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Introduction: Malignancies of the GI tract account for one-third of cancer-
related deaths globally and more than 25% of all cancer diagnoses. The rising 
prevalence of GI tract malignancies and the shortcomings of existing treatment 
approaches highlight the need for better predictive prediction models. RF’s 
machine-learning method can predict cancers by using numerous decision 
trees to locate, classify, and forecast data. This systematic study aims to assess 
how well RF models predict the prognosis of GI tract malignancies.

Methods: Following PRISMA criteria, we  performed a systematic search in 
PubMed, Scopus, Google Scholar, and Web of Science until May 28, 2024. 
Studies used RF models to forecast the prognosis of GI tract malignancies, 
including esophageal, gastric, and colorectal cancers. The QUIPS approach was 
used to evaluate the quality of the included studies.

Results: Out of 1846 records, 86 studies met inclusion requirements; eight were 
disqualified. Numerous studies showed that when combining clinical, genetic, 
and pathological data, RF models were very accurate and dependable in 
predicting the prognosis of GI tract malignancies, responses, recurrence, survival 
rates, and metastatic risks, distinguishing between operable and inoperable 
tumors, and patient outcomes. RF models outperformed conventional 
prognostic techniques in terms of accuracy; several research studies reported 
prediction accuracies of over 80% in survival rate estimates.

Conclusion: RF models, in terms of accuracy, performed better than the 
conventional approaches and provided better capabilities for clinical decision-
making. Such models can increase the life quality and survival of patients by 
personalizing their treatment regimens for cancers of the GI tract. These models 
can, in a significant manner, raise patients’ survival and quality of life through 
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hastening clinical decision-making and providing personalized treatment 
options.
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random forest, prognostication, GI tract cancers, malignancy, prognose

Introduction

Over 25% of all cancer cases worldwide and about one-third of 
cancer-related deaths are caused by gastrointestinal (GI) tract 
malignancies, which are a result of major lifestyle changes brought on 
by socioeconomic growth, increased consumption of processed foods, 
and higher rates of alcohol and tobacco use (Huang et al., 2023). By 
2040, GI cancer mortality is expected to increase by 58 and 73%, to 
7.5 million and 5.6 million cases, respectively, due to demographic 
shifts and global population expansion (Ferlay et al., 2021).

Despite the potential of novel therapeutic techniques like 
immunotherapy, their effectiveness varies according to the patient’s 
demographics (Wang et  al., 2023). Patients with high PD-L1 
expression or microsatellite instability-high (MSI-H) usually 
experience poor outcomes from immune checkpoint drugs targeting 
PD-1 and PD-L1 inhibitors (Shen and Zhao, 2018). Especially in the 
cases of patients receiving immunotherapy, conventional prognostic 
factors, including clinical staging and tumor markers, sometimes may 
not be able to precisely predict the treatment outcomes (Zhou et al., 
2024). The clinical variability of GI malignancies, which arise from a 
range of genetic, pathological, and clinical factors, complicates the 
establishment of conventional therapeutic approaches (Chen 
et al., 2022).

Esophageal cancer (EC) is the eighth most common and sixth 
most lethal gastrointestinal disease worldwide, with a mere 20% five-
year survival rate (Siegel et al., 2022; Uhlenhopp et al., 2020; Kasai 
et  al., 2024). Despite improvements in early identification and 
treatment, gastric cancer (GC) continues to rank third in the world for 
cancer-related fatalities (Yu et al., 2024; Bray et al., 2018). Colorectal 
cancer (CRC) is the second most common cause of cancer-related 
death in the United States and one of the most common cancers in 
Western countries (Du et al., 2022; Van Cutsem et al., 2014).

Most of the models now used for the clinical assessment of GI 
malignancies are based on conventional statistical methods. However, 
these techniques frequently fail to analyze the high-dimensional and 
complicated data inherent in cancer prediction. Because machine 
learning (ML) techniques, in particular Random Forest (RF), can 
handle diverse datasets, manage missing values, and capture nonlinear 
relationships between variables, they provide a tempting alternative 
(Breiman, 2001; An et al., 2022).

RF is a powerful ensemble learning method that performs better 
than other machine learning methods such as support vector 
machines (SVM) and neural networks. It is resistant to missing data, 
scalable, and interpretable—all of which are typical issues in clinical 
datasets (Song et al., 2022). Despite their strength, neural networks 
may need extensive data preparation and are prone to overfitting. 
However, SVM is less interpretable in a therapeutic setting and has 
trouble with big datasets (Książek et al., 2019). RF is particularly well-
suited for prognostic modeling in GI malignancies because of its 
ability to integrate several data sources, identify important 
components, and produce intelligible forecasts (Parmar et al., 2015; 

Tang and Ishwaran, 2017; Bennett and Campbell, 2000). The concepts 
of personalized medicine align with RF’s shown capacity to evaluate 
intricate clinical datasets and its resilience in handling missing data 
(Kaur et al., 2024).

Although the majority of recent research has focused on machine 
learning approaches in general, few studies have focused on RF’s 
unique advantages in addressing the unique challenges of GI 
malignancies, including clinical heterogeneity and missing data 
(Abbas et al., 2024; Christou and Tsoulfas, 2021). By filling up these 
gaps, the current study investigates how well RF models could predict 
clinical outcomes for patients with gastrointestinal cancer as compared 
to conventional statistical methods.

To improve the predicted accuracy of RF models, future 
research should evaluate them using bigger and more varied 
datasets. There should be efforts to incorporate these models into 
routine clinical decision-making due to their effectiveness in 
handling missing data and identifying key factors. RF models can 
also support personalized treatment by integrating various patient 
data (Rizinde et al., 2023). Addressing implementation challenges, 
like data preprocessing and clinician training, is essential for 
practical use. Bioinformaticians, data scientists, and oncologists 
must collaborate to standardize these methods (Asif et al., 2023). 
Finally, research must examine the broader use of RF models in 
other cancer types. The results of the review study demonstrate the 
propensity of RF algorithms to guide future machine learning 
research and enhance clinical decision-making in patient care and 
treatment planning by accurately predicting outcomes for various 
GI cancer types.

Methods

This investigation was conducted in compliance with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA2020) criteria to enhance the coordination and design of 
systematic reviews (Page et al., 2021). The registration DOI for our 
Open Science Framework (OSF) systematic review is DOI 10.17605/
OSF. IO/X25ZN (OSF, 2025).

Information sources and search strategy

We developed a thorough search approach to find research 
using RF-based models for GI cancer prognostication. A 
comprehensive and detailed search of several databases, from each 
database’s inception to May 28, 2024, was conducted. The databases 
included PubMed/MEDLINE, Scopus, Google Scholar, and Web of 
Science. The results shown in Table  1 show that a controlled 
vocabulary along with keywords from each database was used to 
find the use of RF-based models for the prediction of GI 
tract cancers.
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Data screening and eligibility criteria

We used RAYYAN.ai to assess the search results (Ouzzani 
et al., 2016). Using a variety of artificial intelligence tools, this 
platform facilitates the screening and decision-making procedures 
in systematic reviews. Five reviewers (Zh. M., Y. A., A. S., F. Sh., 
and M. A.) evaluated the abstracts and titles of the papers found 
using our search approach impartially and independently. After 
the two reviewers had resolved their disagreements through a 
consensus-building process, a third independent reviewer 
(A. ZKH) verified the final choices. The RAYYAN platform helped 
with the process by eliminating unnecessary information from the 
search results and resolving any overlaps or discrepancies in 
reviewer scores.

To find research that used RF-based models to create or validate 
prognostic models for GI malignancies, the inclusion criteria were 
specially created. This supports our goal of assessing RF’s performance 
and application in this situation. This investigation includes every 
original English-language study that used RF to develop a model for 
predicting the prognosis of a particular kind of GI cancer (Table 2). 
The inclusion criteria were only looked at the level of the article titles 
and abstracts during the first screening stage. However, we checked 
the contained articles’ entire texts in the next step. Articles where the 
whole text was unavailable or where the usage of RF was not required 
for model creation were not included in the review.

Data extraction and quality assessment

The retrieved variables were selected to guarantee a thorough 
assessment of RF’s usefulness in prognostic modeling for GI 
malignancies. Using the full texts of the included articles, 
we extracted the following information to align with our research 
objectives: Title, Author, Year, Nation, Study Objective, 
Population, pathology kind, RF’s use in the model, development 
or validation of a model, Validation type, prognostication factor 
or factors, method, result, conclusion, and evidence quality 
(Table 3).

The models that were previously used in studies on GI cancer 
were considered validation models. The process of verifying the 
applicability of a model using a population different from the 
sample population described in the data extraction phase was 
referred to as external validation in this context. While external 
validation findings are meant to be generalizable to the reference 
population, internal validation focuses mainly on the results’ 
robustness when applied to the training dataset (Altman and 
Royston, 2000). Using the QUIPS tool, four assessors (F. Sh, A. Kh, 
Y. A., P. G., and M. A.) independently assessed each article to 
determine the risk of bias and the quality of the included studies 
(Hayden et  al., 2006). The instrument consists of six distinct 
domains: study participation, study confounding, study attrition, 
outcome measurement, prognostic factor measurement, statistical 

TABLE 1 Search strategy and article retrieval process for the application of random forest-based (RF) models in prognostication of gastrointestinal tract 
malignancies.

Database Search strategy Results

PubMed/MEDLINE (“random forest”[Title/Abstract] OR “RF”[Title/Abstract]) AND (“Prognosis”[Title/Abstract] OR “prognoses”[Title/

Abstract] OR “prognostication”[Title/Abstract] OR “prediction”[Title/Abstract] OR “Prognostic”[Title/Abstract]) 

AND (“gastrointestinal cancer”[Title/Abstract] OR “gastrointestinal cancers”[Title/Abstract] OR “colonic 

neoplasm”[Title/Abstract] OR “esophageal cancer”[Title/Abstract] OR “stomach cancer”[Title/Abstract] OR “gastric 

cancer”[Title/Abstract] OR “intestinal cancer”[Title/Abstract] OR “colorectal cancer”[Title/Abstract] OR “rectal 

cancer”[Title/Abstract] OR “anal cancer”[Title/Abstract] OR “small bowel cancer”[Title/Abstract] OR “duodenal 

cancer”[Title/Abstract])

447

Web of science (TS = (Random forest) OR TS = (RF)) AND (TS = (“Gastrointestinal cancers”) OR TS = (“Esophageal Neoplasms”) 

OR TS = (“Stomach Neoplasm”) OR TS = (“Rectal Neoplasms”) OR TS = (“Gastrointestinal Neoplasms”) OR 

TS = (“Gastric Cancer”) OR TS = (“Colon Cancer”) OR TS = (“Anal Cancer”) OR TS = (“small bowel cancer”) OR 

TS = (“duodenal cancer”)) AND (TS = (prognostication) OR TS = (prognosis) OR TS = (prediction))

646

Scopus (TITLE-ABS-KEY (“Random forest”) OR TITLE-ABS-KEY(RF)) AND (TITLE-ABS-KEY (“Gastrointestinal cancers”) 

OR TITLE-ABS-KEY (“Esophageal Cancer”) OR TITLE-ABS-KEY (“Stomach Cancer”) OR TITLE-ABS-KEY 

(“Intestinal Cancer”) OR TITLE-ABS-KEY (“Colon Cancer”) OR TITLE-ABS-KEY (“Rectal Cancer”) OR TITLE-

ABS-KEY (“Anal Cancer”)) AND (TITLE-ABS-KEY(prognostication) OR TITLE-ABS-KEY(prognosis) OR TITLE-

ABS-KEY(prediction))

839

Google scholar allintitle: random forest “gastric cancer” OR “esophageal cancer” OR “colorectal cancer” OR “colonic cancer” OR “anal 

cancer” OR “rectal cancer” OR “gastrointestinal cancer”

40

Total Articles were identified from four electronic databases 1932

Duplicate removal Duplicates identified and excluded 1,491

Abstract and title screening Articles were excluded after screening abstracts and titles 1,846

Inclusion for analysis Articles with accessible full texts that met eligibility criteria were included for full review and data extraction. 86

Final articles 8 articles were excluded due to lack of full text 78
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analysis, and reporting. For each domain, a set of three to seven 
prompting items is utilized. Studies evaluated as high quality in 
these domains were prioritized in the synthesis of data to guarantee 
strong conclusions.

Due to observation of considerable heterogeneity in RF model 
implementation across studies, instead of conducting a meta-analysis, 
a narrative and systematic approach, highlighting trends in predictive 
performance for each cancer type, was chosen.

Results

Study selection

A systematic exploration of four electronic databases identified 
1,932 articles. After removing 1,846 items, 1,491 were duplicates. The 
remaining articles were split into 86 accessible and 8 non-accessible 
(Figure 1). We extracted data from our 86 full-text articles using 16 
factors (author’s name, title, year of publication, country, aim of a 
study, population studied, type of pathology, use of RF in model, 
model development or validation, type of validation, model used for 
validation, factors used for prognostication, method, outcome, 
conclusion, quality of the evidence).

Study characteristics

The reviewed papers span the years 2011 through 2024. Fewer 
studies came from North America, Europe, and the Middle East, with 
the majority of the research being done in Asia, particularly China. 
Studies that are cross-sectional and retrospective make up the majority 
of the literature. The majority of the papers (33 and 36, respectively) 
showed moderate and low risk of bias, according to the risk of bias 
evaluation, while only a small subgroup (Ferlay et al., 2021) was found 
to have a high risk of bias. 27 of the 86 included studies briefly noted 
their approach to handle missing data.

There were 5 different cancers mentioned in the 86 articles found 
in full text, which are categorized by the number of articles they are 
mentioned in and the type of validation used for them. An abstract of 
the methods used in the articles with the highest quality of evidence 
for each of the 5 cancers is gathered and tabled along with the other 
mentioned information (Table 4).

Findings

86 eligible articles were identified, of which 50 presented model 
development, 46 presented only internal validation, 27 presented only 
external validation, and 13 models had both internal and external 
validation. All of the articles were validated using an RF model, a tool 
mostly used for assessing the performance and robustness of the 
prognostic models, minimizing the effect of overfitting (a major cause 
for diminishing predictive ability for unknown data) or predicting the 
outcome (in 50% of the cases). The number and type of validation 
utilized for each cancer is visible in Table 4.

Esophageal cancer (EC)

EC is generally divided into squamous cell carcinoma (SCC) and 
adenocarcinoma and typical treatments for EC are chemotherapy, 
radiation, and surgery (Acharya et al., 2023). Moreover, tumor stage 
and respectability typically determine the outcome of this type of 
cancer (Quail and Joyce, 2013). To conduct an improved clinical 
decision analysis, it is necessary to predict EC patients’ response to 
treatment, recurrence, and survival rates. Previous studies have 
applied machine learning models, especially RF, to predict these 
outcomes with remarkable success. RF is strong against high-
dimensional data, where there are complex relationships among 
variables. The methodology employed by RF involves the creation of 
several uncorrelated decision trees, each derived from distinct random 
samples of the dataset. This will outperform classification and reduce 
overfitting in the models. In the OCCAMS Consortium study, RF was 
used in a group model with Elastic Net Regularized Logistic 
Regression and XGBoost to find out the recurrence rate of esophageal 
adenocarcinoma after surgery. An optimized version with 
hyperparameter tuning showed excellent predictive performance, 
especially in identifying patients at high risk of recurrence (Rahman 
et al., 2020). Another study on SCC looked at how RF could be used 
on patients to separate tumors that could be  removed from their 
bodies from those that could not use radiomic features taken from CT 
scans. The model behaved with high accuracy AUCs and outperformed 
several other machine learning models (Ou et al., 2019). In a research 
initiative by GARF focusing on patients with locally advanced EC, RF 
was combined with a genetic algorithm to identify the most pertinent 
imaging and clinical characteristics that might predict treatment 
outcomes and patient lifespan (Paul et al., 2017). The RF classifier 
provided the minimum misclassification error and gave the maximum 
AUC score; thus, its strength in handling complex medical images and 
clinical data has been demonstrated (Chaddad et al., 2018). Generally, 
RF has constantly shown that it is one of the most powerful tools in 
providing predictions of the outcomes of EC, and hence, it has allowed 
relevant and important insight into patient management and 
treatment (Thavanesan et al., 2024).

RF has been successful in predicting the treatment responses, 
recurrence, and survival rates of EC patients. With RF, many 
decision trees are grown on random samples, which decrease the 
overfitting and increase the accuracy of prediction. Previous studies 
have shown the role of RF in regulating the outcome of ECs by 
demonstrating its ability to identify operable tumors and predict 
cancer recurrence accurately.

TABLE 2 Step-by-step checklist to include an article.

Inclusion checklist

1. A Journal article

2. An English language article

3. A GI tract malignancy

4. Developing an outcome predictor model

5. Utilizing RF to build the model

6. Essential application of RF in model development*

7. Article full text available

*The essential application of RF was determined by the use of RF in the method section of 
the article and by comparing the results of the model with other algorithm-based models.
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TABLE 3 Esophageal cancer (EC).

References Dataset Task Approaches Disease type Performance 
(metric)

Results

Rahman et al. (2020) Clinical and 

imaging data 

(post-surgery)

Recurrence 

prediction

Random Forest (RF), 

Elastic Net Regularized 

Logistic Regression, 

XGBoost, 

hyperparameter tuning

Adenocarcinoma High predictive 

performance (AUC), 

especially for high-risk 

recurrence cases

Successfully identified 

high-risk recurrence 

patients with 

optimized 

hyperparameters

Ou et al. (2019) Radiomic 

features 

extracted from 

CT scans

Tumor 

classification 

(respectable vs. 

non-respectable)

Random Forest (RF) Squamous Cell 

Carcinoma

High accuracy (AUC 

outperformed other ML 

models)

RF proved superior in 

differentiating tumor 

resectability using 

radiomic features

Paul et al. (2017) Clinical and 

imaging data

Prediction of 

treatment 

outcomes and 

patient survival

Random Forest (RF) 

combined with Genetic 

Algorithm

Locally Advanced EC High AUC, minimal 

misclassification error

Key imaging and 

clinical features 

identified for 

predicting outcomes 

with low error rates

FIGURE 1

PRISMA 2020 flow diagram for new systematic reviews which included searches of databases.
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Gastric cancer (GC)

Starting in the gastric mucosa, GC is a cancer that can progress 
from early-stage T1 GC to advanced metastatic illness (Rawla and 
Barsouk, 2019). The size and location of the tumor, the level of 
histological differentiation, and the existence of certain indicators like 
Helicobacter pylori infection are all factors that increase the chance of 
having this illness (Hallinan and Venkatesh, 2013). For the illness to 
be  effectively managed, a precise evaluation of the patient’s 
prognosis—including survival rates, the possibility of distant 
metastases, and the reaction to chemotherapy—is essential (Stone 
et  al., 2023). To forecast the clinical outcomes of GC patients, 
including distant metastases, serosal invasion, or survival, this 
research created machine learning models. These models have been 
created using tumor markers, radiomic characteristics taken from CT 
images, and clinical-pathological data. RF, SVM, and ANN are the 
main machine-learning algorithms examined in this regard. The AUC, 
sensitivity, and accuracy of these models were compared against one 
another. Notably, in the majority of the examined datasets, some RF 
models had competitive or better prediction accuracies, making them 
extremely predictive of patient outcomes (Tian et al., 2023; Li et al., 
2018). To ensure that these models are more resilient across various 
datasets, external validation is helpful. In general, the ease of handling 
and processing a dataset with numerous variables has led to the 
widespread use of RF. The RF models were trained using clinical and 
radiomic data to predict the overall survival time of patients with GC 
who had serosal invasion or close metastases (Huang et al., 2021; Liu 
et al., 2021). RF ensembles various tree-only models, which reduces 
the risk of single-model overfitting and improves substantial 
prediction quality (Tian et al., 2023; Liu et al., 2023). RF demonstrated 
strong predictive performance by consistently achieving high AUC 
scores in each of these. For instance, in many situations, RF could 
accurately predict survival and metastasis; in some cases, it could even 
outperform other models like SVM or neural networks (Li et al., 2018; 
Liu et al., 2023). Moreover, the feature importance measures calculated 
by the RF models have pointed out the most critical factors affecting 
patients’ outcomes and helped clinical decision-making in the 
treatment of GC (Tian et al., 2023; Liu et al., 2021).

This research developed machine-learning models using tumor 
markers, CT image features, and clinical data to predict clinical 

outcomes in GC patients. The main algorithms studied were RF, SVM, 
and ANN, with RF often showing competitive prediction accuracy. RF 
models were trained to predict survival in patients with serosal 
invasion or metastases and identified key factors that influence 
outcomes, aiding treatment decisions.

Colon cancer (CC)

CC originates in the colon or rectum and often presents with 
unnatural growths that can spread and invade adjacent tissues is 
known as CC (Alzahrani et al., 2021). This presented study aims to 
enhance the classification of CC by developing predictive models 
using the RF algorithm together with feature selection techniques. 
Methodological steps include the four major phases: acquiring gene 
expression data, model construction without and with feature 
selection, and comparative analysis. Data consisted of 62 CC samples, 
where 40 were tumor biopsies and 22 were normal controls. Before 
using feature selection approaches such as MDA and MDG to modify 
model performance, RF-based models were developed. The RF 
classifier is used here because of its excellent performance in managing 
complex, noisy, and high-dimensional data. RF works particularly 
effectively in datasets with large feature dimensions because it builds 
several trees from random picks and utilizes the outputs of those trees 
to generate predictions. In the present investigation, RF showed 
excellent prediction ability in distinguishing between normal tissues 
and CC (Yao et al., 2022). In turn, feature selection with the MDA and 
MDG methods improved the general performance of the model in 
terms of much higher accuracy, precision, recall, and F1 score because 
only the most relevant features were used for classification. The 
comparative analysis showed that the RF model’s predictive 
performance was improved by the feature selection procedure. 
Additionally, the use of RF in several settings in CC research points to 
its possible value for both predictive and diagnostic evaluations (Li 
et al., 2021). By adding more information like immune cell fractions, 
histopathological images, and genomic profiles (Zhou et al., 2019), RF 
was able to find key markers that set tumor tissue apart from normal 
samples. When RF was combined with LASSO, it became even easier 
to find the immune cells and genetic markers that were involved. This 
improved the accuracy of the prognostic and diagnostic models. This 

TABLE 4 Gastric cancer (GC).

References Dataset Task Approaches Disease type Performance 
(metric)

Results

Tian et al. (2023) and Li 

et al. (2018)

Radiomic and 

clinical-

pathological data

Prediction of 

metastases, 

serosal invasion, 

survival

Random Forest (RF), 

Support Vector 

Machines (SVM), 

Artificial Neural 

Networks (ANN)

Advanced Gastric 

Cancer

High AUC, RF models 

outperformed others in 

many datasets

RF consistently 

outperformed other 

ML models, 

achieving reliable 

survival and 

metastasis 

predictions

Huang et al. (2021) and 

Liu et al. (2021)

Clinical and 

radiomic data

Overall survival 

prediction

RF ensembles and 

feature selection 

methods

Serosal invasion/

metastases

High predictive accuracy, 

consistently robust AUC 

values

RF provided insights 

into critical 

radiomic and 

clinical predictors 

affecting survival
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model’s strong performance was validated by tests that used AUC and 
Harrell’s concordance index (c-index), which are essential for 
forecasting a patient’s outcome and creating more accurate forecasts 
(Shafi et  al., 2020). The RF consistently outperformed the other 
approaches in terms of classifying, predicting, and offering useful 
information about many aspects of CC outcomes.

Shortly, RF showed strong performance in distinguishing between 
normal and cancerous tissues. Using feature selection methods like 
MDA and MDG enhanced model accuracy and other performance 
metrics. RF also provided valuable insights for diagnostic and 
prognostic evaluations of CC outcomes (Table 5).

Rectal cancer (RC)

RC remains an important focus for predictive modeling across 
several studies, predicting improved outcomes and prognosis (Peng 
et al., 2007). Therefore, in one study, a total of 33 patients diagnosed 
with mid-to-lower rectal adenocarcinoma underwent NCRT, 
following which they received radical surgery. RF was applied to 
develop a predictive model that could provide a prediction about the 
tumor regression grade, which is a measure of response related to 
NCRT. The RF model was trained on the survival fraction data with 
200 trees and tested by AUC, accuracy, and kappa values. Strong 
predictive capability and highly effective classification for treatment 
responses were shown for this RF model (Park et al., 2021). There was 
another study that involved 211 patients with locally advanced RC, 
which involved chemoradiotherapy and surgery. Radiomics features 
were taken from contrast-enhanced CT images taken before 
treatment, and RF was used to choose the most relevant features that 
could predict a pathological complete response. Feature ranking 
regarding its importance and minimizing errors was done by the 
approach known as the Fast Unified RF for Survival, Regression, and 
Classification, referred to as RF-SRC (Li et al., 2023). RF was combined 
with other machine learning methods, namely LASSO and SVM, to 
develop a radiomics score that predicted response to treatment, which 
is named Radscore. Based on several performance criteria, including 
improved AUCs, accuracy, and sensitivity, the suggested model 
appeared to perform well (Qiu et al., 2022). A radiomics nomogram 
was developed for clinical decision-making based on predictions by 
RF and clinical indicators in which, data from the Surveillance, 
Epidemiology, and End Results database and two hospitals in China 

supported a different study that developed a predictive model for liver 
metastasis in RC patients. RF was core in this process among the other 
machine learning algorithms. The model was trained with a well-
established technique called 10-fold cross-validation, whereas SMOTE 
was used to handle class balancing (Li et al., 2023). Performance was 
quantified using AUC, accuracy, sensitivity, specificity, and F1-score, 
and in this regard, it was robust for the RF model. Feature importance 
was evaluated by permutation importance, while the SHAP method 
gave further insight into the contribution of each variable. RF has 
always been good at working with big datasets, picking out the most 
important features, and then building a good model for predicting 
what will happen with RC, like TRG response, and likelihood of 
pCR. In these models, its application underlines effectiveness in 
improving decision-making and planning treatments for RC patients 
(Andersson et al., 2024).

Here, RF selected relevant features and combined them with other 
machine learning methods to create a radiomics score, named 
Radscore, which performed well on various metrics. Additionally, RF 
was used in creating a predictive model for liver metastasis, 
demonstrating effectiveness in handling large datasets and improving 
treatment decisions for RC patients (Table 6).

Colorectal cancer (CRC)

CRC is a malignancy that can develop in the colon or rectum. 
When it reaches an advanced level, it might cause issues like stage IV 
liver metastases, which calls for intricate therapeutic measures (Kow, 
2019). Chemotherapy, radiation therapy, and surgery are the main 
forms of treatment. The prognosis of patients is significantly impacted 
by many variables, such as the kind of cancer, histological aspects, and 
genetic features, including KRAS mutations (Mishra et  al., 2013). 
Particularly for lymph node metastases, exact survival and metastatic 
risk prediction are crucial for good treatment planning (Kim and 
Choi, 2019). To predict patient outcomes, including survival and the 
chance of metastasis, this research was designed to take advantage of 
machine learning techniques, namely the RF algorithm. In one study, 
we  used receiver operating characteristic analysis to assess the 
performance of an RF model we  constructed based on radiomic 
characteristics taken from MRI images, which showed a very high 
predicted accuracy of patient survival (Takamatsu et  al., 2019). 
Another study of stage IV CRC patients developed an RF model to 

TABLE 5 Colon cancer (CC).

References Dataset Task Approaches Disease 
type

Performance 
(metric)

Results

Yao et al. (2022) Gene expression data Tumor 

classification 

(normal vs. tumor 

tissues)

Random Forest (RF) Tumor/normal 

tissues

High classification 

accuracy

RF distinguished 

between normal 

and tumor tissues 

effectively with 

robust accuracy

Li et al. (2021) and 

Zhou et al. (2019)

Genomic, 

histopathological, and 

immune cell profiles

Biomarker 

identification

RF combined with 

LASSO, feature 

selection techniques 

(MDA, MDG)

Tumor/normal 

tissues

Improved accuracy, 

F1-score, precision, and 

recall with selected 

features

Identified immune 

cells and genetic 

markers crucial for 

diagnostic and 

prognostic models
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predict the risk of lymph node metastasis (LNM) based on a wide 
range of clinical and imaging features (Daye et al., 2021). The AUC 
values >0.90 (Tabari et al., 2024), reflect these models’ extremely high 
predictive power. In each of the reviewed investigations, the most 
commonly used was the RF algorithm. Researchers accepted the use 
of RF in analyzing variant clinical, radiomic, and imaging data to 
predict both survival outcomes and LNM risk. As illustrated in 
Figure 2, RF constructs multiple decision trees based on randomly 
selected features from the dataset to reduce overfitting and optimize 
accuracy. The capacity to categorize patient outcomes based on 
survival or risk of LNM is demonstrated by the RF models’ AUC 
values. Since they show which elements—such as radiomic or clinical 
features—are more pertinent to the model’s predictions, these feature 
importance measurements were quite helpful. Because of this, the 
outcomes were simpler to comprehend (Pourhoseingholi et al., 2017).

Overall, predicting patient outcomes using machine learning 
techniques, particularly the RF algorithm, is key for effective treatment 
planning. Studies showed high accuracy in predicting survival and 
lymph node metastasis risk using RF models based on various clinical 
and imaging data. Feature importance measures helped clarify the 
most crucial prediction elements (Tables 7, 8).

Discussion

This systematic review shows the effectiveness of randomized RF 
models in detecting and predicting GI cancers. RF models have 
consistently shown good accuracy and reliability in diagnosing GI 
tract malignancy types, including EC, RC, GC, CC, and CRC, in 
several investigations (Zhang et al., 2023; Kolisnik et al., 2023). They 
also provided reliable predictions for patient outcomes, including 
survival rates and the likelihood of relapse (Zhang et al., 2023). RF’s 
strengths, such as managing complex and heterogeneous datasets and 
handling missing values, make it an attractive tool for doctors and 

researchers. In addition, RF models are known for their ability to 
combine molecular, clinical, and pathological data, thus providing a 
holistic approach to cancer prediction (Xu et al., 2022).

The findings of the research show that RF-based models are more 
effective than traditional prediction methods that depend on statistical 
methods and experimental guidelines in predicting outcomes associated 
with GI cancer. The reason RF is better than conventional models is 
because it can capture nonlinear correlations and interactions between 
variables. Intrinsic algorithms can reduce the nature of excessive risk. 
Also, these algorithms can increase the generalizability of RF to diverse 
data sets. In addition, RF’s ability provides a more holistic approach to 
understanding the progression of cancer to integrate multimodal data, 
such as genetic, clinical, and demographic factors, potentially leading 
to more personalized treatment strategies. These results imply that RF 
models may effectively address the deficiencies in treatment prediction 
and decision-making associated with GI cancers, which are not 
adequately managed by conventional markers (Afrash et al., 2023; Liu 
et al., 2024). RF-based models are valuable tools for early detection and 
accurate prediction, which is essential to improve survival rates in 
patients with GI cancer (Alghafees et al., 2024). Application of these 
models helps healthcare providers to better diagnose high-risk patients 
and also determine whether immunotherapy or aggressive interventions 
are beneficial to them (D'Orsi et al., 2024). Furthermore, the adoption 
of RF models leads to saving costs by optimizing the use of healthcare 
resources and reducing diagnostic errors (Orji and Ukwandu, 2024). 
The results suggest the importance of RF models for GI cancers and that 
these models have a vital role in the future of personalized medicine in 
oncology (Chen et al., 2024).

RF strengths and applications

The effectiveness of Random Forest (RF) models in identifying 
and forecasting the course of gastrointestinal (GI) malignancies is 

TABLE 6 Rectal cancer (RC).

References Dataset Task Approaches Disease type Performance 
(Metric)

Results

Park et al. (2021) Clinical survival 

fraction data

Tumor regression 

grade (TRG) 

prediction

Random Forest (RF), 

200 decision trees

Mid-to-lower rectal 

adenocarcinoma

Strong predictive 

capability (high AUC, 

accuracy, kappa values)

RF effectively 

predicted TRG 

responses post-

NCRT with high 

accuracy

Li et al. (2023) and Qiu 

et al. (2022)

Radiomics data 

from contrast-

enhanced CT 

scans

Pathological 

complete response 

(pCR) prediction

RF-SRC (Fast Unified 

RF for Survival, 

Regression, and 

Classification), LASSO, 

SVM

Locally advanced rectal 

cancer

High AUC, sensitivity, 

specificity, and predictive 

accuracy

Combined 

models (RF and 

radiomics) 

accurately 

predicted pCR, 

aiding clinical 

decisions

Andersson et al. (2024) Clinical and 

imaging data

Liver metastasis 

prediction

RF combined with 

radiomics nomogram, 

10-fold cross-validation, 

and SMOTE for 

balancing

Advanced rectal cancer High AUC, feature 

importance explained 

with SHAP, robust 

predictive model

RF identified 

critical predictors 

for liver 

metastases using 

SMOTE and 

cross-validation
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FIGURE 2

Schematic illustration of an RF model: combining multiple decision trees to improve accuracy and reduce overfitting in predictions.

TABLE 7 Colorectal cancer (CRC).

References Dataset Task Approaches Disease type Performance 
(metric)

Results

Takamatsu et al. (2019) Radiomic features 

extracted from 

MRI scans

Survival 

prediction

Random forest (RF) Stage IV CRC High AUC, strong 

predictive accuracy

RF achieved high 

predictive 

accuracy for 

survival outcomes 

based on radiomic 

features

Daye et al. (2021) and 

Tabari et al. (2024)

Clinical and 

imaging data

Lymph node 

metastasis (LNM) 

prediction

RF with feature selection Advanced CRC AUC > 0.90, identified 

most crucial predictors 

(e.g., clinical, radiomic 

features)

RF identified key 

radiomic and 

clinical predictors 

of LNM, 

enhancing 

prognostic 

modeling
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highlighted in this comprehensive study. Several studies utilizing RC, 
GC, and CRC have shown the significant accuracy of RF models (e.g., 
Rahman et  al., 2020; Qiu et  al., 2022 RF’s ability to comprehend 
complex, high-dimensional data and accommodate for missing values 
makes it a valuable approach in the research of cancer). Additionally, 
to enhance survival prediction and personalized treatment plans for 
patients with GI cancer, RF models use multimodal data, such as 
genetic, clinical, and pathological features (Xu et  al., 2022). For 
example, studies on CC and RC have shown that using RF models in 
conjunction with feature selection methods such as LASSO greatly 
improved prediction accuracy (Li et al., 2021; Qiu et al., 2022).

As mentioned earlier, Random Forest models are naturally robust 
to missing values, and many studies leveraged this strength without 
extensive preprocessing. Most of the included studies did not mention 
their approach to handle missing data, but still successfully trained RF 
models. Given RF’s built-in mechanisms for handling gaps, we consider 
this acceptable for the scope of our review, though future work could 
benefit from more detailed reporting of imputation strategies.

Interpretability of RF models

Even though RF models are strong, clinical practitioners 
nevertheless have a significant difficulty with their interpretability. 
Effective use of techniques like SHAP values and permutation 
significance can improve decision-making transparency. While 
permutation significance analysis aids in determining the most 
important factors influencing outcomes, SHAP values offer insights into 
how each feature contributes to model predictions, allowing doctors to 
have a more nuanced view (Ali et al., 2023). Additionally, by including 
feature significance charts in clinical reports, doctors may be able to 
have a better understanding of the key predictors and use the results of 
the RF model to influence their treatment choices (Sadeghi et al., 2024).

Clinical applicability

To successfully incorporate RF models into clinical procedures, a 
few obstacles need to be  removed. Medical professionals’ lack of 
technical expertise is one of the main problems; many of them might 
not understand machine learning principles or particular RF 
applications well enough (Esmaeilzadeh, 2024). Furthermore, because 
hospitals can lack the infrastructure required to support more 
complex modeling techniques, incorporating these sorts of tools into 
standard clinical practice could be difficult. By developing automated, 
user-friendly RF-based clinical apps and enhancing training programs 
to educate medical personnel about machine learning, these problems 

may be  addressed and they will be  prepared to deploy machine 
learning in patient care (Stoumpos et al., 2023).

Limitations

Despite the sector’s extremely positive results, several limitations 
must be  noted. One major problem discouraging physicians from 
using RF algorithms in their daily practice is their complicated clinical 
applicability. For instance, in research on EC analysis, different clinical 
conditions and patient characteristics may yield surprising model 
performance, and hence physicians cannot consistently apply the 
results. Moreover, most of the included studies are retrospective, which 
restricts the generalizability of their findings since they cannot 
precisely reflect the variety that would have been present in real clinical 
settings because they usually rely on data that has already been 
collected. For example, because the majority of research predicting GC 
outcomes relied on historical data that could be subject to selection 
bias or lack adequate patient demographics, results often were biased 
and the model’s dependability was poor in new and diverse 
patient populations.

Moreover, there are also problems concerning consistency with 
specific input variables in the RF models identified across the different 
research studies. Indeed, small changes in the imaging data, biomarkers 
used, or clinical scenario can greatly influence the performance and 
consistency of such models. These differences render it challenging to 
confirm findings across patient groups or various healthcare settings, 
while limiting comparisons across studies. In this respect, the present 
work aims to point out that the application of machine learning 
models, such as RF, in various settings regarding patient demographics 
and treatment should be demonstrated, as well as the need for carefully 
designed prospective clinical trials and the need for external validation. 
To realize the full potential of predictive modeling in enhancing cancer 
treatment and patient outcomes, several steps should be taken.

Future directions

To increase the efficacy and usefulness of RF models in cancer, 
future research should focus on developing user-friendly interfaces 
that facilitate their integration into clinical procedures. Standardizing 
input variables is necessary to improve repeatability across 
investigations, and prospective trials and extensive validations across 
a range of patient groups are needed to evaluate the model’s 
effectiveness. Furthermore, examining hybrid approaches that combine 
RF and neural networks may significantly improve predictions for 
complex outcomes like survival and metastasis, ultimately leading to 

TABLE 8 Comparison of the included articles discussed 2 cancers, and 13 studies were both internally and externally validated.

Cancer Model 
development

Model 
validation

Model 
d + v

Internal 
validation

External 
validation

Ex+In 
validation

Esophageal cancer 3 2 5 5 2 3

Gastric cancer 17 2 3 12 5 1

Colon cancer 8 1 0 6 2 1

Rectal cancer 6 1 2 5 3 1

Colorectal cancer 21 6 2 15 10 4
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better patient care and clinical judgment. Further, to ensure that these 
prognostic tools generalize across diverse patient populations and can 
be safely deployed in clinics, future efforts should prioritize prospective, 
multi-center external validation and real-world integration studies.

Conclusion

This extensive review shows that machine learning models are 
very reliable and accurate in finding out and forecasting GI 
malignancies like EC, RC, GC, CC, and CRC. Moreover, there exists 
a large body of literature on how well RF handles such intricate 
pathological and molecular clinical data for the accurate forecasting 
of patient outcomes related to survival rates and recurrence risks. On 
the other hand, traditional prediction algorithms could not identify 
complex patterns or even recognize and control the diversity of GI 
malignancies. The results of this study identify the importance of RF 
models in improving the accuracy of the prediction that will inform 
treatment options for patients with GI cancers. The ability of these 
models to handle high volumes of diverse data and identify nonlinear 
relationships between variables makes them efficient in clinical 
applications. It aids doctors to better identify high-risk patients and 
adopt more appropriate treatments for them. RF has been able to act 
as a powerful tool to reduce the distances in treatment predictions, 
especially in cases where traditional prediction markers are inadequate.

RF-based models are promising to have a huge say in future 
developments related to customized medicine. The integration of 
the models into current treatment strategies will likely improve 
survival rates and the general quality of life in patients with GI 
cancers. Cost savings can be realized through the use of the models 
by reducing diagnostic mistakes and improving healthcare resource 
distribution. Further studies are needed to be  carried out to 
encourage wide application of the models in real-world scenarios.
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