
TYPE Original Research

PUBLISHED 26 March 2025

DOI 10.3389/frai.2025.1511712

OPEN ACCESS

EDITED BY

Xin Zhang,

Chinese Academy of Sciences (CAS), China

REVIEWED BY

Siao Wang,

Xtreme Intelligence LLC, China

Qing Gao,

Sun Yat-sen University, China

*CORRESPONDENCE

Kevin Godin-Dubois

k.j.m.godin-dubois@vu.nl

RECEIVED 15 October 2024

ACCEPTED 26 February 2025

PUBLISHED 26 March 2025

CITATION

Godin-Dubois K, Miras K and Kononova AV

(2025) AMaze: an intuitive benchmark

generator for fast prototyping of generalizable

agents. Front. Artif. Intell. 8:1511712.

doi: 10.3389/frai.2025.1511712

COPYRIGHT

© 2025 Godin-Dubois, Miras and Kononova.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

AMaze: an intuitive benchmark
generator for fast prototyping of
generalizable agents

Kevin Godin-Dubois1*, Karine Miras1 and Anna V. Kononova2

1Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, Netherlands, 2LIACS,

Leiden University, Leiden, Netherlands

Traditional approaches to training agents have generally involved a single,

deterministic environment of minimal complexity to solve various tasks such

as robot locomotion or computer vision. However, agents trained in static

environments lack generalization capabilities, limiting their potential in broader

scenarios. Thus, recent benchmarks frequently rely on multiple environments,

for instance, by providing stochastic noise, simple permutations, or altogether

di�erent settings. In practice, such collections result mainly from costly human-

designed processes or the liberal use of random number generators. In this

work, we introduce AMaze, a novel benchmark generator in which embodied

agents must navigate a maze by interpreting visual signs of arbitrary complexities

and deceptiveness. This generator promotes human interaction through the

easy generation of feature-specific mazes and an intuitive understanding of

the resulting agents’ strategies. As a proof-of-concept, we demonstrate the

capabilities of the generator in a simple, fully discrete case with limited

deceptiveness. Agents were trained under three di�erent regimes (one-shot,

sca�olding, and interactive), and the results showed that the latter two cases

outperform direct training in terms of generalization capabilities. Indeed,

depending on the combination of generalization metric, training regime, and

algorithm, the median gain ranged from 50% to 100% and maximal performance

was achieved through interactive training, thereby demonstrating the benefits of

a controllable human-in-the-loop benchmark generator.

KEYWORDS

benchmark, human-in-the-loop, generalization, mazes, Reinforcement Learning

1 Introduction

Based on the need to fairly compare algorithms (Henderson et al., 2018), benchmarks

have proliferated in the Reinforcement Learning (RL) community. These cover a wide

range of tasks, from the full collection of Atari 2,600 games (Bellemare et al., 2013)

to 3D simulations in Mujoco (Laskin et al., 2021). However, in recent years, the focus

of research has changed from producing more complex environments to producing a

range of environments. Although undeniable progress has been made with respect to the

capabilities of trained agents, much remains to be done for their capacity to generalize

(Mnih et al., 2015). In practice, agents “will not learn a general policy, but instead a

policy that will only work for a particular version of a particular task with particular initial

parameters” (Risi and Togelius, 2020).

Thus, a recurring theme in modern RL research is the training of agents in various

situations to avoid overfitting. Although some algorithms have built-in solutions to smooth

out the learning process, e.g., TD3 (Fujimoto et al., 2018) (where small perturbations

are applied to the actions), providing such a diversity of experience primarily originates

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1511712
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1511712&domain=pdf&date_stamp=2025-03-26
mailto:k.j.m.godin-dubois@vu.nl
https://doi.org/10.3389/frai.2025.1511712
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1511712/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Godin-Dubois et al. 10.3389/frai.2025.1511712

from the environments themselves. To this end, numerous

benchmarks now consist of a collection with varying degrees of

homogeneity. Some of them have a similar structure, as in the Sonic

benchmark (Nichol et al., 2018) where levels are small areas taken

from three games in the franchise. In other cases, environments

share very little: In the Arcade Learning Environment (ALE), the

single common factors are the dimensions of the observation

space (Bellemare et al., 2013). Intermediate test suites with distinct

but complementary sets of “skill-building” tasks have also been

designed, for example, with the Mujoco simulator (Wawrzyński,

2009; Yu et al., 2019; Laskin et al., 2021) or Meta-World (Yu et al.,

2019). However, all of these examples share a common feature: the

set of environments is predefined, generally the result of a costly

human-tailored design procedure, e.g., Beattie et al. (2016).

To solve this generalization problem, agents must face

sufficiently diverse situations so that the underlying principles are

learned instead of a specific trajectory. Naturally, this requires

generating environments that exhibit such diversity while still

offering the same core challenges. For instance, in the context of

maze navigation, reaching e.g., the exit might be the goal while the

actual topology of saidmaze is only relevant insofar as giving agents

a wide sample of states to learn from. One common way to address

this later point is to use procedural generation (Beattie et al., 2016;

Kempka et al., 2016; Harries et al., 2019; Juliani et al., 2019; Tomilin

et al., 2022) or complementary techniques such as evolutionary

algorithms (Alaguna and Gomez, 2018; Wang et al., 2019). For

example, ProcGen (Cobbe et al., 2020) encompasses 16 different

types of environment and serves as a generalizable alternative

to ALE. Adapting more recent video game environments, either

directly (Synnaeve et al., 2016) or in a light format (Tian et al.,

2017), can help further push adaptability by providing finer-grained

perceptions and actions. While such an approach can be used to

create large training sets, the main difficulty becomes the design of

a sufficiently tunable generator, i.e., one in which desirable features

are easy to introduce.

Considering the challenges of generating a panel of demanding

training environments, the contribution of this article is two-fold:

1. We introduce AMaze,1 a generator for generic, computationally

inexpensive environments of unbounded complexity that

focus on generalization (via environmental diversity) and

intelligibility (intuitive human understanding).

2. We demonstrate how such a generator is helpful in leading to

more generalized performance (robust behavior w.r.t. unseen

tasks) and how it can benefit from human input (e.g., to

dynamically adjusting difficulty).

After highlighting, in Section 2, the niche this generator

occupies in the current benchmark literature, we describe its

main components in Section 3. Three alternative methodologies

for training generalized maze-navigating agents are then detailed

in Section 4 alongside two algorithms (A2C and PPO). The

resulting performance in handling unknown environments is then

thoroughly tested in Section 5, allowing us to draw conclusions

1 AMaze library is available on PyPI at https://pypi.org/project/amaze-

benchmarker/. The code for the experiment described thereafter is hosted

at https://github.com/kgd-al/amaze_edhucat_2024.

about the relative benefits of the generator, the training processes,

and the underlying algorithms.

2 Related benchmarks

To place this generator in perspective, we conducted an

extensive comparison with a select number of commonly used

benchmarks. As our library is primarily targeted at Python

environments, we restricted the set of considered environments to

those that could be reliably installed and used on an experimenter’s

machine. Timing was done on 1000 time steps averaged over

10 replicates on an i7-1185G7 (3GHz) using the Python 3.10

version of all libraries, except for the Unsupervised Reinforcement

Learning Benchmark (URLB) (Laskin et al., 2021) and RetroGym

(Nichol et al., 2018) which required Python 3.8. In the latter

case, we used the ROMs linked in the library’s documentation.

The scripts, intermediate data and figures are available as part of

AMaze’s repository.

As detailed in the following section, AMaze can provide

environments for fully discrete, fully continuous, and hybrid

agents. Table 1 illustrates how the former case allows for fast

simulation at the cost of low observable complexity. Based on the

time taken to simulate 1,000 timesteps, only the simplest of the

gymnasium suite (Sutton and Barto, 2018) is comparable to AMaze

which, in addition, provides numerous unique and experimenter-

controlled environments. In the hybrid case, where agents perceive

images but still only take discrete steps, the library is on par

with Classic Control tasks (Barto et al., 1983) such as Mountain

Car or Cart Pole. ProcGen (Cobbe et al., 2020) addresses similar

concerns as AMaze and is quite comparable in terms of speed,

but has a stronger focus on randomness, with difficulty levels

being the main way of controlling the resulting environments.

DeepMind Lab2D (Beattie et al., 2020), while noticably slower,

is also extensively customizable, albeit through lua scripting, and

allows for heterogeneous multi-agent experiments.

With respect to the fully continuous case, the most

computationally expensive of the three regimes, AMaze performs

at a level similar to that of Box2D or Mujoco (Todorov et al.,

2012), which, in traditional implementations such as gymnasium

(Towers et al., 2024), lack customization capabilities. Purely

vision-based benchmarks such as ALE (Bellemare et al., 2013),

RetroGym (Nichol et al., 2018), Meta-world (Yu et al., 2019),

Unsupervised Reinforcement Learning Benchmark (Laskin

et al., 2021), LevDoom (Tomilin et al., 2022), or Maze Explorer

(Harries et al., 2019), while offering a more challenging task than

AMaze, also exhibit drastically higher costs with variable levels of

experimenter control over the environments.

To summarize, AMaze has comparable computational costs

with the most simple of environments (e.g., Classic Control or

Toy Text) while providing much finer grained control over the

challenges proposed to the agent. Conversely, even in its most

expensive variation (fully continuous) it outperforms complex

settings such as Mujoco-based environments, ALE or Retro-Gym.

Combined with its extensive and intuitive parameterization, this

makes it an ideal platform for trying out new algorithms, policies

or hypotheses before deployment on more demanding contexts.

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1511712
https://pypi.org/project/amaze-benchmarker/
https://pypi.org/project/amaze-benchmarker/
https://github.com/kgd-al/amaze_edhucat_2024
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Godin-Dubois et al. 10.3389/frai.2025.1511712

TABLE 1 Comparison between AMaze and related benchmark (suites). All time metrics (performance) correspond to the wall time for 1,000 timesteps of

the corresponding environment, averaged over 10 replicates. Qualification of the inputs, outputs, and control levels are taken from the related article or,

when unavailable, directly from the sources. Overall, AMaze is competitive with small-scale benchmarks, but provides the experimenter with more

control over the characteristics of the targeted environments. Complex environments (e.g., 3D) have much higher computational costs making AMaze

an e�cient and scalable prototyping platform.

Time (s)

Library Family N Inputs Outputs Control Median

Discrete 64 Discrete Discrete Extensive 0.010

A Maze Hybrid 64 Image Discrete Extensive 0.025

Continuous 64 Continuous Continuous Extensive 0.102

Toy text 5 Discrete Discrete None 0.009

Classic control 5 Continuous Both None 0.023

Gymnasium Mujoco 22 Continuous Continuous None 0.090

Box2D 8 Continuous Both None 0.112

ALE 104 Image Discrete Modes 0.400

Miscellaneous

ProcGen 100 Image Discrete Modes 0.031

Lab2D 11 Both Discrete Script 0.056

MetaWorld 50 Continuous Continuous None 1.228

URLB 24 Both Continuous None 3.929

GameBoy 27 0.197

Sms 88 0.269

Retro-Gym Nes 295 Image Discrete None 0.355

Genesis 331 0.472

Snes 184 0.736

VizDoom
MazeExplorer 81 Image Discrete Extensive 0.553

LevDoom 72 Image Discrete None 1.059

It follows that AMaze fills a very specific niche in the

benchmarking landscape by providing a computationally

inexpensive framework to design challenging environments.

Control over the various characteristics of said environments is left

in the hands of the experimenter through a number of high- and

low-level parameters that will be described in the following section.

3 Generating mazes

Learning to navigate mazes represents a flexible, diverse,

yet challenging tested for training agents. Here, we propose

a generator (AMaze) for this task with the following

primary characteristics:

Loose embodiment

The agent has access only to local spatial information (its

current cell) and limited temporal information (previous cell).

Arbitrarily complex visual-like information is provided to the

agent in either discrete (preprocessed) or continuous (image)

form as detailed in Section 3.2.

Computational lightweightness

No physics engine or off-screen renderings are required

for such 2D mazes. Thus, challenging environments can be

generated that are both observably complex (Beattie et al.,

2020) and relatively fast (as seen in Table 1).

Open-endedness

As illustrated in Figure 1, a given maze results from

the interaction of numerous variables controlled by the

experimenter, such as its dimensions or the frequency and type

of visual cues. In practice, an experimenter can inject any level

of complexity into the maze by selecting images of appropriate

deceptiveness as cues.

These features make it possible to generate a wide range of

mazes for a variety of purposes, from a fast prototyping RL platform

to a testbed for embodied computer vision in indirectly encoded

NeuroEvolution. In the remainder of the section, we detail the

major components of this generator namely the environment’s

parameters, the agents’ capabilities, the reward function and, finally,

unifying metrics for comparing widely different mazes.

3.1 Maze generation

A maze is defined, at its core, by its size (width, height) and

the seed of a random number generator. A depth-first search

algorithm is then used to create the various paths and intersections

with the arbitrary constraint that the final cell is always diagonally

opposed to the starting point (itself a parameter). Additionally,

mazes can be made unicursive by blocking every intersection that

does not lead directly to the goal. Such mazes are called trivial, as

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2025.1511712
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Godin-Dubois et al. 10.3389/frai.2025.1511712

FIGURE 1

Generic maze example. Agents start in one corner and must reach

the opposite. Corridors can be empty or contain easily identifiable

misleading signs (lures). Signs placed on intersections maybe

trustworthy or not depending on whether they are a clue or a trap,

respectively.

an optimal strategy simply requires going forward without hitting

any wall. In contrast, general-purpose mazes do have intersections,

the correct direction being indicated by a sign, hereafter called a

clue. This corresponds to the class of simple mazes, since making

the appropriate move in such cases is entirely context dependent.

Each intersection on the path to the goal is labeled with such a clue.

However, to provide a sufficient level of difficulty, additional

types of sign can also be added to a given maze with a user-

defined probability. Lures, occurring with probability pl, are

easily identifiable erroneous signs that request an immediately

unfavorable move (going backward or into a wall). They can be

placed on any non-intersectional cell along the path to the solution.

Traps, replace an existing clue (with probability pt) and instead

point to a dead end. These types of sign are much harder to

detect as they do not violate local assumptions and can result in

large, delayed negative rewards. Mazes containing either of these

misleading signs are named accordingly, while mazes containing

both are called complex.

3.2 Agents and state spaces

To successfully navigate a maze, the learning agent must

only rely on the visual contents of its current cell to choose its

next action. The framework accounts for three combinations of

input/output types: fully discrete, fully continuous, and hybrid

(continuous observations with discrete actions). Observations

in continuous space imply that cells are perceived directly as

images albeit with a lower resolution than that presented to

humans. Thus, wall detection may not be initially trivial (even

for unicursive mazes), and sign recognition comes into play

with the possibility of using different symbols for different sign

types. In the discrete space, the agent is fed a sequence of eight

floats, corresponding to preprocessed information in direct order

(We,Wn,Ww,Ws, Se, Sn, Sw, Ss), as illustrated in Figure 2.

In this case, the observations take the form of a

monodimensional array containing all eight fields, in direct

order. Signs can be differentiated through their associated decimal

value, which is fully configurable by the experimenter. In the

subsequent experiment, we used a single sign of each type with

values of 1.0, 0.5, and 0.25 for clues, traps, and lures, respectively.

The walls and the originating direction (limited temporal

information) are assigned fixed values of 1.0 and 0.5, respectively.

With respect to actions, a discrete space implies that the agent

moves directly from one cell to another by choosing one of the four

cardinal directions. In contrast, in a continuous action space, the

agent controls only its acceleration.

3.3 Reward function

An optimal strategy, in the fully discrete case, is one where the

agent makes no error: no wall collision, no backward steps, and

naturally, correct choices at all intersections. Although identical in

the hybrid case, as the increase in observation complexity does not

change the fact that there exists only one optimal trajectory, this

statement no longer holds for the fully continuous case, at least not

in the trivial sense. In fact, by controlling its acceleration, an agent

can take shorter paths along corners or even take risks based on

assumed corridor lengths.

However, in all cases, the same reward function is used to

improve strategies as defined by:

r(s, a, s′) = ρe, if s′ is the goal

− ρw, if a caused a collision

− ρb, if a caused a backward step

− ρt , constant time penalty

(1)

Given l, the length of the optimal trajectory, we define two

versions of the reward function: r and its normalized version r̄. The

first is used during the training process to provide large incentive

toward reaching the goal, while the second’s purpose is to compare

performance on mazes with different sizes. Furthermore, we refer

to the cumulative (episodic) reward as R and R̄, respectively. Table 2

details the specific values used in this experiment.

3.4 Evaluating maze complexity

Due to the randomness of the generation process, two mazes

with different seeds can have very different characteristics. Thus, to

provide a common ground from which mazes can be compared, we

define two metrics based on Shannon’s entropy (Shannon, 1948).

First the Surprisingness S(M) of a mazeM:

S(M) = −
∑

i∈IM

p(i) ∗ log2(p(i)) (2)

where p(i) is the observed frequency of input i and IM is the set of

inputs encountered when performing an optimal trajectory in M.

Second, the Deceptiveness D(M) defined as:

cells(M) = {c[0 : 3], ∀c ∈ M}

traps(M) = {c, ∀c ∈ M/cost(c) > 0}

D(M) =
∑

c∈cells(M)

∑

s∈traps(M)
s[0 : 3]=c

−p(s|c)log2(p(s|c)) (3)

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1511712
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Godin-Dubois et al. 10.3389/frai.2025.1511712

FIGURE 2

Discrete observation space. (a) Visual inputs: W∗ denotes whether there is a wall in the corresponding direction, as well as the direction of the

previous cell; S∗ is non-zero if a sign points toward the corresponding direction. (b) Examples: Sample inputs from cells highlighted in Figure 1, as

would be perceived by agents (without geometric relationship).

TABLE 2 Elementary rewards for both versions of the reward function

(Equation 1): r promotes reaching the goal with a large associated reward,

while r̄ always indicates an optimal strategy with a cumulative reward

R̄ = 1. l is the number of cells on the optimal path between start and finish.

ρe ρw ρb ρt Cumulative

r 2l− 1 −0.1 −0.2 −1 R = l

r̄ 2 −0.01 −0.02 −1/(l− 1) R̄ = 1

where the cost of c is above zero for cells containing traps

and lures.

As illustrated in Figure 3, both metrics cover different regions

of the maze space. Surprisingness describes the likelihood of

encountering numerous infrequent states while traversing the

maze. Conversely, the Deceptiveness focuses on the frequency with

which deceptive states may be encountered, that is, it captures how

“dangerous” the maze is. With respect to other types of tasks, be it

in simulation or the physical world, S(M) accounts for the intrinsic

variability of the environment while D(M) would correspond to

the ambiguity of said environment e.g., how frequently similar

observations can give divergent results. One can see that, by taking

advantage of both types of deceptive signs, Complex mazes exhibit

the highest combined difficulty and frequency. Furthermore, even

with the limitations of discrete inputs, we can here see how

it is theoretically possible to generate mazes of arbitrarily high

Surprisingness and Deceptiveness. Additional information and the

data set on which these analyses are based can be found in the

associated Zenodo record (Godin-Dubois, 2024).

4 Training protocol on AMaze

To teach agents generalizable navigation skills, we define a

training maze, presented in Figure 4a. Although, for simplicity,

we only depict one variation of this maze, in practice, the

agent is trained on all four rotations (Figure 4c). Thus, the

agent will not overfit to a particular upper-diagonal type

of behavior, but instead will have to develop a context-

dependent strategy. Furthermore, intermediate evaluations of

the agent’s performance are performed in a similar maze

(in terms of complexity) with a different seed, as shown

in Figure 4b.

To showcase this benchmark’s integration with current

Reinforcement Learning frameworks, we used Stable Baselines

3 (Raffin et al., 2021) and more specifically their off-the-shelf

Advantage Actor-Critic (A2C) and Proximal Policy Optimization

(PPO) algorithms with all hyperparameters kept to their default

values (Mnih et al., 2016; Schulman et al., 2017). The total

training budget is of 3,000,000 timesteps, divided over the

four rotational variations of the training maze with possible

early stopping if the optimal trajectory is observed on all

evaluation mazes.

4.1 Sca�olding

In addition to this direct training in a hard maze, we also

followed two incremental protocols: an interpolation training,

which “smoothly” transitions from simple to more complex

mazes, and the EDHuCAT training, which leverages human

creativity and reactivity (Eiben and Smith, 2015). In the former

case, agents start from trivial environments and gradually move

onto harder challenges. However, the final mazes on which

agents are trained and evaluated are identical to those of the

direct case.

Succinctly, every atomic parameter is interpolated between the

initial and final mazes’ values according to specific per-field rules,

e.g. for the apparition of intersections or traps. In this work, the

initial maze is unicursive (no intersections) of size 5 × 5 and eight

intermediates are inferred through interpolation. As such a total of

ten training stages are performed in this protocol, that is 300,000

timesteps each. In case of early convergence, the remainder of the

budget is transferred equally to future stages. For more details, the

full spectrum of mazes, in image and textual forms, can be found in

Supplementary material 1.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1511712
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Godin-Dubois et al. 10.3389/frai.2025.1511712

FIGURE 3

Distribution of Surprisingness vs. Deceptiveness across 500,000 unique mazes from five di�erent classes. The marginal densities for Surprisingness

highlight the low number of di�erent Trivial mazes ([2, 4] range), while classes of increasing di�culty allow for more variations. Examples of outlier

mazes from the four main classes are depicted in the borders to illustrate the underlying Surprisingness (right column) or lack thereof (left column).

FIGURE 4

Mazes used in direct training. (a) Training: maze used to collect experiences and learn from. (b) Evaluation: maze used to periodically evaluate

performance. Note that, in practice, the agent experiences mazes as in (c), i.e., with all rotations for both training and evaluations.

4.2 Interactive training

In the interactive setup, we use the Environment-Driven

Human-Controlled Automated Training (EDHuCAT) algorithm,

loosely inspired by the EDEnS2 algorithm. As summarized in

Algorithm 1, EDHuCAT operates under the joint principles of

concurrency (multiple agents evaluated in parallel) and diversity

2 Environment-Driven Evolutionary Selection (Godin-Dubois et al., 2020),

used for automated open-ended evolution.

(multiple mazes are generated by the user/experimenter). The

advantage of this method over the simple interpolation between

initial and final mazes is that it can take advantage of unforeseen

developments that occur in the middle of the training. For instance,

if the human agent detects that the learning agent has too much

difficulty with some newly presented features, they can decide

to decrease the difficulty, select from a wider diversity of mazes,

or even increase the difficulty. At the same time, the human

component makes it harder for the training algorithm itself (A2C

or PPO) due to the potential introduction of so-called moving

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1511712
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Godin-Dubois et al. 10.3389/frai.2025.1511712

input : K, Number of concurrent environments

S, number of intermediate steps

m, an initial maze

a human

output: EDHuCATed agent

a ← Agent() // Create one agent

train(a, m) // Let it learn from a simple maze

agents ← [a]

for i← 1 to S− 1 do

a ← select(agents) // Select “best” agent

mazes ← generate(K) // Create K new mazes

agents ← copy(a, K) // Make K copies of A

for k← 1 to K do

// Independent training on different mazes

train(agents[k], mazes[k])

end

end

return select(agents) // Return “best” final agent

Algorithm 1. EDHuCAT Algorithm. A human agent is used to perform

the select and generate operations. In this work K = 3 andS = 10.

targets (see Section 5.4). That is, a Human may not follow a strict

policy for choosing mazes or agents, whether between replicates

or even during a given run. The total budget is the same as for

the other protocols; however, as three concurrent evaluations are

performed for each stage, an agent in a given stage is only trained

for a maximum of 100,000 time steps.

5 Evaluation of generalized
performance

Following the training protocols defined in the previous

section, we evaluated the final agents on two complementary tasks

to determine whether they had acquired generalized behavior in

the target maze class. The first is straightforward: can the agent

solve any maze of a given complexity or lower? To answer this,

we generated 18 mazes, as shown in Figure 5, based on varying

amounts of features (clues, lures, and traps) and Surprisingness.

The agents are then evaluated with respect to two goals: their

success (do they reach the goal) and their reward (cumulative

normalized reward R̄, as in Equation 1). Although this allows for

comparison between agents based on performance under “normal

conditions,” this method suffers from cumulative failure: an error

at a given time point may preclude any further success. In fact,

agents who take a wrong turn somewhere have little information

on how to get back on track. Thus, sub-optimal strategies may end

up indistinguishable from trivially bad ones.

To counteract this trend, we also perform a complementary

evaluation in a more abstract context. Because the input is discrete

and thus enumerable, we can generate the complete set of possible

input arrays. As we know which is the correct decision, we can

assess which inputs are correctly processed by the agents among

the four classes: empty corridor, corridor with lure, intersection

with clue, and intersection with trap. Although less “natural,” this

method ensures complete coverage of all the possible situations

that an agent may encounter on an infinite number of mazes.

Conversely, it also implies that we may be testing an agent on input

configurations that it has never seen during training.

The interested reader might also refer to

Supplementary material 2 for details on the dynamics of each

group’s error with the different sign types. The full data for every

training dynamics is available in Godin-Dubois (2024).

5.1 Generalized maze-navigation

As summarized in Figure 6, the average cumulative rewards

(R̄) and the success rates (fraction of mazes whose target was

reached) are uniquely distributed according to the training regimen

and algorithm. For rewards, both direct and interpolation training

have similar trends when using the A2C algorithm (in [−2,−4]),

while EDHuCAT stands out with a more dispersed distribution.

When considering the PPO algorithm, there is a clear negative

impact of direct training vs. both alternatives. Although EDHuCAT

still presents a higher variance than interpolation training, both

generated agents who obtained better rewards. Furthermore, in

the latter case, PPO significantly outperforms A2C with a p-

value < 0.0001 for an independent t-test with Benjamini-Hochberg

correction (Benjamini and Hochberg, 1995).

This difference is more clearly visible with the maze

completion rate (Figure 6b), especially for agents generated

by interpolation training: the best A2C agent is comparable

to the worst PPO agent. Again, this is strongly confirmed

statistically using the same methodology and with a similar p-

value. Additionally, it would seem, from this distribution, that

A2C is a slightly better choice in static environments (direct/A2C

is marginally better than interpolation/A2C) and conversely

for dynamical environments (direct/PPO generally lower than

interpolation/PPO). As previously, the human interventions

promoted by EDHuCAT do not appear to be beneficial to the

PPO algorithm.

5.2 Generalized input-processing

We can make similar observations for the direct input

processing test, as illustrated in Figure 7. Selecting the correct

action is almost perfectly done by all agents, across all treatments,

for the simplest cases (empty corridors and corridors with lures).

Surprisingly, the reaction to the presence of a nontrivial sign

is handled differently depending on the algorithm. Although

PPO seems to be more efficient in detecting clues, A2C shows

a better response to traps (Figure 7a). Nonetheless, we can see

that, on average, PPO shows clear benefits over A2C (Figure 7b).

With this test, we can confirm the advantage of using the

former over the latter when facing dynamic environments. The

statistical significance is lower than 10−3 and 10−2 for the

interpolation training and EDHuCAT, respectively. In contrast,

there is a marginally significant negative trend between A2C use

and environmental variability.

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1511712
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Godin-Dubois et al. 10.3389/frai.2025.1511712

FIGURE 5

Mazes used for generalization evaluation. The first three columns correspond to di�erent maze classes, while the last three all include traps but with

di�erent frequencies (1, 3, 16). Each row corresponds to the minimal, median, and maximal complexity of mazes obtained from a random sample of

size 10,000.

FIGURE 6

Normalized rewards and maze completion rates across trainers and algorithms. (a) Average normalized reward: EDHuCAT is better than direct

training, but more dispersed than interpolation. (b) Average success rate: PPO is dramatically better for interpolation, while its advantage with

EDHuCAT is unclear. Statistical di�erences were obtained with an independent t test and a Benjamini-Hochberg correction. *: p-value < 0.05, ***:

p-value < 0.0001.

5.3 Aggregated performance

To better compare the general performance of all training

regimens and algorithms, we provide the maximum and median

performance of the six combinations for the three metrics in

Table 3. EDHuCAT succeeded in generating the most general

maze navigator of all treatments with an average normalized

reward of –0.498, compared to –0.873 and –1.2 of direct and

interpolation trainings, respectively. Surprisingly, such rewards

were obtained with both algorithms, while alternatives fared

much worse when using A2C. Furthermore, it reaches a maze

completion rate of 80.6% with PPO and 79.2% with A2C,

again taking the lead on direct training (77.8%). Interpolation

showed more promise with the input recognition metric,

although the low overall variations of this metric preclude

additional inferences.

Complementarily, in the context of easily generating general

maze-navigating agents, the median performance is useful to

highlight which combination of training regime and algorithm

was better across replicates. Although slightly less favorable

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2025.1511712
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Godin-Dubois et al. 10.3389/frai.2025.1511712

FIGURE 7

Correct input processing rate across trainers and algorithms. (a) Per sign type: Corridors (with and without lures) are trivial, while A2C detects traps

more e�ciently than PPO and the other way around. (b) Average performance: PPO outperforms A2C except for direct training, while non-stationary

training seems overall beneficial. Statistical di�erences were also obtained with an independent t-test and a Benjamini-Hochberg correction: 0.05 ≤

* < 10−2 ≤ ** < 10−3 ≤ *** < 10−4.

TABLE 3 Aggregated maximum and median performance by trainer and algorithm. The best values for a row are indicated in bold and second-best in

italic. EDHuCAT produced the most general maze navigation agent with respect to normalized rewards and maze completion rates (top rows).

Interpolation and EDHuCAT show complementary capabilities to produce better maze navigation in general (bottom rows).

Trainer Direct Interpolation EDHuCAT

Algorithm A2C PPO A2C PPO A2C PPO

Maximum Normalized reward –2.58 −0.873 –2.51 –1.2 −0.498 −0.498

Success rate 0.347 0.778 0.403 0.708 0.792 0.806

Input recognition 0.753 0.777 0.74 0.785 0.75 0.781

Median Normalized reward –2.8 –3.39 –3.02 −1.57 –2.87 −1.87

Success rate 0.34 0.326 0.257 0.618 0.514 0.667

Input recognition 0.743 0.715 0.729 0.755 0.717 0.747

for EDHuCAT, which is in the top position once and second

position twice, the results still speak volumes in favor of

nonstationary environments. However, this time around, PPO is

clearly identifiable as the algorithm that performs the best, since

EDHuCAT also shows a marked bias in its favor.

5.4 Human impact

The previous metrics showed how agents resulting from the

EDHuCAT algorithm can have a wide range of performance. To

provide a tentative investigation of the reasons for this variability,

we classified the decisions made by the human agent into three

categories: Careful, challenges are slowly integrated once previous

ones are solved; Risky, the agent is exposed to unfair conditions to

promote resilience;Moderate, new challenges can be presented even

if the agent has not solved the previous ones. The results (in the

associated record) show that the Careful strategy provides better

performance. Agents resulting from both the PPO algorithm and

this strategy often end at the top, while agents training with A2C

followed an inverse trend.

6 Conclusion and discussion

In this work, we presented a benchmark generator that is

geared toward the easy generation of feature-specific mazes and

the intuitive understanding of the resulting agents’ strategies. The

visual cues (either pre-processed or raw) these agents must learn

to use to successfully navigate mazes are designed in a CPU-

friendly manner so as to drastically limit computational time.

By grounding an embodied visual task in what is essentially a

succession of lookup-table queries, we allow complex cognitive

processes to take place while avoiding the cost of a full robotics

simulator. As the agents have only access to local information,

this generator is applicable across a broad range of research

domains, e.g., from sequential decision making to embodied AI.

To help future researchers in manipulating and comparing mazes

with widely different characteristics, we introduced two partially

orthogonal metrics that accurately capture two key features of such

mazes: their Surprisingness and Deceptiveness.

Furthermore, to demonstrate the potential of this generator,

we compared the training capabilities of the Advantage Actor-

Critic (A2C) and Proximal Policy Optimization (PPO) algorithms

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2025.1511712
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Godin-Dubois et al. 10.3389/frai.2025.1511712

in three different training regimens with varying levels of

environmental diversity. Direct training was a brute-force approach

with only a target maze, while the Interpolation case relied on a

scaffolding approach presenting increasing challenges. Finally, an

interactive methodology (EDHuCAT) was introduced to leverage

human expertise as often as possible.

We evaluated the performance of both the maze navigation

capabilities of trained agents and their ability to correctly process

the entire observation space. Across all these metrics, it was shown

that PPO significantly outperforms A2C in dynamic environments,

demonstrating the relevance of the former in producing generalized

agents. Furthermore, we found that EDHuCAT together with PPO

was clearly one step above the alternatives when aiming for a

general maze-navigating agent. At the same time, if one strives

for more than a singular champion but, instead, for reproducible

performance, then results point to both the Interpolation and

interactive training setups as valid contenders when used in

conjunction with PPO.

While demonstrating the potential of AMaze as a benchmark

generator for AI agents, this work also raised a number of questions.

First, we aim to confirm whether the observed higher performance

of PPO is explained by its use of a trust region, which reduces

learning speed and, in turn, overfitting. Furthermore, as we limited

the study to two RL algorithms and a single neural architecture,

many questions remain open with respect to the best choice of

hyperparameters or even the applicability of other techniques, such

as Evolutionary Algorithms. Second, we only briefly mentioned the

impact of the human in the interactive case, and while preliminary

data (Godin-Dubois, 2024) show tentative relationships between

the human strategy, the training algorithm, and performance,

dedicated studies are required to provide definitive answers.

The strategy could be studied, as well as additional factors: Do

youngsters train better than their elders? Does having a background

in AI help? Or can laymen outperform experts?

Data availability statement

The datasets presented in this study can be found in

online repositories. The names of the repository/repositories and

accession number(s) can be found below: https://zenodo.org/

records/10622914.

Author contributions

KG-D: Conceptualization, Data curation, Formal

analysis, Funding acquisition, Investigation, Methodology,

Project administration, Resources, Software, Validation,

Visualization, Writing – original draft, Writing – review &

editing. KM: Conceptualization, Formal analysis, Funding

acquisition, Methodology, Project administration, Supervision,

Validation, Writing – review & editing. AK: Conceptualization,

Investigation, Methodology, Supervision, Writing – review

& editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This research was funded

by the Hybrid Intelligence Center, a 10-year programme funded by

the Dutch Ministry of Education, Culture and Science through the

Netherlands Organisation for Scientific Research, https://hybrid-

intelligence-centre.nl, grant number 024.004.022.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2025.

1511712/full#supplementary-material

References

Alaguna, C., and Gomez, J. (2018). “Maze benchmark for testing evolutionary
algorithms,” in Proceedings of the Genetic and Evolutionary Computation Conference
Companion (New York, NY, USA: ACM), 1321–1328. doi: 10.1145/3205651.
3208285

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike
adaptive elements that can solve difficult learning control problems.
IEEE Trans. Syst. Man Cybern. 13, 834–846. doi: 10.1109/TSMC.1983.
6313077

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2025.1511712
https://zenodo.org/records/10622914
https://zenodo.org/records/10622914
https://hybrid-intelligence-centre.nl
https://hybrid-intelligence-centre.nl
https://www.frontiersin.org/articles/10.3389/frai.2025.1511712/full#supplementary-material
https://doi.org/10.1145/3205651.3208285
https://doi.org/10.1109/TSMC.1983.6313077
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Godin-Dubois et al. 10.3389/frai.2025.1511712

Beattie, C., Köppe, T., Dué nez-Guzmán, E. A., and Leibo, J. Z. (2020). DeepMind
Lab2D. arXiv [Preprint]. arXiv:2011.07027.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., et al.
(2016). DeepMind Lab. arXiv [Preprint]. arXiv:1612.03801.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade
learning environment: an evaluation platform for general agents. J. Artif. Intell. Res.
47, 253–279. doi: 10.1613/jair.3912

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a
practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57,
289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. (2020). “Leveraging procedural
generation to benchmark reinforcement learning,” in 37th International Conference on
Machine Learning, ICML 2020, 2026–2034.

Eiben, A., and Smith, J. (2015). Introduction to Evolutionary Computing, volume 28.
Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-662-44874-8

Fujimoto, S., Van Hoof, H., and Meger, D. (2018). “Addressing function
approximation error in actor-critic methods,” in 35th International Conference on
Machine Learning, ICML 2018, 2587–2601.

Godin-Dubois, K. (2024). AMaze: Fully discrete training with three regimes
(direct, scaffolding, interactive) and two algorithms (A2C, PPO). arXiv [Preprint].
arXiv:2411.13072v1.

Godin-Dubois, K., Cussat-Blanc, S., and Duthen, Y. (2020). “Beneficial
catastrophes: leveraging abiotic constraints through environment-driven evolutionary
selection,” in 2020 IEEE Symposium Series on Computational Intelligence (SSCI),
94–101. doi: 10.1109/SSCI47803.2020.9308411

Harries, L., Lee, S., Rzepecki, J., Hofmann, K., and Devlin, S. (2019). “MazeExplorer:
a customisable 3D benchmark for assessing generalisation in reinforcement learning,”
in 2019 IEEE Conference on Games (CoG) (IEEE), 1–4. doi: 10.1109/CIG.2019.
8848048

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger,
D. (2018). “Deep reinforcement learning that matters,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 3207–3214. doi: 10.1609/aaai.v32i1.
11694

Juliani, A., Khalifa, A., Berges, V.-P., Harper, J., Teng, E., Henry, H., et al.
(2019). “Obstacle tower: a generalization challenge in vision, control, and
planning,” in Proceedings of the Twenty-Eighth International Joint Conference
on Artificial Intelligence, volume August (California: International Joint
Conferences on Artificial Intelligence Organization), 2684–2691. doi: 10.24963/ijcai.
2019/373

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and Jaskowski, W. (2016).
“ViZDoom: a Doom-based AI research platform for visual reinforcement learning,”
in 2016 IEEE Conference on Computational Intelligence and Games (CIG) (IEEE), 1–8.
doi: 10.1109/CIG.2016.7860433

Laskin, M., Yarats, D., Liu, H., Lee, K., Zhan, A., Lu, K., et al. (2021). “URLB:
unsupervised reinforcement learning benchmark,” in NeurIPS.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., et al.
(2016). Asynchronous methods for deep reinforcement learning. arXiv [Preprint].
arXiv:1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
et al. (2015). Human-level control through deep reinforcement learning. Nature 518,
529–533. doi: 10.1038/nature14236

Nichol, A., Pfau, V., Hesse, C., Klimov, O., and Schulman, J. (2018). Gotta learn fast:
a new benchmark for generalization in RL. arXiv [Preprint]. arXiv:1804.03720.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., and Dormann, N.
(2021). Stable-baselines3: reliable reinforcement learning implementations. J. Mach.
Learn. Res. 22, 1–8.

Risi, S., and Togelius, J. (2020). Increasing generality in machine learning
through procedural content generation. Nat. Mach. Intell. 2, 428–436.
doi: 10.1038/s42256-020-0208-z

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv [Preprint]. arXiv:1707.06347.

Shannon, C. E. (1948). A mathematical theory of communication. Bell Syst. Techn.
J. 27, 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x

Sutton, R., and Barto, A. (2018).Reinforcement Learning: An Introduction. Bradford:
A Bradford Book.

Synnaeve, G., Nardelli, N., Auvolat, A., Chintala, S., Lacroix, T., Lin, Z., et al. (2016).
TorchCraft: a library for machine learning research on real-time strategy games. arXiv
[Preprint]. arXiv:1611.00625.

Tian, Y., Gong, Q., Shang, W., Wu, Y., and Zitnick, C. L. (2017). ELF: an
extensive, lightweight and flexible research platform for real-time strategy games. arXiv
[Preprint]. arXiv:1707.01067.

Todorov, E., Erez, T., and Tassa, Y. (2012). “MuJoCo: a physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IEEE), 5026–5033. doi: 10.1109/IROS.2012.6386109

Tomilin, T., Dai, T., Fang,M., and Pechenizkiy, M. (2022). “LevDoom: a benchmark
for generalization on level difficulty in reinforcement learning,” in 2022 IEEE
Conference on Games (CoG) (IEEE), 72–79. doi: 10.1109/CoG51982.2022.9893707

Towers, M., Kwiatkowski, A., Terry, J., Balis, J. U., De Cola, G., Deleu, T., et al.
(2024). Gymnasium: a standard interface for reinforcement learning environments.
arXiv [Preprint]. arXiv:2407.17032.

Wang, R., Lehman, J., Clune, J., and Stanley, K. O. (2019). Paired open-ended
trailblazer (POET): endlessly generating increasingly complex and diverse learning
environments and their solutions. arXiv [Preprint]. arXiv:1901.01753.

Wawrzyński, P. (2009). “A cat-like robot real-time learning to run,” in
Adaptive and Natural Computing Algorithms. ICANNGA 2009, 380–390.
doi: 10.1007/978-3-642-04921-7_39

Yu, T., Quillen, D., He, Z., Julian, R., Narayan, A., Shively, H., et al. (2019). Meta-
world: a benchmark and evaluation for multi-task and meta reinforcement learning.
arXiv [Preprint]. arXiv:1910.10897.

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2025.1511712
https://doi.org/10.1613/jair.3912
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1007/978-3-662-44874-8
https://doi.org/10.1109/SSCI47803.2020.9308411
https://doi.org/10.1109/CIG.2019.8848048
https://doi.org/10.1609/aaai.v32i1.11694
https://doi.org/10.24963/ijcai.2019/373
https://doi.org/10.1109/CIG.2016.7860433
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/s42256-020-0208-z
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/CoG51982.2022.9893707
https://doi.org/10.1007/978-3-642-04921-7_39
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	AMaze: an intuitive benchmark generator for fast prototyping of generalizable agents
	1 Introduction
	2 Related benchmarks
	3 Generating mazes
	3.1 Maze generation
	3.2 Agents and state spaces
	3.3 Reward function
	3.4 Evaluating maze complexity

	4 Training protocol on AMaze
	4.1 Scaffolding
	4.2 Interactive training

	5 Evaluation of generalized performance
	5.1 Generalized maze-navigation
	5.2 Generalized input-processing
	5.3 Aggregated performance
	5.4 Human impact

	6 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References

