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Artificial Intelligence (AI) is revolutionizing climate modeling by enhancing predictive 
accuracy, computational efficiency, and multi-source data integration, playing 
a crucial role in sustainable urban planning. This Mini Review examines recent 
advancements in machine learning (ML) and deep learning (DL) techniques 
that improve climate risk assessment, resource optimization, and infrastructure 
resilience. Despite these innovations, significant challenges persist, including data 
quality inconsistencies, model interpretability limitations, ethical concerns, and 
the scalability of AI models across diverse urban contexts. To bridge these gaps, 
this review highlights key research directions, emphasizing the development of 
interpretable AI models, robust data governance frameworks, and scalable AI-driven 
solutions that help climate adaptation. By addressing these challenges, AI-based 
climate modeling can provide actionable insights for policymakers, urban planners, 
and researchers fostering climate-resilient and sustainable urban environments.
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1 Introduction

Climate change compels strategic urban planning to balance growth, sustainability, and 
societal well-being (Amnuaylojaroen and Chanvichit, 2024). By 2050, estimated 68% of global 
population lives in cities, making it imperative to develop adaptation strategies that address 
increasing climate variability and associated risks (Amnuaylojaroen et al., 2024; Parasin and 
Amnuaylojaroen, 2023). Climate modeling is central to this effort, enabling policymakers to 
simulate future climate scenarios, assess vulnerabilities, and implement mitigation strategies 
to enhance urban resilience (Rolnick et al., 2022).

AI, particularly ML and DL, has revolutionized climate modeling by improving data 
processing, predictive accuracy, and the integration of diverse datasets from satellites, ground-
based sensors, and atmospheric monitoring systems. ML algorithms enhance climate models 
by detecting intricate patterns, refining spatial and temporal resolutions, and producing real-
time climate predictions. DL, through multi-layered neural networks, extracts high-level 
features from complex climate datasets, further refining predictive accuracy and facilitating 
dynamic climate risk assessments (Lundberg and Lee, 2017; McGovern et al., 2017). These 
AI-driven enhancements contribute to what is termed “AI-driven climate resilience.” wherein 
AI-enhanced climate models inform data-driven policy decisions, shaping sustainable 
urban development.

AI integrates diverse data and enables real-time analysis, yet urban planning assessments 
remain limited (Brevini, 2021). This review adopts a qualitative literature synthesis, drawing from 
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2016 to 2025 peer-reviewed sources across AI and climate science. A 
search from three databases included SCOPUS, Web of Science, and 
Google Scholar, using keywords such as “AI for climate modeling” and 
“interpretable ML for urban resilience.” After removing duplicates, 
10,616 articles were screened by title and abstract. Of these, due to the 
broad scope of the searches, strict screening and inclusion criteria were 
applied to ensure methodological rigor and relevance, 150 articles were 
reviewed for eligibility. Six case studies were selected based on 
accessibility, innovation, policy relevance, and geographic diversity. 
Thematic structuring around data quality, interpretability, and ethics 
reflects core challenges consistently highlighted in the literature. These 
themes—data, interpretability, and ethics—frame the review and reflect 
recurrent priorities in recent AI-climate integration literature.

2 AI advancements in climate 
modeling: enhancing predictive 
capabilities for sustainable urban 
planning

Artificial intelligence (AI) has transformed climate modeling by 
improving predictive accuracy, processing efficiency, and data 
integration. The AI-driven climate modeling process includes three 
key stages. The first stage, Data and Model Development, involves 
collecting, preprocessing, and validating climate data from satellites, 
ground sensors, and historical records, ensuring high data quality for 
reliable predictions. The second stage, Analysis and Prediction, applies 
AI models to analyze climate trends, enhance spatial and temporal 
resolution, and improve climate risk forecasts through advanced 
machine learning techniques. The final stage, Policy Action and 
Implementation, translates AI-driven climate insights into strategies 
for urban planning, disaster mitigation, and resource management, 
supporting long-term sustainability. Figure 1 illustrates this process, 

showing how AI enhances climate adaptation strategies and resilience. 
The schematic highlights AI’s role in improving climate modeling 
accuracy and informing decision-making. This figure aligns with 
established AI-based climate modeling frameworks (Rolnick et al., 
2022; Karpatne et al., 2017).

2.1 Data quality and management

Data quality is crucial for AI-driven climate models due to the 
complexity of climate data. Sources include ground-based stations, 
satellites, ocean buoys, and atmospheric sensors have distinct spatial 
and temporal characteristics. To ensure accuracy, rigorous quality 
control measures are applied, including outlier detection and gap 
filling like Interquartile Range (IQR), Z-score normalization, and 
K-Nearest Neighbors (KNN) imputation (Chandola et  al., 2009; 
Stekhoven and Bühlmann, 2012). These methods enhance data 
reliability by addressing inconsistencies and missing values, ensuring 
AI models generate accurate climate predictions.

Homogenization further improves data consistency by adjusting 
for non-climatic influences through pairwise comparisons with 
reference datasets (Venema et al., 2012). Standardization aligns data 
across units, time zones, and coordinate systems, facilitating seamless 
AI model integration. Additionally, noise reduction techniques such as 
moving average filters, wavelet transforms, and Kalman filters enhance 
data clarity (Luo et  al., 2019). Cross-validation with independent 
datasets, such as comparing satellite and ground-based observations, 
is essential for verifying reliability (Loew et al., 2017). Despite these 
measures, challenges remain, including data variability and inconsistent 
spatial–temporal coverage, limiting model scalability and reliability. 
Furthermore, model interpretability remains an issue, as complex AI 
models often function as “black boxes,” making it difficult for 
policymakers to understand predictions. Robust data quality remains 

FIGURE 1

End-to-end AI-driven climate modeling process: from data collection to policy action. Adapted and expanded from Rolnick et al. (2022); figure created 
by the author.
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a cornerstone for accurate climate predictions, underscoring its 
importance in producing actionable insights for urban planning and 
climate resilience. Beyond traditional sources like ground stations and 
satellites, emerging data streams such as IoT networks, social media, 
and citizen science are used to improve spatial resolution, capture 
localized events, and enhance AI-driven climate model responsiveness.

2.2 Model interpretability

Beyond technical challenges, AI-driven climate modeling also 
raises ethical concerns. Bias in training data, lack of transparency, and 
potential inequities in climate adaptation strategies must be addressed 
to ensure fair and responsible AI implementation.

Model interpretability is essential for AI adoption in climate 
science, particularly in policymaking. Techniques like SHapley 
Additive exPlanations (SHAP) and Local Interpretable Model-
Agnostic Explanations (LIME) clarify variable influences, enhancing 
transparency (Lundberg and Lee, 2017). While ensemble methods, 
such as Random Forests and Gradient Boosting, enhance predictive 
performance and robustness, they often increase model complexity, 
making interpretation more challenging. However, techniques like 
feature importance ranking in Random Forests provide insights into 
which climate variables most influence predictions, while model-
agnostic methods, such as permutation importance and SHAP values, 
improve interpretability without compromising accuracy.

Another approach, physics-guided AI, embeds established climate 
science principles into AI models, ensuring predictions align with 
known physical laws, thereby enhancing interpretability (Karpatne 
et al., 2017). While ensemble methods reduce interpretability due to 
increased complexity, uncertainty quantification techniques—such as 
confidence intervals and probabilistic predictions—help policymakers 
assess the reliability of AI-driven climate projections (McGovern et al., 
2017). These techniques build trust in AI models, translating 
predictions into actionable climate strategies.

2.3 Ethical considerations

Fairness and transparency are crucial in AI-driven climate 
modeling. Bias datasets skew projections, harming vulnerable regions 
by underestimating risks and misallocating resources. Fairness 
requires diverse datasets and regular bias audits to ensure equitable 
outcomes (Ghani et al., 2023). Transparency is vital when AI informs 
urban planning. Clear documentation of data sources, model 
architectures, and limitations fosters accountability. Compliance with 
data protection regulations (e.g., GDPR) is essential (EPEUC, 2016). 
Establishing accountability in AI-driven decisions clarifies 
responsibilities, ensuring socially responsible and sustainable 
development (Goodman and Flaxman, 2017).

3 Case studies and technical details

To illustrate the practical applications of AI techniques in climate 
modeling and urban resilience, this section highlights selected case 
studies that demonstrate how various AI type address the key 
challenges across different geographic contexts. Case studies 

underscore AI’s diverse contributions to climate modeling and urban 
sustainability, with applications spanning forecasting, risk assessment, 
and environmental monitoring. Table 1 categorizes key AI methods 
by type—machine learning (ML), deep learning (DL), and hybrid 
models—and outlines regional implementation challenges. For 
example, Google DeepMind’s hybrid model, integrating LSTM and 
CNN, improved wind energy forecasting by 20%, demonstrating the 
strength of combining temporal and spatial learning in data-rich 
settings (Buturache and Stancu, 2021). Similarly, the CorrDiff model 
utilizes deep learning for km-scale atmospheric downscaling, but its 
reliance on dense datasets limits implementation in regions like 
Southeast Asia (Mardani et al., 2025). In Southeast Asia, machine 
learning techniques such as Gradient Boosting and Decision Trees 
have proven effective for temperature projection refinement, 
particularly in data-sparse environments (Amnuaylojaroen, 2024). 
For air pollution forecasting, deep learning models like U-Net are 
used in urban India to predict PM2.5 trends with high spatial 
resolution (Rautela and Goyal, 2024). In East Africa, combining 
Random Forests and SVMs for drought prediction has supported 
targeted food security interventions (Kogan et al., 2019). Transfer 
learning using ResNet CNNs has enabled near real-time deforestation 
monitoring in the Amazon, highlighting the global scalability of deep 
learning in environmental conservation (Finer et al., 2018).

These case studies underscore AI’s versatility in climate modeling, 
spanning renewable energy forecasting, air quality analysis, drought 
prediction, and deforestation monitoring. Common AI techniques 
include hybrid models, ensemble methods, and transfer learning, 
which leverage satellite imagery, sensor data, and historical climate 
records. By capturing non-linear relationships and high-dimensional 
patterns, these approaches enhance predictive accuracy and spatial 
resolution, providing valuable insights for policymakers and 
researchers. AI’s integration into climate modeling proves its 
transformative potential, offering scalable solutions for sustainable 
urban development and climate resilience.

Despite advancements, AI-driven climate modeling faces key 
challenges and research gaps. A major challenge is the integration of 
diverse datasets across regions, as climate data varies in quality, 
resolution, and availability. This inconsistency limits model reliability, 
particularly in data-scarce regions like parts of Africa and Southeast 
Asia. Another concern is the trade-off between model interpretability 
and accuracy. Deep learning models, while highly accurate, often 
function as “black boxes,” making it difficult to trust AI-driven climate 
predictions. Scalability also remains an issue, as AI models must adapt 
to diverse climatic conditions and efficiently process large datasets 
without compromising accuracy. Ethical and fairness concerns further 
highlight the need for inclusive datasets to ensure predictions fairly 
represent all regions and communities.

Future research could explore reinforcement learning (RL) to 
optimize urban climate resilience, enabling dynamic adjustments to 
city infrastructure in response to climate risks. Quantum computing 
offers new possibilities for simulating complex climate interactions and 
improving extreme weather predictions. Federated learning enables 
decentralized AI training with data privacy, while multi-modal systems 
combining satellite, sensor, and socio-economic data can enhance 
predictive accuracy for localized impacts. By addressing these 
challenges and exploring emerging AI technologies, future research 
can advance climate modeling accuracy, interpretability, and scalability, 
fostering resilient and adaptive urban environments worldwide.
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TABLE 1 Summary of AI techniques applied in climate modeling and urban sustainability.

Method AI type Application Benefits Limitations Regional 
implementation notes

Geographic 
focus

Data 
sources

Theme 
addressed

References

LSTM + CNN Hybrid (DL)

Wind Energy 

Prediction

Captures temporal 

(LSTM) and spatial 

(CNN) patterns; 

improves wind 

forecast

High data needs; 

computationally 

intensive

Best in regions with robust energy 

datasets like the US and Europe Europe Monitoring Data Quality

Buturache and Stancu 

(2021)

CorrDiff Deep Learning

High-Resolution 

Forecasting

Enables km-scale 

downscaling; 

improves typhoon 

and front detection

Demands high-

quality training data; 

calibration needed

Challenges in Southeast Asia due 

to sparse local observations Asia

Reanalysis, 

Observation Interpretability Mardani et al. (2025)

Gradient Boosting 

Machines (GBM)

Machine 

Learning

Temperature and Air 

Quality Forecasting

High accuracy with 

heterogeneous data; 

robust predictions

Prone to overfitting; 

sensitive to noise

Effective in Southeast Asia where 

observational data is mixed Asia

Global Climate 

Model, satellite Data Quality

Amnuaylojaroen 

(2024)

Decision Trees 

(DT)

Machine 

Learning

Temperature 

Projections

Transparent and 

easy to interpret

Overfitting on small 

datasets

Useful in low-resource settings like 

Laos, Cambodia Asia

Global Climate 

Model, Satellite Data Quality

Amnuaylojaroen 

(2024)

U-Net 

Autoencoder Deep Learning PM2.5 Forecasting

Extracts spatio-

temporal patterns; 

high-dimensional 

data capability

Requires labeled data; 

sensitive to dataset 

size

Useful in urban India with dense 

pollution sensors Asia Monitoring

Data Quality, 

Interpretability

Rautela and Goyal 

(2024)

Support Vector 

Machines (SVM)

Machine 

Learning Drought Prediction

Kernel functions 

enable flexible 

modeling

Less efficient with big 

data; no probability 

output

Appropriate for regions like East 

Africa with moderate datasets Global

Satellite, 

Monitoring

Data Quality, Ethical 

Considerations Kogan et al. (2019)

ResNet CNN 

(Transfer 

Learning) Deep Learning

Deforestation 

Monitoring

Excellent at feature 

learning; handles 

imagery well

High computation; 

black-box nature

Applicable in Amazon using cloud 

AI services South America

Satellite, Global 

Climate Model, 

Observation

Data Quality, 

Interpretability Finer et al. (2018)

https://doi.org/10.3389/frai.2025.1517986
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Amnuaylojaroen 10.3389/frai.2025.1517986

Frontiers in Artificial Intelligence 05 frontiersin.org

4 Conclusion

This review highlights how AI—particularly ML and DL, and hybrid 
approaches—has advanced climate modeling for urban sustainability by 
improving predictive accuracy, enhancing data integration, and enabling 
real-time decision-making. The analysis of diverse AI techniques reveals 
varying strengths and applications: ML methods like Gradient Boosting 
and Decision Trees offer interpretability advantages in regions with 
limited data infrastructure, while deeper architectures provide superior 
predictive power in data-rich environments. Implementation success 
varies significantly by geographical context, with technological readiness 
and data availability creating disparities between developed and 
developing regions. While AI offers substantial benefits, critical gaps 
remain in methodology transparency, data quality, interpretability, and 
fairness. To maximize impact, future research must prioritize explainable 
AI models, scalable architectures that function across diverse urban 
contexts, and ethical design principles that ensure equitable benefits 
across all communities. Addressing these challenges requires 
interdisciplinary collaboration among climate scientists, urban planners, 
and AI specialists to ensure that AI tools serve as scientifically robust and 
socially equitable instruments for climate resilience, particularly in 
vulnerable regions facing the most severe climate challenges.
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