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Data stream-pairwise bottleneck
transformer for engagement
estimation from video
conversation

Keita Suzuki*, Nobukatsu Hojo, Kazutoshi Shinoda, Saki Mizuno

and Ryo Masumura

NTT Human Informatics Laboratories, NTT Corporation, Yokosuka, Japan

This study aims to assess participant engagement in multiparty conversations

using video and audio data. For this task, the interaction among numerous

data streams, such as video and audio from multiple participants, should be

modeled e�ectively, considering the redundancy of video and audio across

frames. To e�ciently model participant interactions while accounting for such

redundancy, a previous study proposed inputting participant feature sequences

into global token-based transformers, which constrain attention across feature

sequences to pass through only a small set of internal units, allowing the

model to focus on key information. However, this approach still faces the

challenge of redundancy in participant-feature estimation based on standard

cross-attention transformers, which can connect all frames across di�erent

modalities. To address this, we propose a joint model for interactions among

all data streams using global token-based transformers, without distinguishing

between cross-modal and cross-participant interactions. Experiments on the

RoomReader corpus confirm that the proposed model outperforms previous

models, achieving accuracy ranging from 0.720 to 0.763, weighted F1 scores

from 0.733 to 0.771, and macro F1 scores from 0.236 to 0.277.

KEYWORDS

transformer, engagement, multiparty conversation, multimodal, classification, global

token

1 Introduction

Online meetings are essential tools for today’s work environment, and the adoption of

remote work has advanced due to the COVID-19 pandemic. Many companies continue

to use hybrid work even after the pandemic. Therefore, the demand for online meetings

has not decreased. However, unlike face-to-face meetings, online meetings present the

challenge of enabling everyone to stay focused due to a diminished sense of participation.

In such online environments, it can be difficult to capture nonverbal cues such as gaze,

facial expressions, and tone of voice, leading to an increased risk of declines in engagement

(Sukumaran and Manoharan, 2024). Therefore, it has become important to continually

estimate the engagement of online meeting participants and provide appropriate feedback.

Engagement estimation has evolved from analyzing individual behaviors to modeling

complex group interactions across various modalities. Early work focused on single-person

unimodal signals, such as facial expressions or gaze (Savchenko et al., 2022; Singh et al.,

2023), followed by multimodal approaches that combine audio and video to improve

robustness (Pan et al., 2023; Kumar et al., 2024). Dyadic settings introduced the importance
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of interpersonal cues (Dermouche and Pelachaud, 2019; Chen

et al., 2022). Recent work has expanded to multiparty scenarios

using only visual data (Lee et al., 2023). However, as shown

in recent studies (Kim et al., 2023; Suzuki et al., 2024),

modeling both audio and visual signals across participants

improves engagement prediction. We therefore address

multiparty multimodal engagement estimation, defined as

estimating a target participant’s engagement from the audiovisual

data of all participants, which remains a challenging and

underexplored area.

Figure 1 illustrates the existing and proposed multiparty

multimodal engagement estimation models. A central challenge

in multiparty multimodal engagement estimation lies in modeling

interactions among multiple data streams—namely, different

modalities (e.g., video and audio) from multiple participants. To

make accurate predictions for a target participant, the model

used must effectively capture both cross-modal interactions

within each participant and cross-person interactions across

participants. Previous studies have addressed this by introducing

cross-person transformers (CPTs) (Lee et al., 2023; Kim et al.,

2023), which rely on hierarchical combinations of cross-attention

layers to separately model these two types of interaction. More

recently, global token-based architectures have been proposed as

a more efficient alternative for representing interactions between

high-dimensional streams, avoiding the combinatorial explosion

of direct attention (Sun et al., 2023; Nagrani et al., 2021).

In the context of engagement estimation, participant-pairwise

global tokens have shown promise in modeling cross-person

interactions more effectively (Suzuki et al., 2024). However, the

previous model still depends on cross-attention mechanisms for

cross-modal fusion, leaving challenges related to redundancy

and scalability unresolved. In this work, we address this

limitation by extending global token-based modeling to unify

both cross-modal and cross-person interactions within a single

architecture. Our proposed model introduces a data stream-

pairwise structure that enables efficient and accurate engagement

estimation across all modalities and participants in multiparty

conversations.

To thoroughly investigate this question in a realistic multiparty

environment, we require a dataset that meets four key criteria:

it should (1) include engagement annotations, (2) contain both

video and audio data, (3) capture multiparty interactions, and

(4) ideally be publicly available. To the best of our knowledge,

only the RoomReader corpus (Reverdy et al., 2022) satisfies all

these requirements simultaneously (see Section 2.4 and Table 1).

RoomReader provides over 8 h of online multiparty conversations

with synchronized video and audio, along with annotations of each

participant’s engagement level, making it uniquely suited to this

research.

While RoomReader provides behavior-based engagement

annotations suitable for real-time modeling, it is important to

contrast this with more traditional definitions and measurement

approaches. Engagement is often defined as a multi-dimensional

construct encompassing behavioral, emotional, cognitive, and

agentic components and is typically measured via self-reports

(Fredricks et al., 2004, 2016; Sinatra et al., 2015). However, such

labels lack temporal granularity and may diverge from observable

behavior due to annotation bias. These limitations make them ill-

suited for the application assumed in this study, which requires not

only real-time inference and feedback during conversations but also

engagement labels that align consistently with audiovisual input–

since misalignment can cause models to learn spurious or non-

generalizable associations. We therefore adopt the RoomReader

corpus (Reverdy et al., 2022), which provides temporally dense,

behavior-based annotations that are well-suited for multimodal

modeling.

The contributions of this research are as follows.

• Introduction of global tokens that handle interactions

among data streams, i.e., multiple modalities frommultiple

participants in conversations: To estimate engagement in

multiparty conversations, we introduce global tokens to

manage the interactions among multiple input data streams,

enabling efficient modeling.

• Proof of effect: By introducing global tokens that manage

interactions between data streams, we demonstrate that higher

accuracy can be achieved through engagement-estimation

experiments on the publicly available RoomReader corpus

compared with previous methods.

These contributions provide new directions for estimating

multi-participant engagement.

This article is structured as follows. Section 2 reviews

the previous research on engagement estimation, small-group

interaction modeling, transformer-based multimodal approaches,

and relevant corpora. Section 3 details the baseline and our

proposed method. Section 4 explains the experimental setup and

datasets, and Section 5 reports and discusses the experimental

results. Finally, Section 6 concludes the paper and suggests possible

future directions.

2 Related works

Research on automatic engagement recognition has evolved

from early work on individual behaviors tomore complexmodeling

of social interaction. In this section, we briefly review approaches

that estimate engagement of individual participants before shifting

to methods that incorporate interpersonal group-level dynamics

(see Table 2).

2.1 Engagement estimation

Early research on automatic engagement recognition spans

diverse contexts, including education, social robotics, and

conversational interfaces. Rich et al. (2010) pioneered engagement

recognition in human–robot interaction by using backchannel

cues. Others leveraged nonverbal signals: for instance, Bednarik

et al. (2012) used gaze patterns to recognize engagement in group

conversations, and Sanghvi et al. (2011) analyzed body posture

features to estimate child engagement with a robot tutor. In

educational settings, detecting student engagement from face and

body cues has been a major focus (Grafsgaard et al., 2014).
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FIGURE 1

Overview of previous and proposed models. “CAL” and “GTL” respectively denote cross-attention and global-token layers in Figure 2. “c” denotes

classification layer. Each figure illustrates case in which number of participants N is 3 and target participant ID n
∗ is 2. (a) CPT (Lee et al., 2023; Kim

et al., 2023). (b) PPBT (Suzuki et al., 2024). (c) DSPBT (Proposed).

TABLE 1 Representative engagement estimation datasets: comparison of

participants, modalities, and availability.

Dataset Participants Modalities Availability

DAiSEE (Gupta

et al., 2016)

Single Video Public

EmotiW 2018

(Dhall et al., 2018)

Single Video Restricted

EmotiW 2019

(Dhall et al., 2019)

Single Video Restricted

NoXi (Cafaro et al.,

2017)

Dyadic Video, Audio Public

RECOLA (Ringeval

et al., 2013)

Dyadic Video, Audio,

Physiological

Public

DAMI-P2C (Chen

et al., 2022)

Dyadic Video, Audio Public

RoomReader

(Reverdy et al.,

2022)

Multiparty Video, Audio Public

Previous studies estimated engagement using the convolutional

neural network-long short-termmemory (CNN-LSTM) and CNN-

transformer on the basis of the video and speech data of the target

participant (Li and Hung, 2019; Xiong et al., 2023). Engagement

estimation has advanced with the introduction of models such as

the bootstrap model ensemble (BOOT) and the ensemble model

(ENS-MODEL), which have facilitated the use of bootstrapping

and ensembling methods (Wang et al., 2019; Huynh et al.,

2019). Wang et al. (2019) introduced a model ensemble with

a rank-based loss function for engagement intensity regression.

By aggregating multiple models, their approach achieved a top

rank in the EmotiW 2019 engagement challenge (mean squared

error of 0.0626 on the test set). Similarly, Huynh et al. (2019)

developed an ensemble-based regression using facial behavior

features such as action units and headmotion, demonstrating high-

level performance in the same challenge. These ensemble models

mitigate individual model biases and variance, leading to more

robust engagement estimation.

Additionally, hierarchical temporal multi-instance learning

(HTMIL) uses a bidirectional long short-term memory (Bi-

LSTM) with multi-scale attention to achieve both clip-level and

video-level objectives, effectively capturing short- and long-term

patterns (e.g., momentary distraction vs. sustained attention) by

splitting a video into temporal segments, as proposed in Ma et al.

(2021).

These methods primarily focus on estimating the engagement

of an individual participant based on unimodal or multimodal

signals, without modeling interactions among participants. In

contrast, our work considers engagement as a phenomenon that

emerges through social interaction, particularly in multiparty

settings. We therefore turn next to models that explicitly handle

small-group interactions.

2.2 Small-group interaction models

Graphical models have been instrumental in analyzing

interactions, notably for group-performance prediction, behavior

recognition, social-field modeling, and interaction recognition (Lin

and Lee, 2020; Yang et al., 2020; Zhou et al., 2019; Li et al., 2020).

However, in the context of larger, multi-participant settings, the

effectiveness of graphical models suffers. The complication arises

from the scalability of these models and the added complexity of

interactions that come with larger group sizes. The web of intricate

interactions in such settings introduces a level of complexity that

conventional graphical models cannot handle; the nuances of

complex group dynamics prove difficult to accurately capture. It

seems rather that more sophisticated approaches are needed to

handle the diverse and dynamic nature of interactions in multi-

participant environments. Recently, transformer-based methods

that employ attention mechanisms among participants have been

proposed, offering new possibilities for modeling interactions more

effectively in large-scale social settings (Lee et al., 2023; Kim et al.,

2023; Suzuki et al., 2024).
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TABLE 2 Representative engagement estimation methods: comparison of study, dataset, participants, modality and model.

References Dataset Participants Modality Model

Li and Hung (2019) EmotiW 2018 Single Video CNN + LSTM

Wang et al. (2019) EmotiW 2019 Single Video LSTM ensemble of regressors

Huynh et al. (2019) EmotiW 2019 Single Video LSTM ensemble of regressors

Ma et al. (2021) DAiSEE Single Video Bi-LSTM

Kim et al. (2023) DAMI-P2C Dyadic Video, Audio CNN + Transformer

Xiong et al. (2023) Original online learning videos Multiparty Video CNN + Transformer

Lee et al. (2023) RoomReader Multiparty Video, Audio CNN + Transformer

Suzuki et al. (2024) RoomReader Multiparty Video, Audio CNN + Transformer

2.3 Transformer modeling by using global
tokens

There are studies that take a transformer-based approach to

representing interactions between modalities using global tokens

for multimodal sentiment analysis (Sun et al., 2023; Nagrani

et al., 2021). These studies embrace the novel approach of using

interactions based on global tokens to help make the process

much more efficient. Global tokens are abstract representations

of information that are shared across the modalities, so they can

exchange info, such as video and audio, without resorting to the

attention mechanism. They incur lower computational costs and

information redundancy than the attention mechanism. It has

also been reported that the use of global tokens facilitates the

integration of information across different modalities, resulting in

overall models with higher accuracy. Sentiment analysis generally

aims to identify or categorize emotional states (e.g., positive

or negative feelings) based on audiovisual data. In contrast,

engagement analysis focuses on the level of participation ofmeeting

attendees, which differs from emotional analysis. Nevertheless, the

global-token approach remains relevant for both sentiment and

engagement tasks because it offers an efficient way to capture

cross-modal relationships by acting as an attention bottleneck. In

this work, we build on previous research involving global tokens

but shift our emphasis from sentiment analysis to engagement

estimation, centering on how actively participants are involved in

the conversation rather than on their emotional valence. There are

studies that focused on multi-participant meetings in engagement

estimation, where global tokens are used to represent interactions

in part of the model: their effectiveness has been demonstrated

(Suzuki et al., 2024).

2.4 Corpus for engagement estimation

In Table 1, we compare representative datasets commonly

used for engagement estimation. Key attributes are summarized,

including the participant setup (dyadic or multiparty), recorded

modalities, and data availability. Notably, only the RoomReader

dataset provides publicly available audiovisual data of multiparty

interactions, which is why our work utilizes RoomReader

exclusively (Reverdy et al., 2022). Other datasets either focus on

dyadic interactions or are not publicly released or lack combined

video and audio modalities. The primary uses for engagement

estimation in human–computer-interaction research have been

the Remote Collaborative and Affective Interaction (RECOLA)

and Nonverbal Interaction in Expert–Novice Interaction (NoXi)

corpora (Ringeval et al., 2013; Cafaro et al., 2017). These

corpora have played an important role in the field, recording

dyadic interactions through detailed recordings of conversational

exchanges between two participants. In particular, as shown

in Table 1, existing engagement datasets vary widely, but early

works often focused on dyadic interactions: for example, the

NoXi corpus captures two-person video chats—specifically remote

expert–novice conversations (Cafaro et al., 2017). Meanwhile,

the RECOLA corpus contains remote dyadic collaborations

featuring rich modalities (audio, video, ECG, and EDA) that

include engagement (Ringeval et al., 2013). Consequently, the

RECOLA and NoXi corpora serve as essential research resources

for researchers seeking to understand the subtle variations in

engagement between two individuals.

Some datasets focus on parent–child scenarios: Dyadic Affect in

Multimodal Interaction—Parent to Child (DAMI-P2C) records in-

lab story-reading sessions (dyads), annotated for child engagement

and parent–child relationshipmeasures (e.g., attachment, relational

frustration, and parenting stress), among others (Chen et al.,

2022). There are also “in-the-wild” single-participant datasets:

the Emotion Recognition in the Wild 2018 and 2019 challenges

(EmotiW 2018 and 2019) introduced webcam videos of students

watching MOOC lectures, annotated for engagement (Dhall et al.,

2018, 2019). Meanwhile, the Dataset for Affective States in E-

Environments (DAiSEE) captures user engagement in online

learning contexts (Gupta et al., 2016), alongside other affective

states such as boredom, confusion, and frustration. However, these

datasets are not multiparty (involving only one learner) and were

only released for competition use.

Our research goes beyond the scope of dyadic engagement

estimation by introducing the RoomReader corpus to understand

engagement in multiparty conversational settings, a method also

used in a previous study because fewer datasets feature multiparty

(group) interactions (Lee et al., 2023). Therefore, to enable research

on engaged group conversations with reproducible results, we

focus on the RoomReader corpus in our study. RoomReader

uniquely offers a public, multimodal, group-interaction dataset

containing over 8 h of online multiparty conversations with
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FIGURE 2

Illustration of interaction models between two data streams. “Cross-attention” and “self-attention” denote cross-attention and self-attention

transformer-encoder layers, respectively. (a) Cross-attention layer (CAL). (b) Global token layer (GTL).

synchronized video and audio, along with student engagement

annotations. This combination of group interaction, audio-visual

modality, and public accessibility is exclusive to RoomReader

among current datasets, making it essential for our multiparty

engagement research.

3 Method

3.1 Cross-attention layer and global token
layer for data stream interaction modeling

To model interactions among multiple data streams–that

is, different modalities (e.g., audio and video) across multiple

participants–previous work has proposed various mechanisms,

notably the Cross-Attention Layer (CAL) and the Global Token

Layer (GTL) (Figure 2). While CAL has been widely adopted in

recent approaches to handle pairwise stream interactions, our

proposed architecture adopts a unified modeling approach based

on GTL, which enables more efficient and scalable fusion across

modalities and participants. When more than two input streams

are involved, GTL can be implemented in two forms: the common

GTL, which aggregates all streams into shared tokens, and the

pairwise GTL, which processes each pair of streams individually

through a shared bottleneck (Suzuki et al., 2024). In this section,

we present the formal definitions of CAL, GTL (common), and

GTL (pairwise) to clarify their functional differences and modeling

characteristics.We begin by introducing the notation for input data

streams and then describe the mathematical formulation of each

layer.

3.1.1 Cross-attention layer
The Cross-Attentional Layer (CAL) (Figure 2a) takes two input

data streams, X1 and X2, and models their interaction to output

two corresponding streams, Y1 and Y2. The inputs and outputs are

matrices of shape D × T1 for X1,Y1 and D × T2 for X2,Y2, where

D is the feature dimension and T1 and T2 are the time lengths.

CAL is implemented by repeating a cross-attention transformer

layer (Vaswani et al., 2017) L times. Let H0
1 = X1 and H0

2 = X2

denote the initial inputs. Then, for each layer ℓ = 1, . . . , L, the

intermediate representations are computed as follows:

Hℓ

1 = CrossAttention(H0
1,H

ℓ−1
2 ,Hℓ−1

2 ; θℓ

1 ), (1)

Hℓ

2 = CrossAttention(H0
2,H

ℓ−1
1 ,Hℓ−1

1 ; θℓ

2 ). (2)

Here, CrossAttention(Q,K ,V; θ) denotes a cross-

attention transformer layer, whereQ,K , andV represent the query,

key, and value matrices, respectively. θℓ

1 and θ
ℓ

2 are the parameters

of each respective transformer at layer ℓ.

The final outputs of CAL are defined as follows:

Y1 = HL
1 , Y2 = HL

2 . (3)

In this study, we define CAL layers as a function mapping from

X1 and X2 to Y1 and Y2 using shared notation:

Y1,Y2 = CAL(X1,X2; θCAL). (4)

Here, θCAL =
{

θ
ℓ

1 , θ
ℓ

2

}

ℓ
represents the set of trainable

parameters used in the CAL layers.

3.1.2 Global token layer (common)
By contrast, the common GTL (Figure 3a) forces all data

streams to exchange information through a set of trainable tokens,

G, greatly reducing potential redundancy across frames. GTL

takes N(≥ 2) input data streams X1, . . . ,XN and models their

interactions via G. It outputs the corresponding data streams and

updated global tokens for use in subsequent layers. Each stream Xn

and Yn is a matrix in R
D×Tn , and the global tokens are represented

as a matrix G ∈ R
D×B, where B represents the dimension and

length of the bottleneck tokens.

GTL is implemented by repeating a transformer encoder with

self-attention for L layers. Let H0
n = Xn and G0 denote the initial

inputs. At each layer ℓ = 1, . . . , L, the intermediate representations

are computed as follows:

[Hℓ

n||G
ℓ

n] = TransformerEnc
(

[Hℓ−1
n ||Gℓ−1]; θℓ

n

)

, (5)

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2025.1516295
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Suzuki et al. 10.3389/frai.2025.1516295

FIGURE 3

Illustration of common and pairwise GTL when there are three input data streams. (a) GTL (common). (b) GTL (pairwise).

where [·||·] denotes concatenation along the temporal (sequence)

dimension. The global token is updated by aggregating across all n

as follows:

Gℓ =
∑

n

Gℓ

n. (6)

The final outputs of the GTL are defined as follows:

Yn = HL
n. (7)

In this study, we define the GTL module as follows:

Y1, . . . ,YN = GTLcommon(X1, . . . ,XN; θGTLc). (8)

Here, TransformerEnc(·; θ) denotes a self-attention-based

Transformer Encoder layer, and θGTLc =
{

{θℓ
n

}

ℓ,n
,G0} represents

the parameters used in the GTL module.

The advantage of GTL is that interactions between different

modalities or participants are channeled through a compact set

of tokens, potentially alleviating computational bottlenecks and

improving the learning of cross-modal relationships. On the other

hand, CAL can suffer from higher complexity when dealing

with longer input sequences, particularly those exhibiting high

redundancy across frames, such as audio or video.

3.1.3 Global token layer (pairwise)
To accurately model the interaction between each pair of

data streams, the previous study proposed defining multiple

global token sequences, each corresponding to a pair of data

streams (Suzuki et al., 2024). The pairwise Global Token

Layer (GTL) (Figure 3b) also takes N (N ≥ 2) input data

streams X1, . . . ,XN and models their interactions, producing the

corresponding output streams Y1, . . . ,YN , in a manner similar to

the common GTL.

However, it differs from the common GTL in that it defines

and utilizes multiple global token sequences Gm↔n to capture

pairwise interactions among the input streams,m and n. Each token

sequence Gm↔n ∈ R
D×B is dedicated to modeling the interaction

between Xm and Xn.

Let H0
n = Xn and G0

m↔n = G0 denote the initial input and

pairwise tokens. Then, at each layer ℓ = 1, . . . , L, we compute:

[Hℓ
m||

⊕

n∈J\m

Gℓ
m→n] = TransformerEnc([Hℓ−1

m ||
⊕

n∈J\m

Gℓ−1
m↔n]; θ

ℓ−1
m ),

(9)

where
⊕

represents vector concatenation (
⊕

n=1,2 An =

[A1||A2]), and θ
ℓ−1
m denotes the parameters of the l-th layer of the

Transformer-encoder block for them-th data stream.

Instead of Equation 6 in common GTL, each global-token

sequence is updated by summing the variables that represent the

dependencies of participants in both directions as follows:

Gℓ

m↔n = Gℓ

m→n + Gℓ

n→m (10)

Gℓ

n↔m = Gℓ

n→m + Gℓ

m→n. (11)

The final outputs of the pairwise GTL are defined as follows:

Yn = HL
n, (12)

We define the pairwise GTL function as follows:

Y1, . . . ,YN = GTLpairwise(X1, . . . ,XN; θGTLp). (13)

Here, θGTLp = {{θℓ
n}n,ℓ,G

0} represents the parameters of the

pairwise GTL module.

3.2 Task

We adopt the four engagement classes for training and

evaluation, as in Multipar-T, as a baseline method (Lee et al.,

2023). This four-label design is consistent with other engagement

corpora (e.g., DAiSEE) and has effectively captured varying degrees

of participant attentiveness and dis-engagement. Figure 4 provides

an outline of the engagement-estimation task. Let N represent

the total number of participants involved in a conversation. Our

goal is to estimate the engagement of a specific participant n∗ ∈
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FIGURE 4

Schematic diagram of engagement-estimation task, DSPBT. “AP” and “FC” denote attention pooling and fully connected layer, respectively.

{1, · · · ,N} at a certain time t based on conversation data. More

specifically, we estimate engagement over the time interval [t−D, t],

meaning that a video and audio segment with a duration of D s

serves as the context. In the remainder of this section, we omit

the explicit mention of time t and refer to the video and audio

clips of participant n as Xv
n and Xa

n, respectively. We also denote

the engagement label of the target participant as ln∗ . We framed

the task as a four-class classification problem, where ln ∈{1 (High

Dis-Engagement), 2 (Low Dis-Engagement), 3 (Low Engagement),

4 (High Engagement)}. The input data X are represented as follows:

X = {Xv
1,X

a
1, · · · ,X

v
N ,X

a
N}, (14)

Thus, the engagement-estimation task can be formulated as

follows:

ˆln∗ = f (X, n∗;2), (15)

where f (·) is the classification function provided by the model,

and 2 denotes the parameters of that model. This setup follows the

approach in a previous study (Lee et al., 2023), with the addition of

audio data streams.

3.3 Multi-person bottleneck transformers

3.3.1 Baseline multi-person bottleneck
transformer

The baseline multi-person bottleneck transformer (MPBT)

model (Suzuki et al., 2024) uses CALs for the cross-modal

interaction model and GTLs for the cross-person interaction

model. It initially uses pre-trained encoders to extract audio and

video features from the input data for each participant n ∈

{1, · · · ,N} through speech and video encoders as follows:

Za
n = SpeechEncoder(Xa

n; θa), (16)

Zvenc
n = VideoEncoder(Xv

n; θvenc), (17)

where VideoEncoder(·) and SpeechEncoder(·) are

functions that project data into feature vectors for video and speech,

respectively. The parameters of the encoders are denoted as θvenc

and θa, and Zm
n ∈ R

Dmodel×Tm represents the feature vectors for

the modality m ∈ {venc, a}, where Dmodel is the feature dimension

and Tm is the time length. Similar to Multipar-T (Lee et al., 2023),

we also extract features, such as head movements, from the video

using OpenFace (Baltrušaitis et al., 2016), which are then added to

the output of the video encoder as follows:

Zvfeat
n = VideoFeatureExtractor(Xv

n; θvfeat), (18)

Zv
n = Zvenc

n + FC(Zvfeat
n ; θFC1 ), (19)

where VideoFeatureExtractor(·) represents the projection

function that maps data to feature vectors, θvfeat denotes its

corresponding parameters, Zvfeat
n ∈ R

Dvfeat×Tvenc represents the

feature vectors, where Dvfeat denotes the feature dimension, FC(·)

refers to a fully connected layer, and θFC1 represents its parameters.

The details of these extracted features are described in the “Encoder

Configurations” paragraph in Section 4.2.

Zv
n and Za

n are used as inputs to the CAL with L layers,

San, S
v
n = CAL(Za

n,Z
v
n; θCAL). (20)

Subsequently, the interaction among participants was modeled

using a global-token sequence. The outputs of the CALs are

concatenated to create a participant feature vector Sn ∈
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R
Dmodel×(Tv+Ta) for each participant. To manage the quadratic

complexity of attention, we introduce GTL with K layers;

Sn = [Sa,Ln ||Sv,Ln ], (21)

U1, · · · ,UN = GTLcommon(S1, · · · , SN; θGTLc). (22)

Finally, pooling is applied to the output of the final layer of

the transformer encoder to obtain the posterior probabilities of the

labels as follows:

P(ln∗ |X, n
∗,2) = softmax(FC(AP(Un∗ ; θAP); θFC2 )), (23)

where softmax(·), AP(·), θAP and θFC2 represent the

softmax-function, attention-pooling-layer, attention-pooling-layer

parameters, and fully connected layer parameters, respectively.

The model parameters 2 are optimized by minimizing the

cross-entropy loss on the training dataD as follows:

2 =
{

θFC1 , θCAL, θGTLc, θAP, θFC2

}

(24)

L = −
∑

X,n,ln∈D

log P(ln|X, n,2). (25)

Notably, the encoder parameters θvenc, θa, and θvfeat are pre-

trained and remain frozen during training.

3.3.2 Baseline participant-pairwise bottleneck
transformer

To accurately model the interaction between each pair of

participants, the baseline PPBT model (Suzuki et al., 2024) defines

multiple global token sequences, with each token corresponding to

a pair of participants. Specifically, instead of using Equation 22 in

the baseline MPBT, PPBT utilizes pairwise GTL to model cross-

person interaction.

U1, · · · ,UN = GTLpairwise(S1, · · · , SN; θGTLp). (26)

The calculation of posterior probabilities from the output of the

final layer follows the same process as the baseline MPBT.

3.4 Multi-data stream bottleneck
transformers

3.4.1 Baseline multi-data stream bottleneck
transformer

We introduce the baseline multi-data stream bottleneck

transformer (MDSBT). The baseline MDSBT was designed to

model interactions across input data streams, i.e., multiple

modalities from multiple participants by common global tokens.

Instead of modeling cross-modal and cross-person interactions by

using Equations 20–22 of a hierarchical MPBT model, the MDSBT

models the interactions among all input data streams by GTLs with

K layers,

U (1,a) ,U (1,v) , · · · ,U (N,a) ,U (N,v) = GTLcommon(Z
a
1 ,Z

v
1 , · · · ,Z

a
N ,Z

v
N ; θGTLc). (27)

Finally, the output variables associated with the target

participant are concatenated to form UK
n∗ as follows:

Un∗ = [U(n∗ ,a)||U(n∗ ,v)]. (28)

The posterior probabilities of the labels are calculated in the

same manner as Equation 23.

3.4.2 Proposed data stream-pairwise bottleneck
transformer

The proposed DSPBT introduces pairwise global tokens to

the baseline MDSBT. Instead of using Equation 27 of the baseline

MDSBT, DSPBT uses pairwise GTL as follows:

U(1,a),U(1,v), · · · ,U (N,a),U(N,v) = GTLpairwise(Z
a
1,Z

v
1, · · · ,Z

a
N ,Z

v
N ; θGTLp).

(29)

Following the process of the baseline MDSBT, the output

variables associated with the target participant are concatenated

and fed to the classification layer, in the same manner as

Equation 23.

4 Experiment

4.1 Experimental dataset

We used the RoomReader corpus (Reverdy et al., 2022), which

comprises multimodal, multiparty conversational interactions

where participants engaged in a collaborative online student-tutor

scenario designed to elicit spontaneous speech. This dataset was

chosen because it reflects realistic online multiparty interactions

(4—5 participants), aligning with our aim to capture cross-

participant dynamics in engagement. Notably, it has also been

utilized in Multipar-T, allowing us to compare results under

consistent conditions (Lee et al., 2023). The corpus was processed to

separate the audio and video for each participant and synchronize

them. The video resolution is 2,560× 1,440, with a frame rate of 60

fps, and the audio is sampled at 32 kHz with 16-bit quantization.

In the experiment, the frame rate was reduced to 8 fps. Although

higher frame rates would capture more detailed facial expressions,

they would significantly increase GPU memory usage and limit the

computing environments in which the model could be trained. The

corpus also includes continuous annotations for engagement. The

data are labeled every second, and the label at the last second of each

clip was used as the target. The labels range from –2 to 2. Instead of

a regression task, we defined the task as a four-class classification,

where labels in the range [–2, –1] indicate high disengagement

(l = 1), (–1, 0] indicate low disengagement (l = 2), (0, 1] indicate

low engagement (l = 3), and (1, 2] indicate high engagement

(l = 4). We trainedmodels on data from 24 groups and tested them

on data from 6 groups. Each group consisted of five participants.

We split the training and test sets so that the test set did not

include any participant in the training set. The number of video

clips used for training was 53,192 and 12,756 for testing (a total of

65,948). This was smaller than a previous study (Lee et al., 2023),

where 152,614 clips were extracted from the RoomReader corpus,
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TABLE 3 Frequency of each label in the 8-second video clips from the

training and test data.

Label Train Test Total Ratio (train)
(%)

Ratio (test)
(%)

High Dis-Eng. 217 45 262 0.4 0.4

Low Dis-Eng. 815 368 1183 1.5 2.9

Low Eng. 10910 1377 12287 20.5 10.8

High Eng. 41250 10966 52216 77.5 86.0

of which 121,305 were allocated for training and 31,309 for testing.

This difference was due to our exclusion of clips with errors in

face detection and OpenFace-based feature extraction. Specifically,

if face region detection or feature extraction failed for even a single

frame in a clip, that clip was excluded from the experiments.

4.2 Setups

4.2.1 Pre-processing
For video inputs, we detected face regions in each frame using

YOLOv3 (Redmon and Farhadi, 2018), which was trained on the

Wider Face dataset (Yang et al., 2016). In our experiments, we

resized the detected facial regions to a resolution of 128 × 128.

While ResNet-50 (He et al., 2016) typically employs inputs with

a resolution of 224 × 224, we opted for this lower resolution to

reduce GPU memory consumption. This decision was made due

to the large volume of data we used, which included both video

and audio recordings from five participants. Previous studies have

demonstrated that a resolution of 128 × 128 can still achieve

sufficiently high accuracy (Touvron et al., 2019), making it a viable

choice for our setup. Table 3 shows the frequency of each label

in the 8-second video clips from the training and test sets. It is

evident that there is a significant class imbalance. To mitigate the

effects of class imbalance, we oversampled the infrequent classes to

balance the frequency distribution in the training set. We did not

use Focal Loss (Lin et al., 2017) because it was not effective under

our experimental conditions.

4.2.2 Encoder configurations
We used ResNet-50 (He et al., 2016) as the video encoder.

We used the normalized eye-gaze direction, head location, 3D

landmark positions, and facial-action units extracted through

OpenFace (Baltrušaitis et al., 2016) as the video features. The

xlsr-53 features from the final layer were used as the audio

features (Conneau et al., 2021).1 The feature dimensions were

Dvenc = 2,048, Da = 1,024, Dvfeat = 709. The length of each

feature was Tvenc, Tvfeat = 64, Ta = 799. No further feature

selection or dimensionality reduction was applied to any of these

extracted features, as we opted to retain all available information

for engagement estimation.

1 https://huggingface.co/facebook/wav2vec2-large-xlsr-53

4.2.3 Methods
We evaluated the baseline CPT (Lee et al., 2023; Kim et al.,

2023), MPBT (Section 3.3.1), PPBT (Section 3.3.2), MDSBT

(Section 3.4.1), and the proposed DSPBT (Section 3.4.2). To

examine the effect of not using a hierarchical structure (“joint

modeling”) in MDSBT and DSPBT, we also evaluated MDSBT

and DSPBT using a hierarchical structure, i.e., models in which

CALs were replaced with GTLs in Figure 1b. We denote these

hierarchical models as MDSBT1 and DSPBT1 and the originals

as MDSBT2 and DSPBT2. In order to clarify the effect of using

multimodal information in each model, not only the multimodal

conditions (using video and audio features) but also the single-

modal conditions (using only video features) were evaluated. The

single-modal condition using only audio features was not evaluated

because of the need to estimate the engagement of participants

who were silent. Note that in the single-modal condition, MPBT

is attributed to the same model structure as MDSBT, and similarly,

PPBT is attributed to the same model structure as DSPBT, as there

is no cross-modal interaction model.

We describe the setup that was common to all ten models. We

set the number of people N to 5. For all models, the total number

of transformer encoder blocks was unified; L and K were set to

2 for the hierarchical models (CPT, MPBT, PPBT, MDSBT1, and

DSPBT1), while K was set to 4 for the joint models (MPBT and

PPBT using single modality, MDSBT2, and DSPBT2). We used 8 s

of video and audio context information, i.e., D = 8. The number of

multi-head attention heads was set to 4.We used the rectified linear

unit activation function; we trained all models using three seeds to

calculate an average score for each experimental condition.

For the conventional CPT, instead of Equation 27 from the

baseline model, we used a CAL, where the target participant’s

features were used as keys and values, and another participant’s

features were used as queries, following a previous study (Lee et al.,

2023). The outputs of the five CPTs were combined, and the model

dimension Dmodel was set to 256. The batch size was 4, the learning

rate was 0.00001, the optimizer was Radam, and early stopping was

applied (Liu et al., 2020). To ensure that the results are not due to

coincidence along the feature dimension and are used as Un∗ in

Equation 23. For all models, the length of the global tokens B was

set to 4.

5 Results and discussion

Table 4 shows the results (the number of participants N =

5). We first compared models that use CALs with those that use

GTLs for cross-modal interactions. CPT showed lower accuracy,

weighted F1, and macro F1 than all those using all GTL cross-

modal interaction models. In the models using common global

tokens (MPBT, MDSBT1, and MDSBT2), MDSBT1 and MDSBT2

showed higher accuracy, weighted F1, and macro F1 than MPBT.

Similarly, in models using pairwise global tokens (PPBT, DSPBT1,

and DSPBT2), DSPBT1 and DSPBT2 showed higher accuracy,

weighted F1, andmacro F1 than PPBT. On the basis of these results,

using GTL for cross-modal interaction is effective.

Next, the GTL interaction models were compared from the

viewpoint of the hierarchical structure. Using common global

tokens, we compared MDSBT1 with MDSBT2. MDSBT2 showed
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FIGURE 5

Accuracy across di�erent numbers of participants.

higher accuracy, weighted F1, and macro F1. By using pairwise

global tokens and GTLs for all interactions, we compared DSPBT1

with DSPBT2, and DSPBT2 showed higher accuracy, weighted F1,

and macro F1. On the basis of these results, using a joint model for

cross-modal and cross-person interaction modeling is effective.

Additionally, models were compared from the viewpoint of the

modality. As in previous studies (Kim et al., 2023), multimodal

conditions showed higher accuracy, weighted F1, and macro F1

than the single-modal conditions for each model. Given these

results, by incorporating auditory cues–such as the presence or

absence of speech, vocal intonation, and speech rhythm–alongside

visual information (e.g., facial expression), We can improve the

accuracy of engagement estimation for each participant. On the

basis of these results, multimodal modeling is effective for the

proposed DSPBT as well as the conventional models.

Finally, we examined the effect of adopting the pairwise

global tokens for the proposed DSPBT2. We compared MDSBT2

(using common global tokens) and DSPBT2 (using pairwise global

tokens), and DSPBT2 showed higher accuracy, weighted F1 and

macro F1. The model that uses pairwise global tokens showed the

highest accuracy, weighted F1, and macro F1 among all models.

On the basis of these results, using pairwise global tokens for the

proposed method is effective.

Figures 5, 6 show the accuracy and macro F1 for different

numbers of participants. On the basis of the results of the

models using common global tokens (MPBT/MDSBT1) and using

pairwise global tokens (PPBT/DSPBT1), using GTLs for cross-

modal interaction yielded higher accuracy and macro F1. On

the basis of the results of the models using common global

tokens (MDSBT1/MDSBT2) and using pairwise global tokens

(DSPBT1/DSPBT2), not using a hierarchical structure showed

higher accuracy and macro F1. The tendency of DSPBT2 remained

consistent regardless of the number of participants. In a two-

participant scenario, the difference between “common” and

“pairwise” tokens effectively disappears as there is only one pair.

As the number of participants decreases, the total number of

interactions likewise diminishes, which tends to reduce the model’s

accuracy.
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FIGURE 6

Macro F1 across di�erent numbers of participants.

FIGURE 7

Confusion matrix of baseline PPBT.

Regarding the per-class F1-scores, the results for the high

disengagement label were not improved. This is likely due to the

label-imbalance issue, as shown in Table 3. Addressing this issue

requires either using a corpus with balanced labels or further

investigating the details of the oversampling techniques.

Figures 7, 8 show the confusion matrix for the proposed

DSPBT2 and the baseline PPBT. DSPBT2 showed a higher accuracy

than DSPBT1, and the baseline PPBT showed the highest accuracy

among the baseline models. DSPBT decreased misclassifications

in classifying high disengagement as high engagement. This

means that even if it couldn’t classify high disengagement,

it classified it as low disengagement, which improved the

classification performance. DSPBT was more accurate in classifying

low disengagement and decreased the misclassification of low

disengagement as high engagement. This means that even if

it couldn’t classify low disengagement, it classified it as low

engagement, which improved the classification performance.

Low engagement and high engagement can be classified more

accurately. In summary, our findings demonstrate that leveraging

FIGURE 8

Confusion matrix of DSPBT2.

pairwise global tokens for non-hierarchical cross-modal and cross-

person interactionmodeling can enhance engagement classification

performance. This approach holds promise for multiparty,

multimodal tasks in fields such as human–computer interaction,

group communication analysis, or social robotics.

The model performs best when each participant is recorded

with a front-facing webcam that keeps the face largely inside

the frame, mirroring the setup of the RoomReader corpus.

Consequently, gallery view video conference recordings or any

scenario in which every participant has a dedicated webcam tile

are the most suitable inputs. Recordings where faces are small,

heavily occluded, or only intermittently visible (e.g., speaker view

or wide-angle room cameras) may require additional front facing

cues or model retraining to maintain accuracy. By integrating both

auditory (e.g., speech presence, vocal intonation, and rhythm) and

visual (e.g., facial expression) cues, we achieve more accuracy.

Future work will focus on extending these methods to larger and

more diverse datasets, as well as exploring strategies to mitigate

class imbalance and further improve the classification of minority

classes.

6 Conclusion

We proposed the data stream-pairwise bottleneck transformer

(DSPBT), which uses pairwise global tokens while simultaneously

handling both cross-modal and cross-person interactions.

Compared with the baseline PPBT, DSPBT not using a hierarchical

structure showed better accuracy, weighted F1, and macro

F1. These findings confirm our main concept—that unifying

cross-modal and cross-person interactions through global token-

based transformer effectively reduces redundancy and facilitates

more accurate engagement estimation in multiparty settings.

Additionally, the method is effective in multimodal conditions. We

also showed that this tendency remains consistent regardless of

the number of participants from the viewpoint of the multimodal

condition.
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Building on these findings, our future work will explore

more diverse data scenarios, such as varying conversation lengths

and many participants, while also addressing class-imbalance

challenges through improved data augmentation or tailored loss

functions. Ultimately, we aim to make the DSPBT framework more

robust, scalable, and adaptable to a broader range of real-world

multiparty interactions.
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