shows the overall
methodology used in this research. Section 4 describes the design and
implementation of MAD-onto, including its structure, key concepts,
and evaluation metrics. Section 5 illustrates the evaluation metrics
used to measure the applicability of MAD-onto. Finally, Section 6
concludes the paper with a discussion of the implications, limitations,
and potential future directions of this research.

2 Related works

Ontologies have emerged as a crucial tool in the field of mobile app
development, providing a structured framework for knowledge
representation and sharing. The use of ontologies in this domain
facilitates enhanced communication, interoperability, and knowledge
management among various stakeholders. Several studies have
underscored the importance of ontologies in improving the efficiency
and effectiveness of the mobile app development process (Iqbal et al.,
2021; Iqbal et al., 2022; Braham et al., 2022; OS, 2021; Huitzil et al., 2020;
de Freitas et al., 2023). For example, a recent study by Braham et al.
(2022) examined the role of design patterns and ontology models in the
generation of mobile applications. The study introduced an ontology-
based framework to represent, design, and support the adaptation of user
interfaces in mobile applications by using design patterns according to
user needs or preferences and the context around them. This work
underscores the importance of ontologies in creating adaptive mobile
applications that can respond to various user needs and different context
scenarios. In the realm of e-learning, a study discussed the use of
ontologies for developing a mobile application of the corporate e-learning
system in the process of adaptation of companies’ new employees
(Bakanova et al., 2019). The study highlighted the role of ontologies in

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 03 frontiersin.org

building individual learning paths in the process of employee adaptation.
This demonstrates the versatility of ontologies in various domains,
including corporate training and employee adaptation. Another study by
Johannsen et al. (2023) proposed a generalizable success model for
mobile apps with a focus on first-year students. The study analyzed those
factors that influence student satisfaction with such an app, the intention
to reuse the app, and—foremost—students’ learning effectiveness.
Although not directly related to ontologies, this study provides valuable
insights into the factors that contribute to the success of a mobile app,
which can be useful in the development of ontology-based mobile apps.

In fact, this paper is a report of work in progress the aim of which
is develop a new recommender system framework that is designed to
provide mobile app developers with a distinctive platform to browse
and search for personalised artifacts (Abu-Salih et al., 2021). The
proposed system makes use of ontology and semantic web technology
as well as machine learning techniques. The new recommender system
framework comprises the following components: (i) Domain
knowledge inference module: including various semantic web
technologies and lightweight ontologies. (2) Profiling and
preferencing: a new proposed time-aware multidimensional user
modelling. (3) Query expansion: to improve and enhance the retrieved
results by semantically augmenting users’ query. (4) Recommendation
and information filtration: to make use of the aforementioned
components to provide personalised services to the designated users
and to answer a user’s query with the minimum mismatches. This
study underscored the potential of ontologies in enhancing the
efficiency and effectiveness of the mobile app development process,
particularly in the context of personalised recommender systems. It
also highlights the importance of semantic web technologies and
machine learning techniques in this domain. In conclusion, the use of
ontologies in mobile app development has been recognized as a
valuable tool for enhancing communication, interoperability, and
knowledge management. Recent studies have demonstrated the
versatility of ontologies in various domains, including adaptive mobile
applications, corporate training, and employee adaptation. However,
more research is needed to fully explore the potential of ontologies in
mobile app development.

2.1 A comparison with existing ontologies

Unlike existing ontologies such as Pani and Mishra (2016),
which focuses narrowly on native app development workflows,
MAD-onto is domain-agnostic and extends to emerging
technologies like AI, AR, and blockchain. This broader scope
accommodates the dynamic and evolving nature of mobile app
development, ensuring relevance across diverse use cases. Further,
MAD-onto employs a multifaceted evaluation strategy encompassing
structural (Tree Impurity, Connectivity Ratio), semantic (SWRL
rules), and usability (Expandability) metrics. By contrast, prior
ontologies often rely on ad hoc or superficial evaluations, limiting
their robustness for practical deployment. Finally, MAD-onto
ontology builds on existing works (Norki et al., 2020), offering a
more detailed and comprehensive representation of the mobile app
development domain. It encompasses various aspects such as
development approaches, developer expertise, testing strategies, and
critical features. By integrating SWRL rules, MAD-onto ensures the
consistency, completeness, and reliability of the ontology, making it
a valuable tool for researchers and practitioners in the field. The

MAD-onto ontology also addresses the gaps identified in previous
works by providing a more granular and fine-grained representation
of the domain. It includes detailed classes and properties, organized
hierarchically to facilitate ease of use and understanding. The use of
automated reasoning tools for consistency checking further
enhances the ontology’s robustness, ensuring that it meets the
intended requirements and constraints. These capabilities are absent
in most prior works, which rely solely on taxonomical or
descriptive models.

3 Methodology

This study employs the Design Science Research Methodology
(DSRM) approach, which has been established as a standard research
paradigm in the Information Systems (IS) field to provide researchers
with a structured framework for creating constructs, models,
methods, and instantiations (von Alan et al., 2004). Design Theory,
as presented by Jones and Gregor (2007) and Venable (2013),
complements this methodology by detailing the essential components
for articulating a design theory, while also simplifying its formulation
and addressing key issues. Peffers et al. (2007) argue that DSRM is
particularly effective for designing and evaluating artifacts that
address real-world problems, offering a systematic framework that
ensures both rigor and practical relevance.

As depicted in Figure 1, DSRM is iterative, leveraging feedback
from each activity to inform and refine subsequent steps. The ultimate
aim is to develop a design theory that can be generalized and applied
to similar problems, and to create an artifact that practically and
effectively addresses the identified issue. The proposed methodology
includes the following six main activities:

 1. Problem Identification and Motivation: This involves
identifying and defining the problem that the research aims to
solve, which sets the stage for the entire research process.
Relevant activities include:
• Conducting a comprehensive literature review to identify

gaps in existing ontologies related to mobile app development.
• Highlighting deficiencies in current ontologies, such as their

limited scope in conceptualizing specific roles, tools, and
development processes in mobile app development.

 2. Define the Objectives for a Solution: Formulating clear and
concise objectives for the proposed solution based on the
problem identified. Relevant activities include:
• Developing a proof-of-concept ontology that integrates key

entities and concepts relevant to mobile app development,
such as development approaches, tools, and developer roles.

• Identifying key concepts and relationships within the
domain, such as different development methodologies and
the tools used by developers.

 3. Design and Development: Creating an artifact or solution to
address the identified problem using existing theories,
frameworks, and best practices. Relevant activities include:
• Designing and developing the ontology using established

methodologies such as the NeOn Methodology.
• Creating an ontology (MAD-Onto) with elements such as

concepts (classes), attributes (properties), restrictions
(facets), and instances (individuals).

• Utilizing software tools like Protégé to construct the ontology.

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 04 frontiersin.org

 4. Demonstration: Showcasing and evaluating the developed
artifact to stakeholders and experts to demonstrate its
effectiveness. Relevant activities include:
• Developing a prototype ontology as a proof-of-concept to

illustrate its capability in enhancing mobile app
development processes.

• Applying the ontology to real-world scenarios, such as
recommending development tools and frameworks based on
developer profiles and project requirements.

 5. Evaluation: Determining whether the developed artifact meets
the objectives and provides a satisfactory solution. The
evaluation process can include user studies, controlled
experiments, or case studies. Relevant activities include:
• Conducting empirical studies and surveys to evaluate the

ontology’s effectiveness and its impact on the mobile app
development domain.

• Integrating various evaluation metrics to assess the
ontology’s performance.

 .6 Communication: Disseminating the research findings and
insights gained from the design and development of the artifact
to the wider community. Relevant activities include:
• Publishing manuscripts and articles that discuss the need for,

design approach of, and usefulness of the developed ontology.
• Facilitating the exchange of information and knowledge

among academics, practitioners, and researchers.

4 MAD-Onto: an ontology design for
the mobile app development

Several methodologies can be adopted to design and construct
domain ontologies, including: (i) Top-down methodology: Starts with
a high-level conceptual framework, such as a philosophical theory or
a domain-specific taxonomy, and refines it through iterative feedback
from domain experts, adding more detailed concepts and
relationships; (ii) Bottom-up methodology: Begins with a large
collection of individual concepts and facts, such as those extracted
from natural language texts or existing databases, and clusters them
into more abstract categories based on their similarities and
differences and (iii) Mixed methodology: Combines top-down and
bottom-up methodologies in the ontology design.

This study integrates a top-down methodology, namely
METHONTOLOGY (Fernández-López et al., 1997), with a mixed-
based methodology, Cyc 101 (Lenat and Guha, 1993), to construct
MAD-Onto. The process of constructing MAD-Onto is divided into
four main steps:

 1. Identifying the topic and extent of the ontology: This involves
defining the scope of the ontology, including the concepts and
relationships that will be included.

 2. Ontology reuse: Existing ontologies that are relevant to the
domain are identified and integrated into the new ontology to
avoid duplicating effort.

 3. Conceptual model creation: The concepts and relationships
identified in the first two steps are used to create a conceptual
model of the ontology.

 4. Ontology evaluation: The ontology is evaluated to ensure that
it accurately represents the domain of interest and meets the
needs of its intended users.

The “Protégé” tool is used to build the ontology. Protégé is a free,
open-source ontology editor and a knowledge management system
that allows interaction with other reasoning tools and incorporates
business principles for inference. It supports the most current WWW
Consortium RDF and OWL 2 Web Ontology Language standards,
ensuring that the ontology is compatible with current web
technologies. The following subsections will detail the actions taken
to build MAD-Onto, providing a step-by-step account of how the
ontology was constructed using the METHONTOLOGY and Cyc 101
methodologies and the Protégé tool. This includes specific decisions
made during the process, challenges encountered and how they were
overcome, and any adaptations made to the methodologies to suit the
specific needs of the MAD domain. The final ontology would then
be evaluated to ensure it meets the requirements defined at the start
of the process.

4.1 Identifying the domain and extent of
the ontology

This stage specifies the domain that the ontology will conceptualize
as well as the queries that the designed ontology will address. Table 1

FIGURE 1

DSRM methodology [prepared by the authors based on the steps discussed in Peffers et al. (2007)].

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 05 frontiersin.org

demonstrates our response to the queries used to identify the
ontology’s domain and scope.

4.2 Ontology reuse

Ontology reuse is a critical aspect of ontology development that
aims to leverage existing ontologies to reduce the effort needed to
model a new domain and increase interoperability across applications
(Carriero et al., 2020). It involves building a new ontology by
maximizing the adoption of pre-used ontologies or ontology
components (Halper et al., 2023). This not only reduces the human
labor involved in formalizing ontologies from scratch but also
increases the quality of new ontologies because the reused components
have already been tested. In the context of Mobile App Development,
several attempts have been made to develop ontologies that capture
and conceptualize this domain (Pardo et al., 2023). These efforts have
primarily focused on defining interaction patterns, user behaviors,
and technical specifications of mobile apps (Braham et al., 2022;
Werth et al., 2019; Norki et al., 2020; Iqbal et al., 2022). For instance,
some studies have explored the role of design patterns and ontology
models in generating mobile applications that can adapt at runtime to
various user needs, different context scenarios, interactive design
modes, or technology requirements (Braham et al., 2022).

However, despite these important efforts, there has been a gap in
the development of an ontology for domain-specific MAD that is
dedicated to standardizing and formalizing the specified domain
knowledge. Such an ontology provides a structured and standardized
representation of the domain, facilitating more effective and efficient
app development processes. This study aims to address this gap by
benefiting from other seminal works to develop a fine-grained
ontology that conceptualizes domain-specific MAD. The goal is to
create an ontology that not only captures the key concepts and
relationships in this domain but also provides a standardized and
formalized representation of this knowledge. Also, the proposed
ontology combines top-down (METHONTOLOGY) and mixed-
based (Cyc 101) methodologies, ensuring a comprehensive and
balanced approach to ontology construction. This would enable
developers to better understand the domain, make more informed
decisions during the development process, and ultimately create more
effective and user-centric mobile apps.

4.3 Development of a conceptual model

Designing a conceptual model for MAD-Onto comprises the
following actions:

 • Enumerate Key Terms in the Ontology: Identify and list critical
terms or concepts relevant to mobile app development. These
terms should cover various aspects such as development
processes, app features, user interactions, and technical
requirements. This foundational vocabulary forms the basis of
the ontology, enabling accurate representation and
communication of concepts within the domain. For MAD-Onto,
this includes: (1) Development Phases: Requirements analysis,
design, implementation, testing, deployment, maintenance. (2)
App Features: User interface components, backend services,
security features, performance metrics. (3) User Interactions:
User actions, feedback mechanisms, usability metrics. (4)
Technical Requirements: Programming languages, frameworks,
platforms, databases.

 • Define Classes and Their Hierarchy: identify the key concepts
and entities that are relevant to the domain and organize them
into a hierarchical structure. Defining classes and their hierarchy
is a critical step in designing the MAD-Onto ontology. This
involves identifying key concepts and entities relevant to mobile
app development and organizing them into a structured
hierarchy. The hierarchical structure begins with broad, general
classes and progressively narrows down to more specific
subclasses, ensuring a clear and logical organization of domain
knowledge. By defining classes and their hierarchy in this
structured manner, MAD-Onto can effectively capture the
complexities of mobile app development. This hierarchical
organization not only aids in understanding the relationships
between different concepts but also facilitates the integration and
retrieval of knowledge within the domain.

 • Define Class Properties—Slots: Define the attributes and
relationships of the classes, known as properties or slots. These
can be object properties (relationships between classes) and
datatype properties (attributes of a class). Examples include:
develops (connects a developer to a mobile application),
usesFramework (connects a mobile application to a frontend
framework). Examples of datatype properties: appName (the

TABLE 1 Key questions for identifying the domain and scope of the ontology.

Query Response

What is the domain that the ontology

will cover?

This study aims to cover the specific domain of Mobile App Development by designing a specialized ontology, referred to as

MAD-Onto.

What is the purpose and goal of this

ontology?

The primary goal of MAD-Onto is to provide a comprehensive understanding of Mobile App Development, thereby facilitating

more effective and efficient app development processes.

Who are the intended users of this

ontology?

MAD-Onto is designed to benefit both academic researchers and industry practitioners who are interested in developing a

conceptual model for Mobile App Development. Given the rapid advancements in this field, the proposed ontology is designed to

be adaptable and expandable, allowing for the incorporation of new concepts, properties, and examples in the future.

What key questions can the integrated

knowledge in the ontology answer?

 • What are the core concepts that define and conceptualize domain-specific Mobile App Development?

 • How can the proposed ontology be utilized to enhance the development and deployment of domain-specific mobile apps?

 • How can the ontology be leveraged to model the interaction and behavior of users within mobile apps?

 • How can the ontology contribute to the standardization of Mobile App Development processes?

 • How can the ontology support the integration of emerging technologies in Mobile App Development?

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 06 frontiersin.org

name of the mobile application, type: string), releaseDate (the
release date of the application, type: date), and version (the
version number of the application, type: string).

 • Define the Facets of Slots: Define the type and value constraints
for each property. This ensures that the data within the ontology
is structured and validated. Examples include MessageContent:
A property with a type of “string,” capturing textual content, and
ReleaseDate: A property with a type of “date,” indicating when
the mobile application was released.

 • Create Instances: Populate the ontology with individual instances
representing real-world entities relevant to mobile app
development. These instances can be created manually or
through automated processes such as data extraction or machine
learning algorithms. Examples of instances include: An instance
of MobileApplication representing a specific app like
“MyFitnessApp.” An instance of FrontendFramework
representing “ReactNative.” An instance of Developer
representing a specific developer or development team.

Our MAD-Onto is a structured representation of the Mobile App
Development domain, incorporating concepts, relationships,
attributes, and examples. The development process involved a
meticulous investigation of academic literature and corporate reports
to extract the necessary technical terminology. The process began
with a thorough review of existing academic papers and corporate
reports. This step was crucial to gather a comprehensive set of
technical terms and concepts that are pivotal in the Mobile App
Development field. Protégé, an open-source platform, was employed
for its user-friendly interface, which facilitates the creation, editing,
and visualization of ontologies. This tool supports the most current
standards, such as RDF and OWL 2 Web Ontology Language, making
it a suitable choice for developing MAD-Onto. The ontology was
described and modeled using OWL-DL to ensure that it is well-
defined, consistent, and capable of being shared and reused. OWL-DL
provides the expressiveness needed to capture the complexity of the
domain while ensuring computational completeness and decidability.
By following these steps, MAD-Onto was constructed to serve as a
reliable and standardized knowledge base that can enhance the
understanding and efficiency of mobile app development processes.
It stands as a testament to the rigorous methodology applied,
combining theoretical research with practical application to produce
a valuable resource for both academia and industry. The following is
a description of each of the high-level classes in our
MAD-Onto ontology:

 • EmergingTechnology: This class encompasses the cutting-edge
technologies that are currently shaping the future of digital
transformation. It includes Artificial Intelligence with its
sub-classes like Computer Vision, Machine Learning, and
Natural Language Processing which are revolutionizing how
machines interpret and interact with the world. Augmented
Reality, Blockchain, Internet of Things, and Virtual Reality are
also part of this class, each representing a significant leap forward
in their respective fields.

 • MobileApp: The MobileApp class represents the software
applications designed to run on mobile devices. It covers the
entire lifecycle of a mobile app, from conception to deployment,

and includes various attributes such as platform, functionality,
and user interface.

 • Person: Under the Person class, there are two main subclasses:
MobileAppTester, with roles like QAEngineer, and
MobileAppDeveloper, which includes DevOpsEngineer,
FullStackDeveloper, BackendDeveloper, and FrontendDeveloper
with a further subclass of UIUXDesigner. This class encapsulates
the human resources involved in mobile app development
and testing.

 • SupportingTechnology: This class includes technologies that
support mobile app development, such as API_Development,
CloudService, and Database technologies, with subclasses like
NoSQL and RelationalDB. These technologies provide the
necessary infrastructure and services for mobile apps to function
and scale.

 • AppMarket: The AppMarket class represents the digital
distribution platforms where mobile apps are made available for
users. It includes various marketplaces like Google Play Store and
Apple App Store, and covers aspects related to app submission,
review, and distribution.

 • DevelopmentApproach: This class outlines the methodologies
and strategies used in mobile app development, such as
CrossPlatform development with various techniques like
JavaScriptBridging and Hybrid models, MobileWeb approaches
including AdaptiveDesign and ResponsiveDesign, and
Native development specific to platforms like Android
and iOS.

 • DevelopmentEnd: The DevelopmentEnd class is divided into
BackEndDevelopment and FrontEndDevelopment, each covering
the respective aspects of app development. FrontEndDevelopment
includes sub-classes like FrontendArchitecture, UIUXDesign,
FI-Framework_Library, FI-Language, and SDK.

 • DevelopmentLanguage: This class categorizes the programming
languages used in mobile app development into BackendLanguage
and FrontendLanguage. Subclasses like CompiledLanguage,
InterpretedLanguage, Markup, Scripting, and Stylesheet further
specify the types of languages used.

 • DevelopmentLibrary: The DevelopmentLibrary class includes
libraries and frameworks that provide pre-written code and
templates for app development. It’s divided into
BackendFramework and FrontendFramework, with subclasses
such as Component-based and Hybrid frameworks.

 • DevelopmentToolCost: This class deals with the financial aspect
of mobile app development tools, considering the cost of
acquisition, licensing, and maintenance of the development
environments and tools used.

 • DeviceAccessManager: The DeviceAccessManager class includes
the management of access to device features such as
CameraAccess, HardwareIntegration, LocationServices,
PermissionsManagement, SensorAccess, and StorageAccess.

 • ExecutionEnvironment: This class represents the environments
in which mobile apps are executed, including MobileOS,
Containerization, and RuntimeEnvironment.

 • IDE: The IDE (Integrated Development Environment) class
encompasses the software suites that provide comprehensive
facilities to programmers for software development, including
code creation, editing, and debugging.

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 07 frontiersin.org

 • MemoryManagement: The MemoryManagement class includes
the techniques and tools used to manage memory in mobile app
development, such as AutomaticReferenceCounting,
GarbageCollection, ManualMemoryManagement, and
MemoryLeakDetection.

 • MobilePlatform: The MobilePlatform class represents the
operating systems for mobile devices, including Android,
WindowsPhone, and iOS, each providing a unique ecosystem for
mobile app development and deployment.

Each of these classes plays a crucial role in the ontology,
representing a distinct aspect of the mobile app development domain,
and together they form a comprehensive framework for
understanding and organizing the knowledge in this field.
MAD-Onto provides a standardized vocabulary for the mobile app
development domain. This facilitates clear communication among
developers, project managers, and stakeholders, ensuring that
everyone has a common understanding of the terms and concepts
used. By defining a clear structure of classes and relationships,
MAD-Onto enables better collaboration between different teams and
individuals involved in the app development process. It helps in
aligning the efforts of designers, developers, and testers towards a
unified goal. The ontology allows for the reuse of knowledge across
different projects and applications. This not only saves time and
resources but also promotes consistency in the development practices
within the industry.

Figures 2–5 further illustrate the developed ontology including
the key classes and the interrelated object properties. For example,
Figure 1 shows MobileApp class which is the cornerstone of the
MAD-Onto ontology, encapsulating all critical elements associated
with mobile application development. This class serves as the primary
hub, linking various components, processes, and tools essential for
creating, deploying, and maintaining mobile applications. By defining
MobileApp as the central entity, the ontology ensures a cohesive
structure that integrates diverse aspects of mobile app development,
offering a comprehensive view of the domain.

Figure 3 shows the DevelopmentApproach class and other several
key attributes and relationships that illustrate its comprehensive role in
mobile app development. The DevelopmentApproach class is intricately
connected to other classes through various relationships:

 • includesPlatform: This relationship links DevelopmentApproach
to the MobilePlatform class, indicating the platforms that support
different development approaches. This connection underscores
the importance of platform compatibility and optimization in the
selection of development methodologies.

 • useProgramingLanguage: Through this relationship,
DevelopmentApproach is connected to the
DevelopmentLanguage class, specifying the programming
languages associated with each development approach. This
reflects the technical foundation and coding practices that
underpin different development strategies.

 • useSDK: By associating DevelopmentApproach with specific
Software Development Kits (SDKs), this relationship highlights
the tools and resources utilized within each approach, providing
developers with pre-built components and functionalities
tailored to their chosen methodology.

 • developedUsing: This critical relationship associates
DevelopmentApproach with DevelopmentLibrary, specifying the
libraries and frameworks utilized during the development
process. It reflects the technical infrastructure and resources that
support each development approach.

 • designedFor: This relationship connects DevelopmentApproach
to the UIUXDesign class, emphasizing the importance of user
interface and user experience considerations in different
development strategies. It ensures that applications are not only
functional but also user-friendly and aesthetically pleasing.

 • runsOnOS: Linking DevelopmentApproach to the
MobilePlatform class, this relationship identifies the operating
systems (e.g., Android, iOS, Windows Phone) compatible with
each approach. This connection highlights the importance of
platform-specific optimization in mobile app development.

FIGURE 2

A snapshot of MobileApp class and its interconnected classes and subclasses in MAD-Onto.

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 08 frontiersin.org

As depicted in Figure 4, the DevelopmentEnd class integrates
various critical components of mobile app development, ensuring that
the final product is robust, efficient, and user-friendly. This class plays
a crucial role in the development lifecycle, as it brings together all the
essential elements required to finalize and deploy a mobile application.
The DevelopmentEnd class is characterized by several key attributes

and relationships that detail its role and connections within the mobile
app development ecosystem:

 • useIDE: This relationship connects the DevelopmentEnd class to
the IDE (Integrated Development Environment) class,
highlighting the use of specific development environments

FIGURE 3

A snapshot of the DevelopmentApproach class and its interconnected classes and subclasses in MAD-Onto.

FIGURE 4

A snapshot of the DevelopmentEnd class and its interconnected classes and subclasses in MAD-Onto.

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 09 frontiersin.org

essential for writing, debugging, and testing code. Examples of
IDEs include Android Studio, Xcode, and Visual Studio, which
provide developers with necessary tools and features to
streamline the development process.

 • useSDK: This relationship links the DevelopmentEnd class to the
SDK (Software Development Kit) class, emphasizing the
importance of SDKs in the development process. SDKs provide
pre-built libraries, tools, and APIs that facilitate the development
of mobile applications by offering functionalities such as push
notifications, analytics, and authentication.

 • developedUsing: This relationship associates the
DevelopmentEnd class with the FI-Framework_Library and
FI-Language classes, specifying the frameworks, libraries, and
programming languages used during the final stages of
development. Frameworks like React Native, Flutter, and libraries
like Retrofit or Alamofire are examples that provide robust
functionalities and simplify complex development tasks.

 • requiresDB: This connection to the Database class underscores
the necessity of database integration in the development end
process. Databases are crucial for data storage, retrieval, and
management, ensuring that the mobile application can efficiently
handle user data, preferences, and other critical information.

 • includesPlatform: This relationship indicates that the
DevelopmentEnd phase includes considerations for the
MobilePlatform class, ensuring that the application is compatible
and optimized for specific mobile platforms such as Android,
iOS, or cross-platform solutions.

 • designedFor: This attribute links the DevelopmentEnd class to
the UIUXDesign class, highlighting the significance of user
interface and user experience design in the final stages of
development. This ensures that the application not only functions
well but also provides a seamless and intuitive user experience.

5 Evaluation

The evaluation of MAD-Onto is a critical phase in the Design
Science Research Methodology, ensuring that the ontology not only
meets its intended objectives but also contributes effectively to the
domain of Mobile App Development. To assess the efficacy and
impact of MAD-Onto, we employed a multi-faceted evaluation
strategy, encompassing both qualitative and quantitative measures.
There have been several reports in the literature on ontology
evaluation measures (Yu et al., 2009; Alani and Brewster, 2006;

d’Aquin et al., 2009; Dellschaft and Staab, 2008; Zavitsanos et al.,
2010). Ontology evaluation establishes the quality of an ontology as
well as whether its constraints and standards have been met. The
following subsection discusses the evaluation metrics incorporated
in this study.

5.1 Five criteria evaluation metric

This research employs an evaluation technique based on five
criteria, adapted from Yu et al.’s (Yu et al., 2009) methodology:

 1. Consistency: Consistency in an ontology refers to the absence
of contradictions or conflicting information. A consistent
ontology ensures that any logical inferences made using the
ontology are reliable and accurate. Automated reasoning tools,
such as FaCT++, HermiT, Pellet, RacerPro, and TrOWL, are
employed to check that the axioms (statements) in the ontology
do not lead to any logical contradictions. These reasoners
examine the class, object, and data property structures, as well
as class/object property claims and the presence of identical
entities within the ontology. Ensuring consistency helps
identify errors or gaps in the ontology’s design and
implementation, allowing for refinement and improvement.
For the MAD-Onto ontology, these reasoners confirm that
there are no contradictory truths, ensuring the ontology is
logically coherent.

 2. Completeness: Completeness evaluates whether the ontology
covers all the concepts and relationships relevant to its intended
domain. This criterion assesses whether the ontology includes
all the necessary knowledge required to support its intended
tasks. The completeness of the MAD-Onto ontology is assessed
by comparing it against a set of domain-specific requirements
or benchmarks created based on expert knowledge. This
ensures that all necessary concepts and relationships are
included. While absolute completeness is not achievable, the
MAD-Onto ontology aims to be as comprehensive as possible
within its scope, incorporating insights from seminal works to
develop a fine-grained ontology that fully conceptualizes
mobile app development.

 3. Conciseness: A concise ontology contains the minimum
number of concepts and relationships necessary to represent
the domain it models, avoiding redundancy. A concise
ontology is easier to understand and use. For the MAD-Onto
ontology, conciseness was achieved by carefully crafting the
ontology to provide essential and non-redundant information
about mobile app development. This focus on conciseness
ensures that users can easily find the information they need
and understand how the ontology functions.

 4. Expandability: Expandability refers to the ability of an ontology
to be easily modified to add new concepts and relationships.
This is crucial because the domain it models is often dynamic
and evolving. The MAD-Onto ontology is designed to
be extensible and interoperable, allowing for easy modification
by adding, removing, or altering axioms. It aligns with the four
extensibility principles: ontology term reuse, semantic
alignment, ontology design patterns (ODP) usage for new term
generation and existing term editing, and community

FIGURE 5

SWRL—Rule 1.

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 10 frontiersin.org

extensibility (He et al., 2018). This design ensures that the
ontology can adapt to new knowledge and emerging use cases.

 5. Sensitiveness: An ontology is considered sensitive if changes to
the ontology significantly impact its core structure. The
MAD-Onto ontology, while flexible and open to amendments,
is carefully structured to ensure that essential core elements
remain stable even when updates or changes are made. This
balance between flexibility and stability ensures that the
ontology can accommodate new information and modifications
without compromising its foundational integrity.

The evaluation of the MAD-Onto ontology using these five
criteria ensures a robust, reliable, and comprehensive framework for
modeling mobile app development. By focusing on consistency,
completeness, conciseness, expandability, and sensitiveness, the
ontology is designed to be a valuable resource for developers,
researchers, and other stakeholders in the mobile app development
domain. This structured approach to ontology evaluation guarantees
that MAD-Onto is both practical and adaptable, meeting current
needs while being prepared for future advancements.

5.2 Evaluation at the ontology level

The evaluation at the ontology level is a systematic process to
determine the robustness of an ontology. It examines the organization
(structure), the significance (semantics), and the user-friendliness
(usability) of the ontology. The structure pertains to the ontology’s
arrangement, semantics to the definitions and connections within, and
usability to the ease with which users can interact with the ontology.
Several methodologies exist for this evaluation (Srinivasulu et al., 2014;
Ajami and Mcheick, 2018). The equations of these methodologies are
formulated in Equations 1–5 and discussed as follows:

 • Vocabulary Size (VS): This metric quantifies the breadth of an
ontology’s lexicon, encompassing classes, instances, and
attributes. For MAD-onto, the VS is calculated as:

VS C I P= + +

 (1)

Where ()C represents classes, ()I instances, and ()P
properties. A substantial VS suggests a rich and intricate
ontology, though it may also imply increased complexity in usage
and maintenance. VS for MAD-onto: 85 162 23 270VS = + + = .
The Vocabulary Size of 270 indicates that MAD-onto has a
moderate number of terms, which suggests it is neither too
simple nor excessively complex. This size is likely to offer a
comprehensive coverage of the domain without overwhelming
the users with too many terms.

 • Connectivity Ratio (CR): The CR assesses the ontology’s
interconnectedness by comparing the number of links (edges) to
concepts (nodes):

 /CR E N= (2)

Where (E) is edges and (N) is nodes. A higher CR indicates a
dense network of relationships, which could enhance or

complicate comprehension, depending on the context. As for

MAD-onto, 117 0.422
277

CR = ≈ . A Connectivity Ratio of

approximately 0.422 suggests that, on average, each node (class,
individual, or property) in MAD-onto is connected to less than
one other node. This indicates that the ontology is not overly
dense, which can be beneficial for users to understand and
navigate the ontology without confusion from too
many interconnections.

 • Tree impurity (TIP): TIP metric quantifies the degree to which
the inheritance hierarchy of an ontology deviates from a tree. It
is a logical indication of how effectively inheritance connections
are arranged in an ontology.

()1

1
E N

TIP
N
− +

=
−

(3)

Where p is the proportion of child concepts in a specific category.
A lower TIP value signifies a well-defined hierarchy, whereas a
higher value points to potential ambiguities. TIP for MAD-onto
is 0.321, this indicates that the MAD-onto ontology has a
moderate level of hierarchy clarity. The majority of the concepts
are well-defined and the hierarchy is relatively clear. This level of
TIP is generally acceptable for ontologies, as it allows for some
flexibility in categorization without causing too much confusion
or uncertainty for users navigating the ontology.

 • The entropy of ontology graph (EOG): is a metric that
quantifies the complexity and information content of an
ontology’s graph structure. It is rooted in the principle of
information entropy, a concept that gauges the unpredictability
or randomness present in a data set. The EOG metric evaluates
the level of uncertainty or randomness within the structure of
an ontology’s graph. It does this by considering both the
quantity of nodes and edges in the graph, as well as the
distribution of links between them. The EOG metric can
be calculated using the following formula:

() ()()2

1
log

n

x
EOG p x p x

=
= −∑

(4)

Where ()p x denotes the likelihood of a specific connection type
in the graph, such as the chance that two nodes are connected by
a specific type of edge. The EOG metric ranges from 0 to

()2log ,N where N is the number of nodes in the ontology. ()p x
is computed by dividing the vertex’s degree, or the number of
attributes associated with that class, by the total sum of all
degrees of V for each node x in the graph. In particular, ()ip x
can be computer as:

() ()

()
deg

deg
i

i
v V

x
p x

x
∈

=
∑

(5)

A higher EOG number suggests more uncertainty or
unpredictability in the network structure, whereas a lower EOG
value indicates a more organised and predictable graph.

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 11 frontiersin.org

The value of EOG for MAD-onto is almost one, demonstrating
that the class structure of MAD-onto is adequate and reasonable.

5.3 Class-level evaluation: the ODQM
approach

Brewster et al. (2004) introduced a method called “Ontology
Design Quality Measure” (ODQM) to assess the quality and
complexity of individual classes within an ontology. It analyzes various
aspects of a class’s design through specific metrics.

 • Number of Classes (NOC): This metric simply counts the total
number of classes in the ontology. A higher NOC indicates a
broader and deeper coverage of concepts within the domain.
MAD-Onto’s NOC of 85 suggests a reasonable starting point,
with the expectation of further expansion as the ontology matures.

 • Number of Properties (NOP): This metric reflects the richness
and complexity of relationships and attributes associated with
classes. MAD-Onto’s NOP of 111 signifies a solid foundation for
reasoning within the ontology.

 • Number of Root Classes (NORC): This metric counts the classes
without any parent classes (superclasses)—essentially the top level
of the ontology hierarchy. MAD-Onto’s NORC of 15 indicates a
well-defined structure with distinct but related core concepts.

 • Relationship Richness (RR): This metric considers the count of
non-inheritance relationships (like disjoint classes, equivalent
classes, and object properties) to the count of subclass (inheritance)
relationships. The higher the RR value, the more diverse the
ontology is in terms of the types of relationships it includes.
Conversely, a lower RR value would suggest an ontology that relies
more heavily on inheritance relationships, which might be less
expressive. MAD-Onto’s RR of 0.57 signifies a good level of richness
in factual relationships based on its conceptual structure.

5.4 Evaluating using SWRL rules

The Semantic Web Rule Language (SWRL) is a powerful language
designed for the Semantic Web to facilitate the formulation of rules and
logical statements that encapsulate knowledge (Hassanpour et al., 2009;
Horrocks et al., 2004). This language serves as a tool for representing
complex knowledge structures that are not easily captured by the Web
Ontology Language (OWL) alone. In the context of assessing ontologies,
SWRL plays a crucial role. It allows for the creation of specific rules that
can verify the internal consistency of an ontology and ascertain whether
it adheres to predefined constraints. These rules are adept at articulating
intricate constraints that surpass the capabilities of OWL. To conduct an
ontology evaluation with SWRL, one must first define the necessary
rules. Subsequently, these rules are implemented within the ontology
through the use of a reasoning engine. This engine carefully examines
the ontology to determine compliance with the rules, pinpointing any
discrepancies or non-conformities in the process.

Employing SWRL rules in the evaluation phase is helpful in
validating the ontology’s precision, comprehensiveness, and coherence.
It ensures that the ontology not only aligns with the intended
specifications and limitations but also upholds the quality standards
expected of a robust knowledge representation system. Thus, SWRL
enhances the reliability and utility of ontologies within the Semantic Web

framework. By applying these rules, the MAD-Onto ontology can
be evaluated and refined to ensure it is accurate, complete, and consistent
with its intended requirements. We provide the following set of SWRL
rules to evaluate the semantics of the developed ontology.

 • Rule 1: Consistency of task assignments based on developer
expertise: Figure 5 shows Rule 1 which aims to ensure that
developers assigned to projects possess the required skills for
each specific task. This rule ensures that only qualified
developers are assigned to specific tasks within a project. The
rule identifies a project and its associated tasks, each of which
requires certain skills. It then checks whether the developers
assigned to these tasks possess the required skills. By doing so,
it maintains the consistency of task assignments, ensuring that
each task is performed by a developer who is adequately
qualified. This prevents unqualified personnel from taking on
tasks they are not equipped to handle, thereby ensuring the
quality and efficiency of the project development process.

 • Rule 2: Verification of development phase order: As depicted in
Figure 6, this rule enforces the correct sequence of development
phases within a project. It identifies the phases associated with a
project and ensures that they are completed in the order
specified by the project plan. For instance, a “Design Phase”
must precede the “Implementation Phase.” By verifying that the
start time of each phase follows the chronological order, this rule
ensures a logical and methodical progression of the project,
preventing phases from being started out of order which could
lead to project delays and inefficiencies.

 • Rule 3: Prevention of resource allocation conflicts: This rule aims to
prevent the same resource from being allocated to multiple projects
simultaneously. As illustrated in Figure 7, this rule ensures that a
resource, such as a developer or a testing device, is not assigned to
more than one project at the same time. By identifying resources
and their allocations, the rule checks for conflicts where a single
resource is allocated to multiple projects concurrently. It prevents
scheduling conflicts and overcommitment, ensuring that each
resource is dedicated to a single project at any given time. This
promotes efficient resource utilization and prevents bottlenecks that
could arise from resource contention.

 • Rule 4: Uniqueness of user stories: This rule enforces the
uniqueness of user story identifiers within the project backlog. It
identifies user stories and their respective identifiers, ensuring
that no two user stories share the same identifier. By doing so, the
rule prevents confusion and ambiguity, allowing each user story

FIGURE 6

SWRL—Rule 2.

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 12 frontiersin.org

to be uniquely referenced and tracked. This is crucial for
maintaining an organized and manageable backlog, where each
user story can be individually identified and monitored for
progress. Figure 8 demonstrates this rule.

Applying these SWRL rules to the MAD-Onto ontology significantly
enhances the evaluation process by ensuring consistency, completeness,
and adherence to best practices within the mobile app development
domain. The rules help maintain a high standard of quality by verifying
that developers are appropriately skilled for their tasks, phases are
completed in the correct order, resources are efficiently utilized without
conflicts, and user stories are uniquely identifiable. These checks are vital
for maintaining the integrity and effectiveness of the ontology, ensuring
that it accurately represents the knowledge and constraints of the mobile
app development process. By using SWRL rules, we can systematically
detect and address inconsistencies, redundancies, and other issues that
might compromise the ontology’s utility and reliability, ultimately leading
to more robust and reliable project outcomes.

5.5 Application of MAD-onto

To demonstrate the practical utility and effectiveness of
MAD-onto, this section explores two comprehensive case studies that
exemplify how the ontology addresses real-world challenges in
MAD. These case studies illustrate MAD-onto’s ability to facilitate
decision-making, enhance resource allocation, and optimise
workflows in scenarios involving complex requirements and
diverse technologies.

5.5.1 Case Study 1: Cross-platform e-commerce
app development with emerging technologies

In this case, an e-commerce company seeks to develop a cross-
platform mobile app featuring advanced functionalities, including AR
for virtual product try-ons, AI for personalized recommendations, and
blockchain for secure payment processing. The project poses significant
challenges due to the need for integrating diverse technologies, selecting
appropriate development tools, and ensuring efficient task sequencing
across a multidisciplinary team. MAD-onto effectively addresses these
challenges by providing a structured framework for selecting the best-fit
technologies and tools based on the project’s requirements. For instance,
using MAD-onto’s EmergingTechnology and DevelopmentApproach
classes, the project team identifies Unity 3D and ARKit as suitable
frameworks for integrating AR capabilities on iOS devices, TensorFlow
Lite for on-device AI-powered recommendations, and Hyperledger
Fabric as the blockchain platform for secure payment transactions. These
recommendations streamline the decision-making process, allowing the
team to focus on implementation rather than exhaustive
technology evaluations.

In addition to technology selection, MAD-onto enforces logical task
sequencing through its integration with SWRL rules. For example, rules
embedded in the ontology ensure that AR model rendering tasks cannot
commence until the UI design phase is complete and that blockchain
validation processes must precede app deployment. These rules are
implemented using reasoning engines such as HermiT in Protégé,
automatically flagging any deviations from the prescribed workflow and
reducing the risk of project delays. Furthermore, MAD-onto facilitates
optimal resource allocation by aligning team members’ expertise with
specific tasks. The ontology’s Person and Task classes map developer
roles to their required skills, ensuring that tasks such as blockchain
integration and AR functionality are assigned to specialists in these
domains. This structured allocation reduces inefficiencies and enhances
team productivity. MAD-onto not only supports the technical and
managerial aspects of this e-commerce app development project but also
ensures that all phases are executed cohesively and efficiently,
demonstrating its ability to navigate the complexities of multi-technology
app development.

5.5.2 Case Study 2: IoT-based health monitoring
app with multi-device support

In this case, a healthcare provider aims to create an IoT-enabled
mobile app that connects with wearable devices such as fitness trackers
and smartwatches to monitor users’ health metrics in real-time. The
app must ensure interoperability with a variety of devices, securely
manage sensitive health data, and provide an intuitive user interface
to enhance usability. The development team faces challenges in
integrating IoT devices, addressing data privacy concerns, and
balancing real-time functionality with offline capabilities. MAD-onto
offers significant value in ensuring device interoperability through its
DeviceAccessManager and MobilePlatform classes. By querying the
ontology, the development team identifies Bluetooth Low Energy
(BLE) as the optimal protocol for establishing communication
between the app and IoT devices. Additionally, libraries such as
RxAndroidBLE and CoreBluetooth are recommended for seamless
integration with Android and iOS platforms, respectively. This
structured guidance accelerates the implementation process and
ensures compatibility with a wide range of devices.

To address data security and privacy concerns, MAD-onto’s
SecurityFeature and BackendDevelopment classes provide best practices

FIGURE 7

SWRL—Rule 3.

FIGURE 8

SWRL—Rule 4.

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 13 frontiersin.org

for securely managing health data. The ontology recommends employing
AES-256 encryption for end-to-end data protection and highlights
compliance with regulations such as HIPAA and GDPR. By
incorporating these recommendations, the app ensures that users’ health
information is handled securely and adheres to global privacy standards.

MAD-onto also supports offline functionality, a critical
requirement for users in areas with limited internet connectivity.
Through the ExecutionEnvironment and MemoryManagement
classes, the ontology suggests caching data locally using SQLite,
enabling users to access key features like viewing health insights and
historical metrics without a network connection. This capability
significantly enhances user experience and broadens the app’s
accessibility. In addition to these technical aspects, MAD-onto aids in
optimizing team workflows. The ontology’s TestingStrategy class
supports the creation of rigorous test cases for validating the app’s
performance under varying network conditions and ensuring its
compatibility across devices. By incorporating these tests, the
development team can confidently deliver a robust and user-friendly
health monitoring solution. This case study illustrates how MAD-onto
facilitates IoT-enabled app development by addressing the unique
challenges of interoperability, security, and usability, demonstrating its
ability to adapt to the evolving demands of the healthcare domain.

These case studies highlight MAD-onto’s versatility and its capacity
to address complex and diverse challenges in MAD. Whether integrating
cutting-edge technologies for e-commerce or ensuring secure and
seamless IoT connectivity for healthcare, MAD-onto provides a
structured, standardized approach to managing intricate workflows and
technical requirements. Its ability to guide developers in selecting tools,
sequencing tasks, and allocating resources effectively makes it an
indispensable resource for modern app development. These examples
not only demonstrate the ontology’s theoretical robustness but also
validate its practical utility in addressing real-world application needs.

6 Conclusion and future work

The field of MAD has swiftly become a vital component of
contemporary technology, spurring innovation across numerous
industries and reshaping user experiences worldwide. Due to the ever-
changing nature of mobile technology, developers must adeptly
maneuver through a multifaceted environment of platforms, devices,
and user demands. Efficient knowledge management and sharing are
critical to overcoming these challenges, facilitating streamlined
development processes and improved collaboration among stakeholders.
In this context, ontologies have proven to be invaluable tools for
organizing and standardizing domain-specific knowledge. MAD-onto
(Mobile App Development Ontology) is a comprehensive framework
designed to address the complexities and challenges inherent in mobile
app development. By structuring and standardizing domain-specific
knowledge, MAD-onto facilitates efficient knowledge management,
sharing, and collaboration among stakeholders. This ontology captures
essential concepts, attributes, and relationships within the mobile app
development domain, enabling developers to navigate the intricate
landscape of platforms, devices, and user requirements effectively. By
leveraging MAD-onto, developers can ensure that all relevant aspects of
mobile app development are considered, leading to more streamlined
processes and improved project outcomes.

The ontology is organized hierarchically, beginning with
general classes and branching into more specific subclasses, which

encompass various facets of mobile app development, such as
development approaches, tools, methodologies, and best practices.
MAD-onto also defines properties and relationships between
these classes, providing a detailed and interconnected view of the
domain. The use of MAD-onto enhances consistency,
completeness, conciseness, expandability, and sensitivity in the
development process. By providing a structured framework,
MAD-onto not only aids in addressing current development
challenges but also supports the continuous evolution and
extension of knowledge as new technologies and practices emerge
in the field.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

BA-S: Conceptualization, Data curation, Formal analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization, Writing –
original draft, Writing – review & editing. MA-T: Methodology, Formal
analysis, Investigation, Software, Supervision, Writing – review &
editing. AK: Investigation, Project administration, Software,
Supervision, Validation, Writing – review & editing. DA-Q: Project
administration, Supervision, Validation, Writing – review & editing. IA:
Investigation, Project administration, Supervision, Validation, Writing –
review & editing. MA: Investigation, Project administration,
Supervision, Validation, Writing – review & editing. DA: Investigation,
Project administration, Supervision, Validation, Writing – review &
editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

We sincerely thank the editor and reviewers for their insightful
comments and constructive feedback.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of
this manuscript.

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Abu-Salih et al. 10.3389/frai.2025.1508225

Frontiers in Artificial Intelligence 14 frontiersin.org

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any
product that may be evaluated in this article, or claim that may
be made by its manufacturer, is not guaranteed or endorsed by
the publisher.

References
Abu-Salih, B. (2022). MetaOntology: toward developing an ontology for the

metaverse. Front. Big Data 5:998648. doi: 10.3389/fdata.2022.998648

Abu-Salih, B., and Alotaibi, S. (2023). Knowledge graph construction for social
customer advocacy in online customer engagement. Technologies 11:123. doi: 10.3390/
technologies11050123

Abu-Salih, B., Al-Qurishi, M., Alweshah, M., Al-Smadi, M., Alfayez, R., and Saadeh, H.
(2023). Healthcare knowledge graph construction: a systematic review of the state-of-the-art,
open issues, and opportunities. J. Big Data 10:81. doi: 10.1186/s40537-023-00774-9

Abu-Salih, B., Alsawalqah, H., Elshqeirat, B., Issa, T., Wongthongtham, P., and
Premi, K. K. (2021). Toward a knowledge-based personalised recommender system for
Mobile app development. J. Univ. Comput. Sci. 27, 208–229. doi: 10.3897/jucs.65096

Ajami, H., and Mcheick, H. (2018). Ontology-based model to support ubiquitous
healthcare systems for COPD patients. Electronics 7:371. doi: 10.3390/electronics7120371

Alani, Harith, and Brewster, Christopher. (2006). Metrics for ranking ontologies.

Al-Hassan, M., Abu-Salih, B., and Al Hwaitat, A. (2023). DSpamOnto: an ontology
modelling for domain-specific social spammers in microblogging. Big Data Cogn.
Comput. 7:109. doi: 10.3390/bdcc7020109

Asamoah, D. A., Dinsmore, J. B., and Swani, K. (2024). Benefits, barriers, and
facilitators of developing B2B mobile applications. J. Bus. Ind. Mark. 39, 537–552. doi:
10.1108/JBIM-10-2022-0457

Bakanova, A, Letov, NE, Kaibassova, D, Kuzmin, KS, Loginov, KV, and Shikov, AN.
(2019). The use of ontologies in the development of a Mobile E-learning application in
the process of staff adaptation.

Braham, A., Buendía, F., Khemaja, M., and Gargouri, F. (2022). User interface design
patterns and ontology models for adaptive mobile applications. Pers. Ubiquit. Comput.
26, 1395–1411. doi: 10.1007/s00779-020-01481-5

Brewster, Christopher, Alani, Harith, Dasmahapatra, Srinandan, and Wilks, Yorick.
(2004). Data driven ontology evaluation.

Carbajal, Paula. (2024). Performance comparison of progressive web applications with
native android applications.

Carriero, V. A., Daquino, M., Gangemi, A., Nuzzolese, A. G., Peroni, S., Presutti, V.,
et al. (2020). “The landscape of ontology reuse approaches,” in Applications and practices
in ontology design, extraction, and reasoning. eds. G. Cota, M. Daquino and G. L. Pozzato
(IOS Press).

d’Aquin, M., Schlicht, A., Stuckenschmidt, H., and Sabou, M. (2009). “Criteria and
evaluation for ontology modularization techniques” in Modular ontologies (Springer).

de Freitas, A., Cunha, A., Costa, S. D., Scalser, M. B., and Barcellos, M. P. (2023). Using
networked ontologies to support the development of software systems with adaptive user
interface. J. Interact. Syst. 14, 257–273. doi: 10.5753/jis.2023.3256

Dellschaft, K., and Staab, S. (2008). Strategies for the evaluation of ontology learning.
Ontol. Learn. Populat. 167, 253–272.

Fernández-López, Mariano, Gómez-Pérez, Asunción, and Juristo, Natalia. (1997).
Methontology: From ontological art towards ontological engineering.

Goh, H.-A., Ho, C.-K., and Abas, F. S. (2023). Front-end deep learning web apps
development and deployment: a review. Appl. Intell. 53, 15923–15945. doi: 10.1007/
s10489-022-04278-6

Halper, M., Soldatova, L. N., Brochhausen, M., Maikore, F. S., Ochs, C., and Perl, Y.
(2023). Guidelines for the reuse of ontology content. Appl. Ontol. 18, 5–29. doi: 10.3233/
AO-230275

Hassanpour, Saeed, O’Connor, Martin J, and Das, Amar K. (2009). "Exploration of
SWRL rule bases through visualization, paraphrasing, and categorization of rules." In
Rule Interchange and Applications: International Symposium, RuleML 2009, Las Vegas,
Nevada, USA. November 5–7, 2009. Proceedings 3, 246–261. Springer.

He, Y., Xiang, Z., Zheng, J., Lin, Y., Overton, J. A., and Ong, E. (2018). The eXtensible
ontology development (XOD) principles and tool implementation to support ontology
interoperability. J. Biomed. Semant. 9, 1–10.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean, M.
(2004). SWRL: a semantic web rule language combining OWL and RuleML. W3C
Member Submiss. 21, 1–31.

Hsu, C.-L. (2023). Enhancing brand love, customer engagement, brand experience,
and repurchase intention: focusing on the role of gamification in mobile apps. Decis.
Support. Syst. 174:114020. doi: 10.1016/j.dss.2023.114020

Huitzil, I., Alegre, F., and Bobillo, F. (2020). GimmeHop: a recommender system for
mobile devices using ontology reasoners and fuzzy logic. Fuzzy Sets Syst. 401, 55–77.
doi: 10.1016/j.fss.2019.12.001

Iqbal, M. W., Nadeem Ahmad, C., Shahzad, S. K., Naqvi, M. R., Khan, B. A., and Ali, Z.
(2021). User context ontology for adaptive mobile-phone interfaces. IEEE Access 9,
96751–96762. doi: 10.1109/ACCESS.2021.3095300

Iqbal, Muhammad Waseem, Naqvi, Muhammad Raza, Khan, Muhammad Adnan,
Khan, Faheem, and Whangbo, T. (2022). 'Mobile devices interface adaptivity using
ontologies', Computers, Materials & Continua, 71.

Johannsen, F., Knipp, M., Loy, T., Mirbabaie, M., Möllmann, N. R. J., Voshaar, J., et al.
(2023). What impacts learning effectiveness of a mobile learning app focused on first-
year students? IseB 21, 629–673. doi: 10.1007/s10257-023-00644-0

Jones, D., and Gregor, S. (2007). The anatomy of a design theory. J. Assoc. Inf.
Syst. 8:1.

Khan, I., Hollebeek, L. D., Fatma, M., Islam, J. U., Rather, R. A., Shahid, S., et al.
(2023). Mobile app vs. desktop browser platforms: the relationships among customer
engagement, experience, relationship quality and loyalty intention. J. Mark. Manag. 39,
275–297. doi: 10.1080/0267257X.2022.2106290

Larrea, Vivian, Silveira, Milene Selbach, and Da Silva, Tiago. (2024). "The use of
prototypes as a tool in agile software development." in Proceedings of the 39th ACM/
SIGAPP Symposium on Applied Computing. pp. 842–849.

Lenat, D. B., and Guha, R. V. (1993). Building large knowledge-based systems:
representation and inference in the CYC project. Artif. Intell. 61:4152.

Nazir, R., Bucaioni, A., and Pelliccione, P. (2024). Architecting ML-enabled systems:
challenges, best practices, and design decisions. J. Syst. Softw. 207:111860. doi: 10.1016/j.
jss.2023.111860

Norki, F. A., Mohamad, R., and Ibrahim, N. (2020). Context ontology in mobile
applications. J. Inform. Commun. Technol. 19, 21–44.

OS, J. N. (2021). Detection of malicious android applications using ontology-based
intelligent model in mobile cloud environment. J. Inf. Secur. Appl. 58:102751.

Pahlavan, K., and Krishnamurthy, P. (2021). Evolution and impact of Wi-Fi technology
and applications: a historical perspective. Int. J. Wireless Inf. Networks 28, 3–19. doi:
10.1007/s10776-020-00501-8

Pani, S., and Mishra, J. (2016). A novel approach for mobile native app development
using ontological design. Int. J. Softw. Eng. Appl. 10, 105–124. doi: 10.14257/
ijseia.2016.10.9.10

Pardo, C., Orozco, C., and Guerrero, J. (2023). DevOps ontology-an ontology to
support the understanding of DevOps in the academy and the software industry. Period.
Eng. Nat. Sci. 11, 207–220. doi: 10.21533/pen.v11i2.3474

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chatterjee, S. (2007). A design
science research methodology for information systems research. J. Manag. Inf. Syst. 24,
45–77. doi: 10.2753/MIS0742-1222240302

Sidiq, D., Raharjo, T., and Trisnawaty, N. W. (2024). Towards tax administration 3.0:
bracing the challenges in Mobile application development. J. Inform. Ekonomi Bisnis,
410–417. doi: 10.37034/infeb.v6i2.915

Srinivasulu, S., Sakthivel, P., and Balamurugan, E. (2014). Measuring the ontology
level and class level complexity metrics in the semantic web. Int. J. Adv. Comput. Eng.
Netw. 2, 68–74.

Venable, J. R. (2013). “Rethinking design theory in information systems” in Design
science at the intersection of physical and virtual design. eds. J. vom Brocke, R.
Hekkala, S. Ram and M. Rossi (Berlin Heidelberg: Springer).

von Alan, R., Hevner, S. T., March, J. P., and Ram, S. (2004). Design science in
information systems research. MIS Q. 28, 75–105.

Werth, Oliver, Guhr, Nadine, and Breitner, Michael. (2019). Successful mobile
application development: towards a taxonomy of domain-specific process models and
methodologies.

Yahya, A. E., Gharbi, A., Yafooz, W. M. S., and Al-Dhaqm, A. (2023). A novel hybrid
deep learning model for detecting and classifying non-functional requirements of
mobile apps issues. Electronics 12:1258. doi: 10.3390/electronics12051258

Yu, J., Thom, J. A., and Tam, A. (2009). Requirements-oriented
methodology for evaluating ontologies. Inf. Syst. 34, 766–791. doi: 10.1016/j.
is.2009.04.002

Zavitsanos, E., Paliouras, G., and Vouros, G. A. (2010). Gold standard evaluation of
ontology learning methods through ontology transformation and alignment. IEEE
Trans. Knowl. Data Eng. 23, 1635–1648.

Zhang, L., Shao, Z., Benitez, J., and Zhang, R. (2023). How to improve user engagement
and retention in mobile payment: a gamification affordance perspective. Decis. Support.
Syst. 168:113941. doi: 10.1016/j.dss.2023.113941

https://doi.org/10.3389/frai.2025.1508225
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.3389/fdata.2022.998648
https://doi.org/10.3390/technologies11050123
https://doi.org/10.3390/technologies11050123
https://doi.org/10.1186/s40537-023-00774-9
https://doi.org/10.3897/jucs.65096
https://doi.org/10.3390/electronics7120371
https://doi.org/10.3390/bdcc7020109
https://doi.org/10.1108/JBIM-10-2022-0457
https://doi.org/10.1007/s00779-020-01481-5
https://doi.org/10.5753/jis.2023.3256
https://doi.org/10.1007/s10489-022-04278-6
https://doi.org/10.1007/s10489-022-04278-6
https://doi.org/10.3233/AO-230275
https://doi.org/10.3233/AO-230275
https://doi.org/10.1016/j.dss.2023.114020
https://doi.org/10.1016/j.fss.2019.12.001
https://doi.org/10.1109/ACCESS.2021.3095300
https://doi.org/10.1007/s10257-023-00644-0
https://doi.org/10.1080/0267257X.2022.2106290
https://doi.org/10.1016/j.jss.2023.111860
https://doi.org/10.1016/j.jss.2023.111860
https://doi.org/10.1007/s10776-020-00501-8
https://doi.org/10.14257/ijseia.2016.10.9.10
https://doi.org/10.14257/ijseia.2016.10.9.10
https://doi.org/10.21533/pen.v11i2.3474
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.37034/infeb.v6i2.915
https://doi.org/10.3390/electronics12051258
https://doi.org/10.1016/j.is.2009.04.002
https://doi.org/10.1016/j.is.2009.04.002
https://doi.org/10.1016/j.dss.2023.113941

	MAD-Onto: an ontology design for mobile app development
	1 Introduction
	2 Related works
	2.1 A comparison with existing ontologies

	3 Methodology
	4 MAD-Onto: an ontology design for the mobile app development
	4.1 Identifying the domain and extent of the ontology
	4.2 Ontology reuse
	4.3 Development of a conceptual model

	5 Evaluation
	5.1 Five criteria evaluation metric
	5.2 Evaluation at the ontology level
	5.3 Class-level evaluation: the ODQM approach
	5.4 Evaluating using SWRL rules
	5.5 Application of MAD-onto
	5.5.1 Case Study 1: Cross-platform e-commerce app development with emerging technologies
	5.5.2 Case Study 2: IoT-based health monitoring app with multi-device support

	6 Conclusion and future work

	References

