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Automatic identification of metastatic sites in cancer patients from electronic

health records is a challenging yet crucial task with significant implications for

diagnosis and treatment. In this study, we demonstrate how advancements

in natural language processing, namely the instruction-following capability of

recent large language models and extensive model pretraining, made it possible

to automate metastases detection from radiology reports texts with a limited

amount of gold-labeled data. Specifically, we prompt Llama3, an open-source

instruction-tuned large language model, to generate synthetic training data to

expand our limited labeled data and adapt BERT, a small pretrained language

model, to the task. We further investigate three targeted data augmentation

techniques which selectively expand the original training samples, leading to

comparable or superior performance compared to vanilla data augmentation,

in most cases, while being substantially more computationally e�cient. In our

experiments, data augmentation improved the average F1-score by 2.3, 3.5,

and 3.9 points for lung, liver, and adrenal glands, the organs for which we

had access to expert-annotated data. This observation suggests that Llama3,

which has not been specifically tailored to this task or clinical data in general,

can generate high-quality synthetic data through paraphrasing in the clinical

context. We also compare metastasis identification accuracy between models

utilizing institutionally standardized reports vs. non-structured reports, which

complicate the extraction of relevant information, and show how including

patient history with a customized model architecture narrows the gap between

those two setups from 7.3 to 4.5 points on F1-score under LoRA tuning. Our

work delivers a broadly applicable solution with remarkable performance that

does not require model customization for each institution, making large-scale,

low-cost spatio-temporal cancer progression pattern extraction possible.
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1 Introduction

Cancer is the second leading cause of death globally,

responsible for one in six deaths.1 Most cancer-related fatalities

are due to metastatic diseases (Dillekås et al., 2019), which can

be partly prevented through early diagnoses. Discovering spatio-

temporal patterns of cancer progression and their responsiveness

to individual factors can guide healthcare providers toward more

targeted monitoring for metastases, enabling timely interventions

(Sherman et al., 2016). In contrast to traditional clinical studies

that demand long-term trials and extensive investment, we are

interested in a novel data-driven approach for tracking cancer

progression that leverages the available electronic health records

(EHR), specifically the routine computed tomography (CT) scans

in cancer patients. In this context, our study proposes a natural

language processing (NLP) enabled solution for systematically

identifying metastatic sites from radiology reports. Our work not

only facilitates the extraction of spatial and temporal patterns

in cancer spread but also enables the comparison of cancer

progression under different circumstances, significantly enhancing

our understanding of metastatic tropism and improving patient

outcomes.

Despite the abundance of raw clinical data, the availability of

labeled datasets is very limited due to cumbersome annotation

processes and data privacy concerns, which hinder data sharing

between healthcare institutions and research groups. The data

we experimented on were collected at Memorial Sloan Kettering

Cancer Center (MSKCC) over a span of 10 years, and clinical

experts have annotated small subsets of data to indicate the

presence or absence of metastases in different organs, namely lung,

liver, and adrenal glands. We leverage the impressive in-context

capability of instruction-tuned large language models (LLMs) to

expand our labeled dataset. We instruct the LLM to generate

synthetic data and train a small language model (SLM) on the

expanded dataset to detect metastases. Our approach effectively

mitigates data scarcity without requiring extra manual annotation.

The radiology reports in our data follow the institutional

standardized structured template, illustrated in Figure 1, which

organizes the findings section into 13 subsections that discuss

individual organs or organ groups separately. Previous studies

(Batch et al., 2022; Do et al., 2021) utilized this report template to

detect metastases in each organ using the corresponding subsection

and showed promising performance. Our approach, however,

leverages only the impression section of the report, a standard

element of radiology reports that summarizes key observations,

enabling broader adaptability across different report structures and

bypassing variation of institution-level templates. However, there is

a trade-off here as the impression-only setting falls short compared

to the structured report setting in terms of performance, which

we address partially by proper model design and data curation.

Overall, we leverage the emergent ability of open-source LLMs in

paraphrasing clinical text to enhance the metastases identification

from the impression section and rigorously evaluate the effect of

data augmentation (DA), patient history, and parameter-efficient

fine-tuning (PEFT) techniques in addressing the performance gap

1 https://www.who.int/health-topics/cancer

inherent in the impression-only setting. Our main contributions

are summarized as follows:

• Leveraging LLMs for DA: our work is one of the pioneering

efforts to leverage open-source LLMs to generate synthetic

data in the radiology report context. We introduce and assess

targeted DA strategies that focus only on the most informative

samples to enhance model performance.

• Proposing a generalized metastasis detection methodology:

we conduct a systematic comparison of structured findings

vs. impression-only settings, resulting in a more broadly

applicable approach for metastasis detection. Additionally,

by relying only on text modality, our method sidesteps

the complexities associated with varying imaging techniques,

which makes our method adaptable across institutions.

• Enhancing baseline performance: we utilize patients’ prior

radiology records, which substantially narrows down the

performance gap between structured and impression-only

report settings. We also demonstrate how PEFT methods,

specifically prompt-tuning and LoRA, show superior

performance compared to traditional fine-tuning on small

training data.

• Conducting comprehensive evaluation: we perform an

extensive evaluation of our methods on datasets annotated for

metastases in the lung, liver, and adrenal glands, highlighting

the practical benefits and limitations of our approach under

different circumstances.

The remainder of this paper is structured as follows: Section

2 reviews the relevant literature, covering DA techniques in

NLP, with a focus on generative DA applied to medical tasks,

and provides an overview of popular PEFT methods. Section

3 describes the proposed solution, including data description,

problem formulation, the augmentation process, the proposed

model architecture, and its training procedure. Section 4 presents

the experimental results, offering a thorough analysis of the

effectiveness of augmentation techniques, the impact of report

structures, and the role of prior reports on model performance

using various PEFT methods. Section 5 features the discussion,

providing insights into the diversity of generated examples and the

influence of patient history duration in metastases analysis. Finally,

Section 6 concludes the paper by summarizing the key findings and

their clinical implications.

2 Related works

2.1 Data augmentation in natural language
processing

DA is a widely used technique to enhance the performance

of deep learning models, especially in low-data scenarios. It

increases the size and diversifies the training data without

requiring additional data collection and annotation. While various

methods exist for generating synthetic samples, most approaches

in classification tasks focus on creating samples similar to existing

ones through label-preserving transformations. However, these

transformations are challenging to define due to the discrete and
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FIGURE 1

Illustration of structured and non-structured report templates. The non-structured template is a broadly adopted report style among radiologists.

Structured template refers to the institutional template designed by radiology departments for their own internal use.

complex nature of language, where even a single word change

can alter the meaning entirely. Traditional DA methods, such as

easy data augmentation (EDA) (Wei and Zou, 2019), synonym

replacement using predefined ontologies or Masked Language

Models (Wu et al., 2019), and back-translation (Shleifer, 2019),

often introduce label noise into the training data, disrupting

original data distribution. Generative DAs are more powerful but

used to be limited to conditional generative models that required

training separate models per class (Anaby-Tavor et al., 2020).

Recently, the advent of instruction-tuned LLMs has

revolutionized DA and enabled in-context generative DA,

which produces lexically diverse yet semantically consistent

samples without any task-specific training (Dai et al., 2023).

Their deep language understanding and ability to follow human

instructions closely are key to this advancement. Despite all the

progress, the benefits of DA and the most effective DA techniques

remain task-dependent (Chen et al., 2023; Piedboeuf and Langlais,

2023). In this work, we apply in-context generative augmentation

on the metastatic sites identification task by paraphrasing the

impression section of radiology reports. We use Llama3 (Dubey

et al., 2024), a powerful open-source transformer-based LLM, to

generate synthetic samples.

Various targeted augmentation techniques have been suggested

in previous works to improve efficiency and downstream task

accuracy compared to vanilla augmentation. Møller et al. (2024)

conduct minority class augmentation to mitigate performance

degradation resulting from class imbalance. Lin et al. (2023)

keeps only the generated samples with high pointwise v-

information, which provide significant informational value to the

model. However, their method has demonstrated improvement in

classification problems with many classes and may not be suitable

for binary classification tasks. Additionally, their approach involves

post-generation filtering of synthetic samples, which does not

reduce the LLM generation workload. Sahu et al. (2023) generates

challenging samples near class boundaries by prompting a LLM

with two samples from different classes and asking the model to

generate samples that are a mix of those classes and closer to

a dominant class. Although their method is suitable for general

domain tasks, where the LLM can gain a satisfactory understanding

of each class by one provided example, we believe it is not

suitable for complex domain-specific tasks. We later introduce

three targeted augmentation methods that filter training samples

pre-generation and have been designed considering the special

properties of our dataset.

2.2 Generative data augmentation in
medical domain

Several studies have demonstrated the benefits of LLM-based

DA in the medical domain, particularly when data is scarce. Yang

et al. (2023) applied generative DA with GPT family models

to enhance the task of radiology report simplification. In their

approach, they generated simplified versions of existing texts and

paraphrased the original pairs to expand their expert-generated

dataset. They report considerable improvements in performance

when training BART model (Lewis et al., 2020) on the augmented

data. Guo et al. (2023) utilized ChatGPT2 and GPT-4 (Achiam et al.,

2023) to generate new medical question-answer pairs and rephrase

the existing ones within the pubMedQA dataset. They train two

SLMs on the augmented data and find that the effectiveness of

2 https://openai.com/index/chatgpt/
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augmentation depends on the specific SLM trained, the LLM used,

and the augmentation technique, which varies significantly from

substantial performance gain to a notable negative impact. Due to

the sensitive nature of the data and privacy concerns, we do not

use API-based models to generate new samples. We instead use

LLama3 model, which showed comparable generation capabilities

with API-based models. It is worth mentioning that the data has

been anonymized, and the sensitive information has been removed

or altered, complying with ethical and legal regulations. To the

best of our knowledge, this work is the first to apply in-context

generative DA to a classification task on radiology reports.

2.3 Parameter-e�cient fine-tuning
techniques

PEFT methods have steadily gained popularity as language

models continue to grow in size since they reduce the memory

footprint during training compared to full fine-tuning (FFT).

While these methods were once thought to involve a trade-off

between efficiency and performance, further research has shown

that they outperform FFT in certain setups while updating <1%

of model parameters. PEFT methods are specifically designed for

transformer-based language models and modify the transformer

block by adding a small set of trainable parameters while freezing

the remaining ones. Prompt-tuning prepends artificial trainable

tokens to the keys and values in the attention layers, a core

module of the transformer block. Among different prompt-tuning

variations, we use P-tuning v2 (Liu et al., 2021), which is directly

applicable to natural language understanding tasks and has shown

comparable performance to FFT across different scales. LoRA (Hu

et al., 2021), another popular PEFT method, introduces additive

trainable rank decomposition matrices into linear layers inside

the transformer block, which have the capability of merging

into pretrained weights in the inference stage. Their experiments

illustrate that LoRA is the most beneficial if only applied to the

value and query transformation matrices. In this work, we utilize

prompt-tuning and LoRA to adapt a SLM to the task of metastases

detection from radiology reports.

3 Materials and research methods

3.1 Data description

The data used in this study were collected at MSKCC from July

2009 to May 2022 by waiver of informed consent and follows a

structured departmental template, as shown in Figure 1. Subsets of

the data have been annotated by five radiologists for the presence

or absence of metastases in designated organs, namely lung, liver,

and adrenal glands; for detailed information about the process of

gathering and annotating data, please refer to Batch et al. (2022).

All the necessary steps to ensure patient privacy have been taken;

sensitive information about the patient’s identity has been removed

from the text, the patient identifiers have been replaced with

randomly generated identifiers, and the dates of examination were

altered by applying a random shift per patient.

Table 1 presents the details of the data split across the train,

validation, and test sets for each organ, with the split performed

at the patient level to prevent data leakage between training and

testing. The size of the annotated data varies by organ, including

869 patients for the lung, 404 patients for the adrenal glands,

and 315 patients for the liver. To account for this variability,

we adjusted the train/validation/test split ratios to ensure that

the test set remains sufficiently large and representative of the

data diversity. For the lung, liver, and adrenal glands datasets,

we allocated 15%, 50%, and 40% of patients to the test set,

respectively. The validation set comprises 15%, 25%, and 25% of

the patients for each organ, leaving 70%, 25%, and 35% of patients

for training. With an average of approximately nine reports per

patient, this results in 5,265 reports for the lung, 674 for the

liver, and 1,506 for the adrenal glands in the training set. The

rate of metastatic occurrence also differs by organ, with the liver

showing the highest frequency at 31%, the lungs at 16%, and

the adrenal glands at just 7%. This variation in data sizes and

metastatic occurrence rates allows us to evaluate our method’s

performance under diverse conditions. Data preprocessing is

the same as described in our previous work (Barabadi et al.,

2024).

3.2 Problem formulation

We represent each patient in the datasetD with a tuple (R,Y∗),

where R = (r1, r2, ..., rl) denotes a list of the patient’s radiology

report texts in chronological order and Y∗ = (y∗1 , y
∗
2 , ..., y

∗
l
)

represents a list of corresponding binary labels. l is the total

number of available reports for the patient, varying from 1 to

30 reports in our data. y∗i ∈ {0, 1} indicates the presence or

absence of metastatic disease in the organ at the time of report

ri, serving as our ground-truth label. We apply vanilla or targeted

DA method to ri, which prompts a LLM to generate a list of

paraphrased versions of ri, Ri,syn with length 0 ≤ li,syn. Then, we

composeDsyn by randomly matching reports from R(i=1 to l),syn and

generating lmax,syn synthetic patients, where lmax,syn = max
1≤i≤l

li,syn.

This guarantees the maximum use of the generated synthetic

reports and aligns our report-level data augmentation method

with the patient-level model architecture. Finally, we combine

the original and synthetic dataset to form the augmented dataset

Daug = D + Dsyn. Our objective is to train a classifier F({ri}
j
i=1),

which, given the patient history up to report rj, outputs yj, i.e.

the predicted probability of metastatic disease at the time of rj. In

the following subsections, we describe the different augmentation

techniques we proposed and the design of classifier F and its

training process.

3.3 Data augmentation process

Our DA techniques involve prompting LLMs to paraphrase

impression text samples. The prompt, as shown in Figure 2,

includes a brief background, a task description, and a

demonstration containing an original and paraphrased impression

text, providing the model with a clear illustration of the task.
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TABLE 1 Data split details for all organs.

Freq Train Validation Test

Percentage Subjects Reports Percentage Subjects Reports Percentage Subjects Reports

Lung 16% 70% 606 5265 15% 131 1,221 15% 130 1,179

Liver 31% 25% 78 674 25% 79 670 50% 158 1,433

Adrenal

glands

7% 35% 145 1506 25% 97 919 40% 162 1,682

FIGURE 2

The constructed prompt for synthetic data generation. We incrementally revised the prompt by qualitatively evaluating LLM’s outputs.

We used ChatGPT to generate the example in the prompt

and its rephrased version. We use the same prompt for all

three organs and prompt the model multiple times to generate

N variations of each original report in the training data. To

ensure effective augmentation, it is essential to balance diversity

and semantic faithfulness to the original data in the synthetic

samples. Higher diversity enables the model to learn from

varied expressions and terminologies, while semantic faithfulness

ensures consistency with the original meaning, which is crucial

for accurate learning. To quantify this, we evaluate the lexical

diversity of the generated samples using the self-BLEU score

(Zhu et al., 2018) and measure their semantic similarity to the

original text through cosine similarity. These measurements,

along with analysis of their implications, are presented in

Section 5.1. We use LLama3-70B-instruct as the LLM in all the

experiments, which has been pretrained and then instruction-

tuned on a large amount of data. We set the repetition penalty

to 1.15 and the temperature to 0.3 to encourage diverse yet

meaningful outputs.

Besides vanilla in-context DA, which generates a fixed number

of synthetic reports per an original report, we further examine

three targeted augmentation methodologies, which, instead of

naively treating all the training reports the same, select a subset

of them to rephrase. It is clear that not every synthetically

generated sample offers the same benefit to the model performance.

This can be attributed to the fact that the LLM sometimes fails

to generate a realistic example by preserving the label, or the

generated example does not offer any new information to the

SLM trained in the subsequent step. However, it is not trivial

how to identify the most valuable synthetic samples to use during

training. We are further interested in predicting the usefulness of

synthetic samples before even generating them by assessing the

original sample at hand. Therefore, we can avoid the generation

cost for the samples that are going to be discarded. We use

the insight we gained from the data to design some proxies

to find a suitable subset of training samples to expand. We

discuss each method and the rationale behind it in detail in the

following paragraphs.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1513674
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Ashofteh Barabadi et al. 10.3389/frai.2025.1513674

Length filtering: The intuition behind this method is that when

the source sample is a short paragraph that does not contain much

information, augmentation does not offer a considerable benefit

since the LLM fails to rephrase the source sample in different

ways and ends up outputting very similar versions to the original

sample and each other. So, we filter the source samples based on

the number of words and only generate samples similar to the

ones that are longer than the threshold. Based on the text length

distribution in the data, we set the threshold to a minimum of

20 words.

K-fold misclassification-based filtering (KF-MF): The idea

behind this method is to identify the samples more susceptible to

misclassification and generate synthetic data exclusively from those

challenging samples to improve model performance. However,

evaluating a model on its own train set leads to a very low error rate

due to overfitting and does not help in finding challenging train

samples. To mitigate this issue, we use a k-fold cross-validation

strategy when we split the source samples into k chunks and pick

one as the validation set and the rest as the train set in every step,

which leads to training k separate models. The performance of each

model on the unseen validation chunk is not under the effect of

overfitting and can be utilized for detecting challenging samples.

So, we aggregate the misclassified samples from all k chunks and

only prompt the LLM to rephrase those samples. We set k = 5

and trained each model for 20 epochs before using it to detect

misclassified samples.

Minority class augmentation: As discussed before, our dataset

labels are highly imbalanced. We initially addressed this issue

by upsampling the minority class. Here, we investigate another

approach where we augment only the reports from the patients with

positive labels for at least half of their reports, and we replicate those

patients with a factor that approximately balances the number of

samples in the positive and negative classes.

3.4 Model architecture

The classifier architecture has been shown in Figure 3. It

consists of a text encoding block and an aggregator block. The

text encoding block embeds the radiology texts into a customized

semantic space and generates pre-report text embeddings. The

aggregator block, which consists of a LSTM, an attention

layer, and a classifier layer, links the information from patient

history over time to determine the presence or absence of

metastatic diseases. We explain the details of each block in the

following paragraphs.

Text encoding: To encode information from the report text,

represented in natural language, into a dense vector, we employ

a pretrained SLM. Due to limited knowledge of SLMs in specific

domains, such as medical terminology, using them immediately to

encode clinical data would result in poor performance. We fine-

tune the pretrained SLM on the metastatic site identification task,

initializing from its pretrained weights, which allows the model

to familiarize itself with the targeted domain while leveraging its

prior knowledge. Various methods have been proposed for tuning

transformer-based language models on downstream tasks. In this

study, we employ vanilla fine-tuning, as well as two PEFT methods:

prompt-tuning (Liu et al., 2021) and LoRA (Hu et al., 2021).

Prompt-tuning prepends trainable prompt tokens to the input

of each transformer block and keeps the pretrained weights frozen.

Prompt length is a hyperparameter that can control the number

of tunable parameters, and its optimal value depends on the task

at hand. As recommended by previous works (Liu et al., 2021),

we initialize prompt tokens with the embedding of relevant words

from the model vocabulary for better performance and training

stability. LoRA, on the other hand, assumes that updating weights

for a new task can be represented by a low-rank matrix. Therefore,

rather than directly adjusting the original weights, the update is

decomposed into the multiplication of a horizontal and vertical

matrix. To prevent adding random noise to the pretrained weights

at the beginning, one of these matrices is initialized to zero.

The rank of the update matrix is a hyperparameter that controls

the number of tunable parameters. Based on the original paper

(Hu et al., 2021), the optimal combination of linear layers in the

transformer block to update with LoRA is the query and value

transformation matrices while keeping the rest of the parameters

frozen.

We denote the text encoder model as M, where ei =

M(ri). Here, ei ∈ Rd represents the embedding for report ri,

and d is the internal dimension of the SLM. We use BERT-

base in our experiments, which has the hidden dimension d

of 768.

Aggregator block: The aggregator block passes the text

embedding of reports, eli=1, through a LSTM layer followed by a

multi-head attention layer and finally a linear classification layer.

For computational efficiency, we engineered the aggregator block

to compute yj for all 1 ≤ j ≤ l simultaneously. We down-project eis

before feeding them to the LSTM layer, which lowers the dimension

to 128. The LSTM layer then processes the down-projected text

embeddings chronologically, updating its internal state at each

timestep with new information, while the attention layer processes

the information in parallel and takes relevant information from

all timesteps equally into account. To ensure the aggregator block

remains causal, i.e. ei for i > j does not involve in the computation

of yj, we use one-directional LSTM and a causal attention mask.

Finally, we apply a linear classification head to the output of the

attention layer at each timestep to generate the predicted labels,

{yi}
l
i=1.

3.5 Training process

We train the model by minimizing the binary cross-entropy

loss function on the original data for a maximum of 1,000 epochs

with early stopping on the validation set with 200 epochs of

patience. For training on augmented data, we start from the model

trained on the original data and continue the training for 10

epochs when N = 10. In the targeted augmentation experiments,

we adjust the number of training epochs based on augmented

data size to have the same computation budget during training as

vanilla augmentation. We evaluate the model on the validation set

during training after each epoch and pick the best model based

on the validation F1-score. We use half-precision training and
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FIGURE 3

The proposed model architecture. It contains two main blocks: a

text encoder and an aggregator block.

Adam optimizer to tune the weights with a cosine scheduler on the

learning rate.

4 Results

We evaluate our proposed method against several baselines,

each constructed by systematically removing key components—

augmentation, patient history, and PEFT training—one at a time.

This allows us to analyze their individual impact and gain deeper

insights into their interactions. For the baselines that rely on a

single report for prediction, we employ a simplified architecture

comprising a SLM and a classification head. Additionally, We

compare our method performance in structured and impression-

only settings. In the structured report scenario, the input to the

SLM, which was originally the impression text, is replaced by

the organ-specific subsection combined with the impression text.

Several of the baselines are adapted from our previous work

(Barabadi et al., 2024), where they are discussed in detail. We rerun

each experiment with five different random seeds and present both

the average and the highest F1-scores achieved on the unseen test

set. We discuss our main observations in the following sections.

4.1 E�ectiveness of augmentation
techniques

Table 2 compares the model performance when trained on

the original train data vs. vanilla augmented data using both

prompt-tuning and LoRA techniques. The results indicate that

synthetic data generation significantly benefits the liver and

adrenal glands datasets, while the performance on the lung dataset

remains unchanged or declines when using the augmented data.

This could be attributed to the fact that the lung dataset, with

over 5,000 training report samples, is already sufficiently large,

resulting in diminishing returns from additional samples. To

test this hypothesis, we examined the effect of augmentation on

subsets of the lung dataset of varying sizes. The results shown

in Figure 4 illustrate that smaller subsets of data gain more F1-

score improvement from data augmentation. Beyond 50% point,

TABLE 2 Data augmentation results on test sets.

Train data PT LoRA

Avg F1 Best F1 Avg F1 Best F1

Lung Original 76.4± 1.2 77.7 79.5± 1.5 81.4

Augmented 74.7± 3 78.2 79.4± 0.6 80.1

Liver Original 77.9± 2.5 80.8 82.6± 2 85.6

Augmented 80.4± 2.4 83.2 85± 1.3 86.6

Adrenal

glands

Original 67.1± 2.3 71.1 70.6± 6.4 79.7

Augmented 67.3± 5 74.4 74.5± 3.6 77.4

Entries for Avg F1-score columns are in the format of average F1-score ± standard deviation

of F1-score. PT stands for prompt-tuning. Bold values are the entries that show the augmented

approach overperformed the original approach.

even adding real-world examples with gold labels yields minimal

improvement. For subsequent augmentation experiments, we used

20% of the lung training data to compare different augmentation

techniques. Table 2 also reveals that LoRA outperforms prompt-

tuning, with LoRA also benefiting more from augmentation on

average. Specifically, augmentation improved the average F1-score

on the liver and adrenal glands test sets by 2.4 and 3.9 points when

using LoRA, compared to 2.5 and 0.2 points when using prompt-

tuning. More extensive experiments comparing PEFT methods are

presented in Section 4.4.

We compare targeted augmentation strategies in Table 3. First

of all, DA always yields superior or comparable performance

to training on original data in terms of the average F1-score.

This is especially important considering that DA can result in

performance degradation in some natural language processing

tasks if applied without tailoring the augmentation process

properly to the task at hand. For the lung dataset, all the

targeted augmentation techniques show stronger performance

compared to vanilla augmentation. In the liver dataset, KF-MF

augmentation performs better compared to vanilla augmentation,

which indicates the benefit of carefully identifying and repeating

the most challenging samples for the model. Length filtering and

minority class augmentation show a slight decline compared to

vanilla augmentation on the liver dataset, but they are much more

computationally efficient in terms of the number of generated

samples and still outperform no augmentation baseline. For adrenal

glands, length filtering performs the best between targeted DA

methods, followed by KF-MF and minority class augmentation.

Length filtering performs surprisingly well despite its simplicity.

In general, the effectiveness of targeted DA methods is dependent

on the dataset, and there is no unified trend in their performance

compared to vanilla augmentation.

Figure 5 shows the improvement from DA methods compared

to the no-augmentation baseline with respect to a number of

synthetically generated samples, which is a good proxy for

computational complexity since LLM size is orders of magnitude

larger than SLM. Considering the computational complexity, KF-

MF method is performing very impressively while adding a

small amount of synthetically generated samples. Length filtering

uses more than half of the generated samples and is more

computationally expensive compared to the other targeted DA

methods. Lung seems to benefit the most from minority class
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augmentation, which also has a higher relative number of generated

samples compared to minority class augmentation on liver and

adrenal glands. The liver dataset is not highly imbalanced, so the

number of needed positive samples to balance the classes is small.

Adrenal glands, on the other hand, have a small positive sample set,

and even with the high upsampling factor, the absolute number of

generated samples remains small.

FIGURE 4

Average F1-score on lung test set when gradually increasing train

size with and without data augmentation.

FIGURE 5

Average F1-score improvement from di�erent augmentation

techniques. Liver, lung, and adrenal glands are depicted with blue,

green, and red markers, respectively. 100% of Generated Data Size

refers to the number of synthetically generated samples when using

vanilla data augmentation with N = 10, which is ten times the

original training set size.

4.2 Impact of report structure on
performance

As shown in Table 4, the F1-score consistently improves with

access to the structured findings section compared to using only the

impression section, regardless of the organ or fine-tuning method.

However, when patient history is available, the lung dataset does not

show improvement from accessing the organ-specific subsection.

This does not imply that the findings section lacks additional

information but rather shows the model could not leverage that

information for more accurate metastasis predictions. Both liver

and adrenal glands datasets still benefit from report structure in

multiple report settings. Nevertheless, access to historical data

reduces the performance gap in terms of the average F1-score

between the structured and non-structured report setting, from 7.8

to 6.7 on average across organs and fine-tuningmethods. This effect

is particularly notable when using LoRA for tuning, where the gap

decreases from 7.3 to 4.5 points.

4.3 Impact of prior reports on detection
e�cacy

In our previous work (Barabadi et al., 2024), we examined

the effect of using patient history for metastases detection. Here,

we conduct more extensive experiments, comparing the impact of

utilizing past patient reports with various fine-tuning strategies and

access levels. When structured findings are available, we observe

average F1-score improvements of +2.1, +4.2, and +6.2 points

with fine-tuning, prompt-tuning, and LoRA, respectively. With

only the impression available, the improvements are +6.6, +6.9,

and +10.7 points, respectively. While access to previous reports

is always beneficial, the improvement is more pronounced when

only the impression section is available. This suggests that patient

history provides the model with additional crucial information for

metastasis detection when the data from each visit is limited to the

impression section.

4.4 Comparing PEFT methods

We utilize three different strategies to adapt the base model

to the target task: vanilla fine-tuning, deep prompt-tuning, and

LoRA. In general, PEFT methods performed better than vanilla

TABLE 3 Comparing vanilla augmentation with targeted augmentation strategies.

Metric w/o DA Vanilla DA Length filtered DA Minority class DA KF-MF DA

Lung Avg F1 72± 2.7 73± 2.6 73.2± 1.2 73.6± 0.8 74.3± 0.8

Best F1 75.1 75.9 74.5 74.7 75.6

Liver Avg F1 82.6± 2 85± 1.3 84.7± 2.5 84.2± 2.7 86.1± 0.9

best F1 85.6 86.6 87.6 89 87.2

Adrenal glands Avg F1 70.6± 6.4 74.5± 3.6 73.2± 4.6 71± 4.9 72.8± 1.9

Best F1 79.7 77.4 79.8 76.5 76.1

In all the experiments presented in here, we used LoRA to train the model. For the lung experiments, we used 20% of the training data. Bold values show the best achieved value for specific

metrics and specific organ data.
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TABLE 4 Entries for avg F1-score rows are in the format of average F1-score± standard deviation of F1-score.

Dataset Metric Findings + Impression Impression

Single Multi Single Multi

FFT PT LoRA FFT PT LoRA FFT PT LoRA FFT PT LoRA

Lung Avg-F1 78.4± 1.2 76.0± 1.3 77.1± 2 78.0± 2.7 75.7± 2.7 78.9± 2.4 71.4± 1.5 69.5± 1.4 69.7± 1.2 81.5± 1.3 76.4± 1.2 79.5± 1.5

Best-F1 80.2 78.1 80.4 80.9 78.4 83.1 73.9 71.1 71.7 83.1 77.7 81.4

Liver Avg-F1 80.3± 1.1 79.5± 1.1 79.0± 0.6 83.9± 1.3 85± 1.6 91.2± 1.2 68.5± 0.7 68.6± 0.7 69.7± 1.6 75.2± 0.9 77.9± 2.5 82.6± 2

Best-F1 82.2 80.7 79.9 85.1 86.8 92.9 69.7 69.5 71.4 76.7 80.8 85.6

Adrenal

glands

Avg-F1 68.0± 1.0 68.0± 1.5 66.3± 1.6 71.1± 3.9 75.5± 1.8 71.0± 5.9 61.0± 1.4 62.6± 0.9 61.1± 1.7 63.9± 2.5 67.1± 2.3 70.6± 6.4

Best-F1 69.5 70.6 67.7 75.7 78.2 80.0 62.5 63.3 63.3 66.7 71.1 79.7

The highest F1-score on each row is underlined. PT stands for prompt-tuning. Bold values are the best achieved value for a specific metrics and specific organ data under a certain data availability

(for example single impression only).

TABLE 5 Lexical diversity and semantic fidelity measurement of

synthetically generated samples.

Self-BLUE
single

reference

Self-BLUE
multi

reference

Cosine
similarity

Lung 0.13 0.85 0.94

Liver 0.12 0.88 0.93

Adrenal glands 0.14 0.86 0.95

The self-BLEU score ranges from 0 to 1, and a lower score represents higher diversity. Cosine

similarity ranges from –1 to 1, and a higher score means higher semantic similarity.

fine-tuning with two exceptions: First, on the lung data set, vanilla

fine-tuning is performing better or comparable with PEFT method

across settings, which is probably because of the size of the dataset.

PEFT methods proved more effective on our smaller data on liver

and adrenal glands. Secondly, on structured report/single setup

for the liver, fine-tuning outperforms PEFT methods by a small

margin. In general, PEFT methods perform better than vanilla

fine-tuning in terms of average and best F1-score on test sets. In

particular, LoRA outperforms FFT by a large margin in multiple

report settings.

5 Discussions

5.1 Study the diversity of generated
examples

One of the objectives of DA is to increase the diversity of

training samples, allowing the model to learn from examples

that being presented in different forms and terminologies while

conveying the same meaning. To quantify the diversity of

synthetically-generated samples, we use self-BLEU score (Zhu et al.,

2018), which has repurposed the original BLEU score (Papineni

et al., 2002) for assessing the diversity of synthetically-generated

text. The self-BLEU score calculates the lexical similarity by

counting the number of shared n-grams between a list of references

and a candidate up to nmax, which has been set to 5. We measure

self-BLEU of a generated candidate with respect to the original

FIGURE 6

Patient history duration e�ect on model performance. The dotted

lines show the best single report baselines in the impression-only

setting for each organ. The models trained on the vanilla augmented

data have been used to examine di�erent history lengths.

sample (single-reference) or the pool of generated samples from the

same original sample (multi-reference). A lower self-BLEU score

indicates higher lexical diversity.

While higher diversity is desirable, it is also important to

preserve semantic information. To assess the semantic similarity

between the generated samples and the original sample, we use

the sentence-Transformers Python package to map the samples to

a semantic space and measure the cosine similarity between the

original and generated samples. Specifically, we use the paraphrase-

distilroberta-base model, which is trained on paired paraphrased

sentences. We present the diversity and similarity measurements in

Table 5. The low self-BLEU single-reference scores indicate that the

generated samples are lexically different from the original sample.

However, the multi-reference self-BLEU scores are high, suggesting

limited diversity among generated samples. It is important to note

that as the number of samples being compared increases, the self-

BLEU score will inevitably rise due to the limited ways of rewriting

a sentence. High cosine similarity measurements indicate that our

DA methods maintain high semantic fidelity.
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5.2 E�ective history duration in metastases
analysis

The results presented in Table 4 clearly show the importance

of including patient history in accurate metastases annotation.

However, it is still unclear how far back in patient history we

should look to accurately identify metastases. To gain a more

nuanced understanding of the impact of patient history, we assess

our method’s performance by including only one, two, or five

years of patient history in the testing phase. This allows us to

observe how the models perform when given access to varying

lengths of historical data. Figure 6 demonstrates our observations

and indicates that the most recent data bring the most benefit

to the model performance. We used the models trained on the

vanilla augmented train sets and limited the history information

during evaluation. Our observation shows more than eight points

of improvement in the average F1-score by adding only the most

recent year history, which includes three reports on average,

compared to the best-performing single report baseline. The only

exception is in the case of lung data; since the baseline for the

lung is trained on the full dataset and the model used for history

examination is trained only on a subset of data (20% of the

original training set), they are not directly comparable. Our findings

indicate that the exams conducted in the year leading up to

the target examination contain crucial information for accurately

interpreting the current report when only the impression section

is available. Adding the second last year of history is helpful in

improving the model performance by a smaller amount compared

to the first year, and jumping to the five-year history setting

results in a better F1-score for the liver organ, while for the other

two organs, the performance starts saturating at two years point.

Overall, we observe that two years of patient history is valuable

to consider while performing metastases annotation, with the first

year being the most beneficial.

6 Conclusion

This study presents an automated method for annotating

radiology reports to identify metastatic sites in cancer patients

by using free-text radiology reports. We show how Llama3, a

recent open-source instruction-tuned LLM, can be prompted to

generate high-quality clinical synthetic data and how training

an SLM on that data enables transferring the LLM’s extensive

knowledge to a SLM while maintaining low deployment costs.

Our approach effectively mitigates the labeled data scarcity issue

in the clinical context. Furthermore, we introduce targeted data

augmentation techniques which reduce synthetic data generation

costs by selectively replicating more informative samples. Although

introducing a more fine-grained structure to the radiology reports

offers an advantage in metastasis identification, our results suggest

that comparable performances can be achieved on non-structured

reports by judiciously utilizing historical patient information.

Our results showcase the effectiveness of data augmentation

and utilizing patient history on liver, lung, and adrenal glands

organs under different circumstances. Our work contributes to

the growing body of research aimed at automating the analysis of

clinical notes using NLP techniques, offering a broadly applicable

low-cost solution to the task of metastases detection, which paves

the way for a deeper analytical understanding of cancer progression

patterns.
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