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Concerns about the trustworthiness, fairness, and privacy of AI systems are

growing, and strategies for mitigating these concerns are still in their infancy.

One approach to improve trustworthiness and fairness in AI systems is to use

biasmitigation algorithms. However,most biasmitigation algorithms require data

sets that contain sensitive attribute values to assess the fairness of the algorithm.

A growing number of real world data sets do not make sensitive attribute

information readily available to researchers. One solution is to infer the missing

sensitive attribute information and apply an existing bias mitigation algorithm

using this inferred knowledge. While researchers are beginning to explore this

question, it is still unclear how robust existing bias mitigation algorithms are

to di�erent levels of inference accuracy. This paper explores this question by

investigating the impact of di�erent levels of accuracy of the inferred sensitive

attribute on the performance of di�erent bias mitigation strategies. We generate

variation in sensitive attribute accuracy using both simulation and construction

of neural models for the inference task. We then assess the quality of six bias

mitigation algorithms that are deployed across di�erent parts of our learning

life cycle: pre-processing, in-processing, and post-processing. We find that the

disparate impact remover is the least sensitive bias mitigation strategy and that

if we apply the bias mitigation algorithms using an inferred sensitive attribute

with reasonable accuracy, the fairness scores are higher than the best standard

model and the balanced accuracy is similar to that of the standard model. These

findings open the door for improving fairness of black box AI systems using some

bias mitigation strategies.

KEYWORDS

inferred sensitive attribute, machine learning fairness, bias mitigation, demographic

inference, social media

1 Introduction

In recent years, we have seen the proliferation of powerful state-of-the-art AI systems

- from targeted recommendation systems to health assistants to more general tools like

ChatGPT. While these systems benefit us in many ways, researchers (and the general

public) are becoming more concerned about the trustworthiness and fairness of these

black-box AI systems (Li and Zhang, 2023; Zhang et al., 2023; Wang and Singh, 2024). To

measure and improve the trustworthiness and fairness of machine learning tools, different

fairness metrics and bias mitigation strategies have been developed (Mehrabi et al., 2021;

Pessach and Shmueli, 2022). A number of open access fairness toolkits have also emerged

to help researchers measure different types of fairness and test different bias mitigation
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strategies, e.g. AI Fairness 360 by IBM (Bellamy et al., 2019),

Fairlearn by Microsoft (Bird et al., 2020), and the What-if tool by

Google (Wexler et al., 2019). Not surprisingly, the bias mitigation

strategies in these toolkits require the data to have values for any

sensitive attribute(s). In general, most of the metrics and bias

mitigation algorithms require sensitive (or protected) attribute

information to measure and fix existing bias (Hu et al., 2021).

Unfortunately, in some real world data sets, sensitive attributes

are not available to researchers, or they may be difficult or costly to

obtain (Veale and Binns, 2017; Holstein et al., 2019). For example,

researchers may use posts from social media platforms like Reddit

or Twitter/X to try to understand polarization, misinformation,

public opinion, etc. Sensitive demographic features about these

users are not only difficult and costly to collect, but also

inconsistent across platforms. Singh et al. (2020) analyzed required

demographic information across some popular social media

platforms, including Twitter/X, Facebook, TikTok, LinkedIn, and

Snapchat, and found large variability in the type and amount

of demographic information required to create an account on

these platforms. For example, gender and birthdate were required

to create an account on Facebook, but neither were required

to have an account on LinkedIn. This inconsistency in the

requirements of sensitive demographic features means that even

if sensitive demographic data are made available to researchers

(by user consent or by platform agreement), much of it will

still contain missing values. In this paper, we refer to the lack

of a ground truth sensitive attribute as the missing sensitive

attribute problem.

One approach to for dealing with a missing sensitive attribute is

to infer it (Adjaye-Gbewonyo et al., 2014; Bureau, 2014; LinkedIn,

2022). While different methods for inferring the sensitive attribute

have been proposed, limited knowledge exists about how the

effectiveness of different bias mitigation strategies changes as the

uncertainty of the inferred sensitive attribute varies, i.e., when

the accuracy is higher or lower. Our goal is to fill this gap for

binary sensitive attributes, specifically binary versions of gender

and race.1

To accomplish this, we use both a combination of simulation

analysis and different neural models on different data sets to

investigate how the accuracy of an inferred sensitive attribute

impacts the performance of different bias mitigation algorithms

on three data sets, two traditional fairness data sets and one

social media data set. We use a simulation study to analyze the

traditional fairness data sets and we construct multiple neural

1 We acknowledge that there are more than two possible values for

gender and race. We note that in the two data sets that use gender as a

sensitive attribute (credit card client data and Wikidata), we only have binary

information as ground truth data and therefore, can only infer binary sensitive

attribute values. In the third data set, where the sensitive attribute is race

(COMPAS data), the original fairness study published by the data creators

investigated unfair treatment between white and black defendants (Je� et al.,

2016) and major fairness toolkits, such as Fairlearn (Bird et al., 2020) and

AIF360 (Bellamy et al., 2019), use binary race (white and non-white) as the

sensitive attribute.While not ideal, we believe it is important to first investigate

the binary version of our problem. We leave the multi-value version of the

problem for future work, discussing it briefly in Section 7.

models with varying accuracies to analyze the social media data

set. By using both simulation and neural model construction on

different types of data, we hope to better understand the sensitivity

of bias mitigation algorithms to errors in the inferred sensitive

attribute, and how much variation exists across different data sets

and different mitigation methods. Ultimately, our goal is assess

the quality of different bias mitigation strategies with respect to

different levels of accuracy in the inferred sensitive attribute for

general classification tasks and compare classification accuracy and

fairness by assessing their sensitivity to different levels of error in

the inferred sensitive attribute.

While we are not aware of a study designed like ours, there

are some similar studies. Ghosh et al. (2021a) investigate how

uncertainty in demographic inference impacts fairness guarantees

in ranking algorithms. Awasthi et al. (2020) study how imperfect

group information affects performance of post-processing bias

mitigation methods. In addition to our research question being

different, we focus on a broader set of bias mitigation algorithms,

allowing this study’s results to be applicable to a broader set of

machine learning tasks. We also conduct a more detailed case study

using social media data that incorporates demographic inference

algorithms designed for social media within our analysis.

Our main contributions can be summarized as follows. (1)

We formally define the missing sensitive attribute problem and

present a methodology for understanding the impact of an inferred

sensitive attribute on different bias mitigation strategies. (2) Using

a simulation study, we explore how the accuracy of the inferred

sensitive attribute impacts the performance (in terms of balanced

accuracy and fairness) of various bias mitigation algorithms

applied at different points in the machine learning life cycle

(pre-processing, in-processing and post-processing), enabling us

to better understand the overall impact of an inferred sensitive

attribute with different levels of accuracy on bias mitigation

strategies. We find that different bias mitigation algorithms have

varying levels of sensitivity, and across all bias mitigation strategies,

using an inferred sensitive attribute with reasonable accuracy

has less bias than using a classifier that does not employ bias

mitigation at all. (3) To compliment the simulation study, we

also conduct a case study with social media data where we

use multiple existing demographic inference models to infer the

sensitive attribute, giving us a range of different sensitive values.

We then apply different bias mitigation algorithms using the

inferred knowledge. Similar to the simulation results, we find

that using an inferred sensitive attribute results in more fair

models than using the original biased model. (4) We release

our code so that other researchers can advance research in

this area.2

The remainder of this paper is organized as follows. We discuss

related literature in Section 2. In Section 3, we formulate the

problem. Section 4 describes our methodology. Our experimental

design is discussed in Section 5, followed by the empirical

evaluation in Section 6. Conclusions and future directions are

presented in Section 7.

2 https://github.com/GU-DataLab/frontier_sensitive_attribute
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2 Related literature

We begin this section by discussing bias mitigation algorithms

that require a sensitive attribute (Section 2.1). We then discuss the

missing sensitive attribute literature (Section 2.2).

2.1 Bias mitigation algorithms

To correct bias, a number of bias mitigation algorithms have

been proposed. For ease of exposition, we categorize the mitigation

algorithms based on when they are applied in the machine learning

life cycle: pre-processing, in-processing, and post-processing.

Pre-processing mechanisms attempt to fix the input data in

order to improve fairness and train machine learning models using

input data that are more fairly distributed with respect to sensitive

attribute information (Feldman et al., 2015; Wang and Singh,

2021; Kamiran and Calders, 2012; Mehrabi et al., 2019; Brunet

et al., 2019; Calmon et al., 2017; Romano et al., 2020; Li and

Vasconcelos, 2019; Krasanakis et al., 2018). Approaches include:

resampling, reweighting, and updating feature values. Resampling

is used to remove selection bias and representation bias in the

training data by using uniform resampling in under-represented

groups and randomly dropping samples in over-represented groups

(Wang and Singh, 2021; Romano et al., 2020; Li and Vasconcelos,

2019). Reweighting changes the sample weight during classifier

training. It assigns higher weights for under-represented groups

and lower weights for over-represented groups (Kamiran and

Calders, 2012; Krasanakis et al., 2018). Disparate impact remover

uses an approach that updates feature values to improve group

fairness. It decreases the earth mover’s distance between feature

distributions of different sensitive groups so that they are the same

across sensitive groups (Feldman et al., 2015).

In-processing mechanisms change the machine learning model

during the training process, e.g., adding fairness constraints or

fairness regularization components into the optimization problem

(Kamishima et al., 2012; Zafar et al., 2017; Berk et al., 2017; Vapnik

and Izmailov, 2015; Zhang et al., 2018; Padh et al., 2021;Wadsworth

et al., 2018; Beutel et al., 2017; Xu et al., 2019; Manisha and

Gujar, 2018; Wu et al., 2018). Researchers have proposed variants

of adversarial debiasing. In this adversarial learning paradigm, an

adversary tries to predict the sensitive attribute from the model.

To prevent the adversary from predicting the sensitive attribute

correctly, the algorithm changes the inference model to maximize

the predictor’s ability to infer the outcome, while minimizing

the adversary’s ability to infer the sensitive attribute by changing

the weights of classifier’s parameters that contain information

about the sensitive attribute (Zhang et al., 2018; Wadsworth

et al., 2018; Beutel et al., 2017; Edwards and Storkey, 2015; Xu

et al., 2019). Another in-process approach adds regularization

and changes constraints during model optimization (Manisha and

Gujar, 2018; Agarwal et al., 2018; Wu et al., 2018). For example,

Agarwal et al. (2018) present exponentiated gradient reduction.

Their approach breaks down fair classification into a series of cost-

sensitive classification problems and returns a classifier with the

lowest empirical error predicting the outcome subject to the specific

fairness constraints.Wu et al. (2018) propose a convex optimization

with fairness constraints that can be directly incorporated into loss

function optimization and they prove that the fairness constraints

are upper-bounded by convex surrogate functions. This approach

differs from previous work because it does not make use of

surrogate constraints that may not be a reasonable estimate of the

original fairness constraint. Manisha and Gujar (2018) propose

FNNC, a newmethod to convert existing fairness metrics including

disparate impact, demographic parity, and equalized odds into

differentiable loss functions that can be easily adapted into any loss

function so that the loss function can optimize for both accuracy

and fairness.

Post-processing mechanisms change predicted labels after the

model is trained. These approaches modify the results of a trained

classifier to ensure fair prediction results based on the sensitive

attributes (Pleiss et al., 2017; Noriega-Campero et al., 2019; Hardt

et al., 2016; Kamiran et al., 2012). For example, thresholding is a

popular post-processingmechanismwhere changes are made to the

probability threshold for decision making based on the sensitive

attribute. Hardt et al. (2016) introduce threshold optimizer, a

strategy that utilizes the decision probability from the classifier. For

example, in binary classification, a classifier returns the probability

of the sample belonging to the positive and negative classes. In

conventional prediction tasks, the probability threshold is set to

be 0.5 for determining the final class label, e.g., if the prediction

probability of an example is less than 0.5, the approach labels it as

being the negative class. However, instead of 50/50, this method

determines different probability thresholds for each subgroup.

Similarly, Kamiran et al. (2012) modify the prediction labels for

individuals that are close to the decision boundary. If we use 50/50

as the decision boundary, the prediction labels on individuals with

prediction probability near the boundary (for example within 5%)

will be flipped. Individuals in the privileged group will receive a

negative outcome and individuals in the unprivileged group will

receive a positive outcome. Another post-processing mechanism

is calibration. It adjusts the probability outputs of a model so

that the proportion of predicted positive outcomes is the same

as the actual outcomes across all sensitive attribute groups. To

maintain the calibration, Pleiss et al. (2017) propose an approach

to randomly select individuals from the unprivileged group who

receive negative outcomes and change their prediction labels from

negative to positive. This approach can maintain the calibration

and satisfy the equal opportunity requirement on fairness. Noriega-

Campero et al. (2019) further improve this algorithm. Instead of the

randomization approach, they propose using an information cost

based as the difficulty associated with classifying an individual. If an

individual is easier to classify, i.e., further away from the decision

boundary, the information cost is smaller and if an individual is

closer to the decision boundary, the information cost is higher

since more information is needed from the individual to make the

decision. To improve fairness, the algorithm changes prediction

labels only on individuals with a high information cost.

2.2 The missing sensitive attribute problem

All bias mitigation algorithms in the popular toolkits such

as AI Fairness 360 (Bellamy et al., 2019), Fairlearn (Bird et al.,
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2020), and the What-if tool (Wexler et al., 2019) require ground

truth information about the sensitive attribute. Weerts et al.

(2024) introduce guidelines and opportunities for fairness aware

automated machine learning, highlighting the importance of

having a sensitive attribute to measure fairness and improve

fairness using existing bias mitigation algorithms.

However, the ground truth sensitive attribute is not always

available. There are three approaches to tackling this missing

sensitive attribute problem: approximating the sensitive

attribute, privately sharing sensitive attribute information,

and changing the bias mitigation algorithm to not require sensitive

attribute information.

2.2.1 Sensitive attribute approximation
The most studied approach uses proxies for the sensitive

attribute based on other features in the training data.

There are two general strategies for approximating the

sensitive attribute—inference using proxies and inference

using correlates.

The first group of methods uses proxies to directly infer

the sensitive attribute (D’Amour et al., 2020; Romanov et al.,

2019; Zhang, 2018; Zhao et al., 2022; Grari et al., 2021). This

method is commonly used to measure discrimination in real-world

applications such as credit approval and health insurance pricing

(Adjaye-Gbewonyo et al., 2014; Bureau, 2014). BISG (Bayesian

Improved Surname Geocoding) developed by RAND Corporation

is a popular tool to infer race. It uses Bayes Theorem and race

distribution by surname and location from the Census Bureau to

predict the race of individuals (Elliott et al., 2009). This tool was

used by the Consumer Financial Protection Bureau in 2013 in a

lawsuit against Ally Financial to identify racial discrimination in

their lending decisions (Andriotis and Ensign, 2015). However,

this method has limitations and its own biases. For example, BISG

performs poorly on individuals who change their surname after

interracial marriage (Argyle and Barber, 2024). This uncertainty

in the sensitive attribute inference can negatively affect fairness

measurements (Chen et al., 2019; Awasthi et al., 2021). Although

BISG is a fairly accurate method to infer gender, Chen et al.

(2019) show that BISG tends to overestimate fairness and they

provide a theoretical analysis of the amount of bias in the fairness

estimates using the inferred sensitive attribute. Awasthi et al.

(2021) further study this problem and provide more empirical

analysis on fairness estimation using inferred sensitive attribute.

They build multiple sensitive attribute inference models using

random forest, logistic regression, SVM and a single hidden layer

neural network model. All the models have a similar accuracy

(ranging from 82% to 85%) of inferring the sensitive attribute. The

authors then use the inferred sensitive attribute to measure the

fairness and show that with very similar overall accuracy, different

misclassification distributions can negatively affect the ability to

measure the fairness. Our work differs from these previous works

since our focus is not on identifying the best approach for inference,

but rather to understand whether or not across different data sets

fairness will improve (1) when there are different levels of inference

accuracy of the sensitive attribute, and (2) when using different bias

mitigation algorithms.

The second group of methods uses features that are highly

correlated to the sensitive attribute to improve fairness (Gupta et al.,

2018; Romanov et al., 2019; Zhao et al., 2021). Gupta et al. (2018)

propose proxy fairness, where they begin by defining a set of proxies

that are close to the sensitive attribute. Closeness can be defined

using different metrics such as correlation, cosine similarity and

earth mover’s distance. They then use the set of proxies as the

sensitive attribute to improve fairness. Zhao et al. (2021) proposes

a bias mitigation algorithm that minimizes the correlation between

the output and features that are highly correlated to the sensitive

attribute, thereby minimizing the correlation between the output

and the actual sensitive attribute. Romanov et al. (2019) propose

a similar approach for occupation classification that reduces the

correlation between the predicted value (occupation) and word

embedding of an individual’s name. Their experimental results

show that this method can be used to reduce race and gender bias.

2.2.2 Privacy-preserving
The second approach considers privacy-preserving methods to

avoid directly using sensitive attributes (Hu et al., 2021; Kilbertus

et al., 2018). For example, Hu et al. (2021) propose a distributed,

privacy-preserving fair learning framework that uses multiple local

agents, each holding different sensitive demographic data. During

the training process each agent learns a fair local dictionary and

sends it to the modeler. The modeler then learns a fair model

based on an aggregated dictionary. Kilbertus et al. (2018) use the

same idea but instead of using local agents, they use multiparty

computation that allows calculations and aggregations from each

party without revealing the input. However, this approach is hard to

achieve in practice as it needs all users to be online at the same time.

This scenario differs from ours since we assume that the sensitive

attribute is not available to anyone.

2.2.3 Distributionally robust optimization
The third approach uses adversarial learning and a

distributionally robust optimization (DRO) framework (Pezeshki

et al., 2021; Sohoni et al., 2020; Kim et al., 2019; Hashimoto

et al., 2018; Lahoti et al., 2020). This approach was originally

designed to improve robustness and generalization of machine

learning models by minimizing the worst case loss across all worst

case distributions. In machines learning fairness, marginalized

(unprivileged) groups often have the worst model performance

(highest loss) and researchers use the idea of DRO to improve

model performance on the unprivileged groups to improve overall

fairness. We highlight two examples of this general approach here.

Lahoti et al. (2020) propose adversarially reweighted learning. This

method hypothesizes that the sensitive attribute is correlated with

non-protected features and task labels. After training a machine

learning model, they use the model to identify observations with

high errors (losses) and label these observations as the unprivileged

group and then using existing bias mitigation algorithms to

improve the model performance on the unprivileged group. Kim

et al. (2019) propose multi-accuracy auditing and a post-processing

method to improve model accuracy across identifiable subgroups.

Their approach uses a small set of labeled data with sensitive

attribute information for auditing and identifies the groups with

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1520330
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Wang and Singh 10.3389/frai.2025.1520330

high errors. They then post-process the model by changing their

prediction labels to reduce errors. This approach focuses more

on model robustness and does not require any information about

the sensitive attribute. It uses the correlation between the training

data and the class label, making the assumption that observations

with high prediction errors are from disadvantaged groups, i.e. the

classifier performs poorly on observations from minority groups,

and that improving model performance from the worst performing

groups will improve overall fairness.

Our work focuses on using sensitive attribute approximation.

Our goal is to study how uncertainities in both accuracy

and misclassification distribution in the approximated sensitive

attribute negatively affects the performance of existing popular

bias mitigation algorithms with respect to fairness. We study the

sensitivity of each bias mitigation algorithm to errors in the inferred

sensitive attribute. This type of comparative analysis is important

to better understand the limitations of different bias mitigation

strategies when the sensitive attribute is not available.

2.3 Impacts of inferred sensitive attribute

There are some examples of exploring the impact of an

inferred sensitive attribute on bias mitigation (Ghosh et al.,

2021a; Awasthi et al., 2020; Wang and Singh, 2023). Ghosh et al.

investigate how uncertainty and errors in demographic inference

impact fairness in ranking algorithms. They use race and gender

as sensitive attributes and find that researchers should not use

inferred demographic data as input unless the inference results

have very high accuracy. Awasthi et al. (2020) study how imperfect

group information affects the performance of post-processing

bias mitigation algorithms. Imperfect group information occurs

when we do not have the sensitive attribute information, but we

have proxies that are highly correlated to sensitive attribute that

we can use to obtain knowledge about the sensitive attribute. The

knowledge about the sensitive attribute is not perfectly accurate

and thus it is referred to as imperfect group information. Our

work differs from these since we focus on a broader set of bias

mitigation algorithms that can be used for machine learning

classification tasks more generally, not just on a ranking task

or specific bias mitigation algorithms. We also conduct a more

detailed case study using social media data that incorporates

demographic inference algorithms specifically designed for

social media.

Wang and Singh (2023) conduct a smaller scale analysis on text

classification tasks using sensitive attribute inference models with

different levels of accuracy. They present two case studies using

textual social media data and use multiple existing gender inference

models to infer the sensitive attribute and use the inferred sensitive

attribute to apply bias mitigation algorithms to improve fairness.

They show that this approach is effective when the accuracy of

the inferred sensitive attribute is reasonable (ranging from 0.76

to 0.84). While their work considers the problem of the inferred

sensitive attribute, it does not systematically study different levels of

accuracy through simulation and does not systematically compare

the performance of a wide range of bias mitigation strategies

(pre-processing, in-process, and post-processing strategies).

3 Problem statement

This section begins with definitions and notation (Section

3.1). We then present the missing sensitive attribute problem

in Section 3.2.

3.1 Definitions and notation

Let X = {x1, x2, · · · , xn} be a set of non-sensitive features

used to train a prediction model containing n observations. Let

S = {s1, s2, · · · , sn} be the binary sensitive attribute, where si is the

sensitive attribute value for the ith observation and S /∈ X. For the ith

observation, we say si = 0 if the observation is in the unprivileged

group and si = 1 if the observation is in the privileged group. Y =

{y1, y2, · · · , yn} is the binary label that the classifier wants to predict,

where yi = + if it is a positive outcome for the ith observation, e.g.,

getting approved for a loan, and yi = − if it is an negative outcome.

Let M be a binary classifier that tries to predict outcome Y . Let

Ŷ = {ŷ1, ŷ2, · · · , ŷn} represent the predicted outcome. A standard

classification task can be summarized asM(X) = Ŷ , where we train

a classifier M on a set of features X and obtain a set of predictions

Ŷ . From an accuracy perspective, we want Ŷ and Y to be as close

as possible. From a fairness perspective, we want the classifier

to perform equally well across the privileged and unprivileged

groups in S.

3.2 Problem formation

Unfortunately, we do not always have access to S. While

there are a number of concerns this raises, we are interested

in understanding the impact on the fairness of different bias

mitigation strategies when this sensitive attribute is inferred. This

is important to determine since it will be difficult to improve the

public perception of the trustworthiness of black-box AI systems

without understanding the relationship between bias mitigation

strategies, inferred sensitive attributes, and fairness.

Figure 1 shows bias mitigation mechanisms for different parts

of the machine learning pipeline. A typical machine learning

pipeline contains a set of training features (X), a machine

learning model (M), and prediction output (Ŷ). A bias mitigation

mechanism B can be characterized by where it is applied within

the pipeline, i.e., a pre-processing mechanism, an in-processing

mechanism, or a post-processing mechanism. The goal of a pre-

processing bias mitigation mechanism is to remove bias from

training features X using information about sensitive attribute

S. The result of a pre-processing bias mitigation mechanism is

a new set of training features X′ that contain less bias, where

X′ = B(X). In-processing bias mitigation mechanisms change the

machine learning model M by using the information about the

sensitive attribute S. One approach is to add a fairness constraint

to the machine learning model. The result of an in-processing

bias mitigation mechanism is a new model M′, where M′ =

B(M), that is more fair than the original modelM. Post-processing

bias mitigation mechanisms improve fairness by changing the

prediction outcome Ŷ based on sensitive attribute S. The result
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FIGURE 1

Bias mitigation mechanisms in di�erent parts of the machine learning pipeline.

of a post-processing bias mitigation mechanism is a more fair

prediction outcome Ŷ ′, where Ŷ ′ = B(Ŷ).

More formally, given a set of training features X and ground

truth sensitive attribute S, we apply the bias mitigation method

B and train a classifier to output a set of outcomes Ŷ or

Ŷ ′ depending upon where B is applied. We then evaluate the

fairness of the classifier using sensitive attribute S. Without S,

we cannot determine the effectiveness of the bias mitigation

method nor use classic fairness measures to assess the fairness

of the classifier. We refer to this problem as the missing sensitive

attribute problem.

One strategy for measuring fairness when the sensitive attribute

S is missing is to infer the sensitive attribute values (S′) and apply

bias mitigation methods B using the inferred sensitive attribute

S′. Let Z be a set of features that are used to infer the sensitive

attribute S and MS be the sensitive attribute inference model.

Then MS(Z) = S′. The accuracy of the inferred sensitive attribute

may affect the effectiveness of different bias mitigation methods.

If the inference is very accurate (S ≈ S′), we expect different

bias mitigation methods to have similar performance to that

of using the ground truth sensitive attribute to assess fairness.

However, for an inferred sensitive attribute with a moderate (and

acceptable) accuracy, different bias mitigation methods may vary

in performance, where some methods are more robust to the

noisy sensitive attribute S′ and others are less robust. In this

work, we explore when the accuracy of S′ negatively affects the

performance of different bias mitigation methods and when it

does not.

4 Methodology for determining the
inferred sensitive attribute

Figure 2 shows the overall design for measuring how the

inferred sensitive attribute impacts the performance of various bias

mitigation algorithms. We use a set of features (Z) that is a subset

of training features X or auxiliary features to infer the sensitive

attribute depending on the prediction task. For example, in our case

study in Section 6.3, Z ⊂ X. In BISG, Z ={surname, address} where

surname and address are often not included in the training features

to predict Ŷ . Using Z, we apply the sensitive attribute inference

models MS
j for j = {1, 2, · · · ,m} to get a set of inferred sensitive

attribute predictions S′ (step A and B). These inferred values are

used to attempt to reduce bias using B. S′ and X are then inputs

into the base pipeline (step C with details in Figure 1). For each

bias mitigation algorithm and inferred sensitive attribute, we have

a prediction outcome Ŷi,j (step D). Finally, we evaluate the model

performance and fairness using the ground truth sensitive attribute

S and prediction outcome Ŷi,j (step E).

To understand how the accuracy of the inferred sensitive

attribute impacts bias mitigation algorithms, we propose two

strategies for obtaining the inferred sensitive attribute: (1)

simulate sensitive attribute values with different error levels

and misclassification distributions, and (2) use multiple existing

sensitive attribute inference models. Using simulation allows us

to systematically control the error rate. Using multiple existing

sensitive attribute inference models allows us to evaluate the

actual misclassification distribution of sensitive attribute inference

models. The remainder of this section describes the steps associated

with each of them.

4.1 Inferred sensitive attribute using
simulation

Using two benchmark datasets for fairness, COMPAS and

Credit card clients data, we obtain the inferred sensitive attribute

through simulation. We choose the simulation approach on these

data sets because (1) we want to systematically understand the

robustness of different bias mitigation strategies to different levels

of error in the inferred sensitive attribute, (2) both data sets are well

studied, and (3) all the bias mitigation algorithms presented in this

study have been shown to be effective on for improving fairness on

at least one of the data sets.

Our simulation generates sensitive attribute values, meaning

that we skip step A in Figure 2. We simulate inference results for

the sensitive attribute S′j, each having a different level of accuracy:

S′j, where j = 1, 2, · · · ,m, andm represents the number of different

sensitive attribute inference results we want to generate. We then
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FIGURE 2

Overall design measuring the impact of uncertain sensitive attribute inference on bias mitigation algorithms.

Input: X, S and B

Output: Fairness and balanced accuracy scores of MP

1: Simulate S′
j
with an underlying misclassification

distribution for j = 1,2, · · · ,m

2: for each bias mitigation method B ∈ {B1,B2, · · · ,Bi}

do

3: for j← 1, · · · ,m do

4: Use Bi with X and S′
j
to train classifier M

p
i,j

and get prediction outcome Ŷi,j

5: Evaluate performance and fairness of the

classifier M
p
i,j using the ground truth sensitive

attribute S

6: end for

7: end for

Algorithm 1. Methodology with inferred sensitive attribute results from

simulation.

use these simulated values for the sensitive attribute to assess

the quality of each bias mitigation strategy in B. For example,

suppose our simulated sensitive attribute is gender. We use the

known gender values as the ground truth and generate (through

simulation) the gender labels with different levels of accuracy.

Then we test different bias mitigation strategies using these

different sets of gender values. Algorithm 1 describes our approach

more formally.

4.2 Inferred sensitive attribute from neural
models

Although the simulation approach can simulate different levels

of accuracy and a complete misclassification distribution of the

inferred sensitive attribute, they are still simulated results. To

compliment our simulation results, we explore uncertainties related

to the misclassification distributions based on using real models.

The Wikidata (see description in next section) allows us to test

inferred sensitive attributes using multiple existing demographic

inference models on social media data. The sensitive attribute is

gender and we use three different state of the art gender inference

models (MS), each having a different misclassification distribution,

to generate S′. Algorithm 2 presents this approach.

Input: X, S, B, Z and Ms
j
for j = 1,2,3 representing

three actual sensitive attribute inference models

Output: fairness and balanced accuracy scores of MP

1: S′
j
= Ms

j
(Z) for j = 1,2,3

2: for each bias mitigation method B ∈ {B1,B2, · · · ,Bi}

do

3: for j← 1, · · · ,m do

4: Use Bi with X and S′
j
to train classifier M

p
i,j

and get prediction outcome Ŷi,j

5: Evaluate performance and fairness of the

classifier M
p
i,j using the ground truth sensitive

attribute S

6: end for

7: end for

Algorithm 2. Methodology with inferred sensitive attribute results from

actual models.

5 Experiment setup

In this section, we will discuss the three data sets we use (Section

5.1), the bias mitigation methods we test (Section 5.2), and the

evaluation metrics for measuring fairness and accuracy for our

classification tasks (Section 5.3).

5.1 Data sets

5.1.1 COMPAS recidivism data
The COMPAS recidivism risk data set (Jeff et al., 2016) contains

7,214 observations with 14 features. The goal is to predict whether

an individual recidivated. If an individual did not recidivate, we

label that as a positive outcome. If an individual recidivated, we

label that as a negative outcome. Race is the sensitive attribute, with

black as the unprivileged group and non-black as the privileged

group.

5.1.2 Credit card clients data
The credit card clients data set (Dua and Graff, 2017) contains

30,000 observations with 22 features. We want to predict if a client

will default on the credit card payment, with not defaulting as a

positive outcome and defaulting as a negative outcome. Gender is
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the sensitive attribute, with female as the unprivileged group and

male as the privileged group.

5.1.3 Wikidata
We use an existing Wiki data set containing a set of politicians

who have shared their demographic information and their Twitter

handles (Liu et al., 2021). This data set contains 736 observations.

We use the Twitter API to collect the posts shared by the politicians.

The prediction task is to use the Twitter post content to determine

the political party of the politician. The party is either Democratic

or Republican with Republican as the minority group.3 Gender

is the sensitive attribute with male as the privileged group and

female as the unprivileged group. For the classic machine learning

models, we construct N-gram features from tweets as the training

feature for this task. In the deep learning model, we convert the text

into embeddings and use the embedding vectors in a LSTM neural

network with an attention mechanism. We will present details

about the model architecture in Section 6.3.

5.2 Bias mitigation methods

We explore the negative effect of uncertainty in S′ (the inferred

sensitive attribute) when using different bias mitigation methods

(B) for predicting Y . We consider six bias mitigation methods

introduced in Section 2.1: three pre-processing mechanisms:

Resampling (RS) (Wang and Singh, 2021), Reweighting (RW)

(Kamiran and Calders, 2012) and Disparate Impact Remover

(DIR) (Feldman et al., 2015), two in-processing mechanisms:

Adversarial Debiasing (AD) (Zhang et al., 2018) and Exponentiated

Gradient Reduction (EGR) (Agarwal et al., 2018), and one for post-

processing mechanism: Threshold Optimizer (TO) (Hardt et al.,

2016).

5.3 Evaluation metric

5.3.1 Fairness
In recent year, a number of approaches have been proposed

for measuring fairness of machine learning models, including

disparate impact (p%-rule) (Feldman et al., 2015; Zafar et al., 2017),

demographic parity (Calders and Verwer, 2010; Dwork et al., 2012),

equalized odds (Hardt et al., 2016), and equal opportunity (Hardt

et al., 2016). Among all fairness metrics, disparate impact is the

closest to the legal definition of fairness and is often used in anti-

discrimination law to quantify fairness and discrimination (Barocas

and Selbst, 2016). For these reasons, we use disparate impact

(p%-rule). It is defined as:

min (
P(Ŷ = +|S = 1)

P(Ŷ = +|S = 0)
,
P(Ŷ = +|S = 0)

P(Ŷ = +|S = 1)
)

Generally, if the disparate impact value is greater than 80%, or 0.8,

the classifier is considered to be non-discriminatory (Biddle, 2017).

3 In cases where there is not a disadvantaged group, we select the class

label that occurs less frequently in the data set to be the minority group.

5.3.2 Outcome prediction model performance
We use balanced accuracy score (Brodersen et al., 2010) to

evaluate performance of the inference models Ms and machine

learning modelsMp. It is defined as:

balanced-accuracy =
1

2
(

TP

TP + FN
+

TN

TN + FP
)

where TP represents true positive, TN represents true negative,

FP represents false positive, and FN represents false negative.

Compared to the accuracy and F1 score, the balanced accuracy

score avoids inflated performance estimates on imbalanced data

sets, especially imbalanced data sets that are more concerned with

the negative labels.

6 Results

This section begins by presenting the machine learning models

we use for predicting Y for each of the three data sets (Section

6.1). We then present the results using the simulated sensitive

attributes for the COMPAS and credit card client data (Section

6.2). This is followed by the social media case study using Wikidata

and an inferred sensitive attribute from different machine learning

models (Section 6.3). Finally, we present a sensitivity analysis of the

different bias mitigation methods (Section 6.4).

6.1 Selecting a machine learning model

Our main task is to predict Y using the attributes in X and

maintain high accuracy and high fairness. In this section, we

compare a variety of machine learning models from classic ones

to a deep neural network. More specifically, we use the following

four learning models for all dataset to determine Mp: random

forest, logistic regression, support vector machine (SVM) with a

Gaussian kernel, and a multilayer perceptron neural network for

the COMPAS and the credit card client data. There are many

possible parameters in a neural network model. We tested four

different settings on neural models with 2 hidden layers and 3

hidden layers and each layer has 50 and 100 hidden nodes to

perform a sensitivity analysis. All the settings had similar results.

Our results presented show the best performing models. In the

COMPAS data, the best neural model has 2 hidden layers and 50

hidden nodes in each layer and in the credit card client data, the

best model has 2 hidden layers and 100 hidden nodes in each layer.

For the text-based Wikidata, we use a deep neural network

with an attention mechanism instead of the neural model used for

the other two data sets. Specifically, we use the model architecture

presented by Wang and Singh (2023). This architecture first

converts tweets and user biographies into embeddings using the

pretrained uncased BERT-Base model (Reimers and Gurevych,

2019). It then inputs embedding vectors into a Long Short

Term Memory (LSTM) layer. Finally, it adds account information

features together into an attention layer that combines all the

information and selects the part that is more informative into a

fully connected Multi-Layer Perceptron neural network with one

hidden layer and 50 hidden nodes. In all the neural models, there

are common hyperparameters such as learning rate and number
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TABLE 1 Balanced accuracy score of the standard models using all the

training features X.

Machine
learning model

COMPAS Credit card
client

Wikidata

Random forest 0.693 0.758 0.84

Logistic regression 0.672 0.69 0.822

SVM 0.679 0.703 0.787

Neural network 0.682 0.751 0.833

of epochs. To determine the hyperparameters, we use the loss on

the validation set to adjust the learning rate and use early stopping

to determine the number of epochs. The learning rate is 0.001 for

the COMPAS data set, 0.0025 for the credit card client data set

and 0.0025 for the Wikidata data set. The number of epochs with

early stopping are as follows: 68 for COMPAS data, 52 for card

client data, and 93 for Wikidata. All other hyperparameters such

as parameters in the PyTorch optimizers and the cross entropy loss

function are set to be the default values in the PyTorch package.

Our evaluation uses an 80/20 split and uses all the features

in X, not including S. We use 80/20 train test split because we

want to be consistent across our simulation study. We note that we

did conduct 5-fold cross validation and the difference in results is

negligible to those we present here. We call this model the standard

model since we use all features in X to train each classifier without

incorporating any bias mitigation algorithms.

Table 1 shows the balanced accuracy score on the test data set

for each of the learning models. On all three data sets, the random

forest classifier has the best performance, ranging from two to six

percent better than the other classifiers. For the experiments that

follow, we use a random forest classifier for the basic classification

task since it had the best performance on all the data sets. For

comparison, we present our results on other prediction models in

Appendices A, B.

6.2 Simulation study

Recall that the goal of this simulation study is to understand

how the accuracy and misclassification distributions of the inferred

sensitive attribute S′ impacts the performance of various bias

mitigation algorithms applied at different points in the machine

learning life cycle. We consider 11 different error levels for the

sensitive attribute: S′1, S
′
2, · · · , S

′
11, where each inferred result has a

different accuracy. S′1 has the lowest accuracy (0%) and S′11 has the

highest accuracy (100%).

In order to simulate each sensitive attribute value, we use the

following procedure. Beginning with the ground truth sensitive

attribute (accuracy = 100%), we select some observations in the

data set and change the value of the sensitive attribute. This means

that the simulated results will deteriorate as more of these values

are flipped. For example to simulate an inference result with 0.8

accuracy, we randomly select 20% of the observations from the

sample and change the sensitive attribute value (e.g., male to

female or female to male). In a sense, our simulator acts as a

hypothetical machine learning model for Ms that uses features Z

TABLE 2 Misclassification distributions of simulated sensitive attribute

results.

Inferred
sensitive
attribute
accuracy

Random
misclassification

Higher
accuracy on
unprivileged

group

Higher
accuracy

on
privileged
group

Privileged

group

accuracy

0.8 0.72 0.88

Unprivileged

group

accuracy

0.8 0.88 0.72

Overall

balanced

accuracy

0.8 0.8 0.8

to simulate different misclassification distributions for S. Different

misclassification distributions are able to represent bias in inferred

sensitive attribute. Recall that in Section 2.2.1, we mentioned that

BISG (Bayesian Improved Surname Geocoding) is a popular tool

used by lenders to infer each applicant’s race using the last name

and location (Adjaye-Gbewonyo et al., 2014; Bureau, 2014) even

though this method is biased against inter-racial married females.

Using different misclassification distributions allows us to reflect

such bias in sensitive attribute inference.

To capture some variability that can occur in the real sensitive

attribute inference models, we tested inferred results with three

differentmisclassification distributions: a randommisclassification,

a stratified misclassification in which the privileged group has a

higher accuracy, and a stratified misclassification in which the

unprivileged group has a higher accuracy. Table 2 shows examples

of these misclassification distributions. All of them have the same

overall balanced accuracy score. In the random misclassification

experiments (the leftmost column), both the privileged and

unprivileged groups have the same accuracy. In the middle column,

the unprivileged group has a higher inference accuracy and in

the rightmost column, the privileged group has a higher inference

accuracy.4

We split each S′ (having different error rates) into a training

set and a test set. We use the inferred sensitive attribute (S′) in the

training set, apply the bias mitigation method (B) we are testing,

and train a classifier to predict the label (Y). As mentioned in

the previous subsection, we use the Random Forest classifier (see

Table 1 for classifier comparison) to assess the sensitivity of the bias

mitigation methods for different misclassification distributions and

accuracy levels of S′.

For the validation, if the bias mitigation method requires a

sensitive attribute from the test set (this is the case for the threshold

optimizer and disparate impact remover), we use the inferred

sensitive attribute in the test set to perform the bias mitigation. We

then evaluate the performance and fairness of the classifier using

the ground truth sensitive attribute (S) and ground truth labels (Y).

4 We acknowledge that there are other distributions that could be tested.

We confine this study to three that clearly capture di�erent dynamics for the

sensitive attribute groups.
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FIGURE 3

Balanced accuracy and fairness scores of the outcome prediction models using COMPAS data.

In this paper, We use Python 3.8 on a Mac with M2 chip

and 16 GB memory. Each experiment including inferring the

sensitive attribute and apply the bias mitigation algorithms takes

less than 2 min. Pre-processing and post-processing algorithms

are the most efficient, with each experiment taking less than

30 seconds. In-processing algorithms are the least efficient, with

Adversal Debiasing (AD) taking approximately 2 min.

6.2.1 COMPAS experiment
Figure 3 shows the fairness and balanced accuracy of the

machine learning models (Mp) across different accuracies of the

inferred sensitive attribute for different bias mitigation strategies.

Each subfigure corresponds to a specific bias mitigation strategy.

The x-axis shows the different levels of balanced accuracy for

inferring the sensitive attribute (Ms
1, · · · ,M

s
11). The left y-axis

shows the fairness score (p%-rule) for the outcome prediction

model Mp and the right y-axis shows the balanced accuracy score

for the outcome prediction model Mp. Each vertical dashed line

highlights the balanced accuracy and the fairness for Ms at a

specific accuracy level. The figure shows the balanced accuracy

using Mp to predict Y (blue lines), and fairness scores (p%-rule)

for different sensitive attribute modelsMs (yellow lines). The three

lines represent different misclassification distributions of Ms with

the solid lines representing random misclassification, dashed lines

for higher unprivileged group inference accuracy, and dotted lines

for higher privileged group inference accuracy. For visual clarity,

we choose not to show the error bars. However, we note that across

all figures, the standard errors are within 0.025.

In the COMPASS data set, across the three misclassification

distributions (the orange lines), the overall trends are consistent

and the results are very similar to each other. The model

performance (balanced accuracy) across all bias mitigation

methods remains fairly constant. This is not surprising since all

mitigation methods aim to achieve high accuracy while improving

fairness. We do see trade-offs between fairness and accuracy, but

the trade-offs are very small. For all the bias mitigation methods,

except the threshold optimizer and the disparate impact remover,

the fairness score increases substantially as the sensitive attribute

inference model becomes more accurate, but the prediction model

accuracy remains fairly constant. While not surprising, this result is

an indication that the bias mitigation methods are sensitive to the

balanced accuracy of the inferred sensitive attribute, and that some

bias mitigation methods are more sensitive than others.

For the threshold optimizer and the disparate impact remover,

there is a “V” shaped fairness score. As we mentioned earlier, both

the threshold optimizer and the disparate impact remover require

sensitive attribute information in the test set. Recall, that for this

experiment, we used the inferred sensitive attribute values that are

part of the test set. Because our sensitive attribute is binary, a perfect

sensitive attribute inference model is equivalent to an inference

model with 0% accuracy since all the prediction results for S′ are set

to the opposite class. For example, in a sensitive attribute inference

model that has 0% accuracy, all the female examples are predicted

as male and all the male examples are predicted as female. Because

the threshold optimizer sets a new probability threshold to ensure

equal outcomes, the fairness will be a mirror image of the flipped

sensitive attribute accuracy. This results in a V shape. Clearly,

we want to focus on sensitive attributes that are more than 50%

accurate. But we show the full range of sensitive attribute accuracies

for completeness.

In the bias mitigation methods that do not use the sensitive

attribute from the test set, the fairness score decreases significantly

when the accuracy of sensitive attribute inference model is low
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FIGURE 4

Balanced accuracy and fairness scores of the outcome prediction models using credit card clients data.

(<0.5). When the accuracy of the inferred sensitive attribute is

low, the bias mitigation method benefits the unprivileged group.

For example, with a very bad inference model, the reweighting

method tends to put higher weights on over-represented groups

and lower weights on under-represented groups. While the fairness

scores are highest for the threshold optimizer when the sensitive

attribute accuracy is high (greater than 90%), all the methods

perform similarly when the sensitive attribute accuracy is moderate

(70%–80%).

6.2.2 Credit card clients experiment
Figure 4 shows the fairness and balanced accuracy of the

predictionmodel for the credit card client data set. The information

and the axes of the subfigures are the same as Figure 3. Similar

to the COMPAS data set, all three inference misclassification

distributions have very similar fairness and accuracy curves. In

other words, the distribution of the misclassified values in S′ does

not impact the overall fairness or balanced accuracy of Ŷ . Once

again, threshold optimizer and disparate impact remover have “V”

shaped fairness scores and all the other methods have a positive

relationship between the fairness scores and the accuracy of S′.

Across all the bias mitigation methods, the balanced accuracy

scores of the outcome prediction models remain fairly constant.

Compared to the COMPAS data set, the fairness scores in the

credit card clients data set are better because the credit card

clients data set has less bias in the original data set. Once again,

the fairness scores are highest for the threshold optimizer when

the sensitive attribute accuracy is high (greater than 90%), and

similar across all methods when the sensitive attribute accuracy is

moderate (70%–80%).

6.3 Case study with Wikidata

Recall that in Section 4.2, we mentioned that we use the case

study and actual existing sensitive attribute inference models to

explore uncertainties in the misclassification distribution of real

models. In this case study, we use three different state of the art

gender inference models (Ms) to generate S′ and see the impact of

each of these inference models on the results of bias mitigation.

All are neural models that use different language models and

attention mechanisms to infer gender. One model uses tweets

where the model maps each tweet into an embedding space using

BERT and then each user is represented as the summation of

all that user’s mapped embeddings (Liu et al., 2021). The next

model takes advantage of a hierarchical architecture that uses a

GRU (Gated Recurrent Unit) with an attention layer to separately

train the emoji component [using word embeddings and a CNN

(Convolutional Neural Network)] and the text component (using

BERT) of a Twitter post (Liu and Singh, 2021). The final model

maps both tweets and images into an embedding space using CLIP

(Contrastive Language-Image Pre-training), then uses GRU layers

with an attention mechanism to process the embeddings and make

predictions. This neural model has the following hyperparameters:

batch size: 32, learning rate 0.0001, word embedding dimension:

50, sentence embedding dimension 768, filter window sizes: 2, 3,

4, filter number for each size: 256, emoji threshold length: 30 and

maximum number of tweets per users: 200 (Liu and Singh, 2021).

Table 3 shows the balanced accuracy of S′ from the three

sensitive attribute inference models Ms. BERT emoji has the best

overall balanced accuracy score (0.765). Recall that in Section 2.3,

our case study in this work focuses more on misclassification

distribution. When considering the privileged group accuracy

compared to the unprivileged group, the privileged group has an
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TABLE 3 Gender inference accuracy using existing demographic

inference models.

Inferred sensitive attribute
accuracy

CLIP
image

BERT
emoji

BERT
text

Privileged group accuracy 0.832 0.855 0.878

Unprivileged group accuracy 0.679 0.675 0.567

Overall balanced accuracy 0.756 0.765 0.722

inference accuracy that is 15% to 30% higher. In other words, all of

these models have a reasonable overall accuracy, but perform better

for the privileged group.

Table 4 shows the prediction model (Mp) performance and

fairness of the Wikidata using the inferred sensitive attribute

values S′ from Ms and the ground truth (actual) sensitive attribute

S, allowing us to easily compare the impact of the inferred

sensitive attribute on the bias mitigation approach. Across the bias

mitigation approaches, the balanced accuracy for all three sensitive

attribute inference models (CLIP image, BERT emoji, BERT text)

is similar to the balanced accuracy when using the ground truth

sensitive attribute. In contrast, there are differences in the p%-

rule across bias mitigation approaches. When using S′, exponential

gradient reduction (EGR) is the best bias mitigation method (p%-

rule = 0.733). It has the highest fairness score across all the different

methods for computing S′, and is between 2% and 5% higher

than the other bias mitigation methods. We also see a significant

difference in p%-rule between S vs. S′. The best bias mitigation

approach in terms of p%-rule when using S is threshold optimizer

(p%-rule = 0.939). This means that there is a 20% difference in p%-

rule when using S vs S′. Given this finding, we compare the fairness

ofMp when bias mitigation is not used to the fairness ofMp when S′

is used with different biasmitigationmethods to determine whether

or not there is any improvement. Table 5 shows the p%-rule when S

and no bias mitigation method is employed. For the Wikidata, the

p%-rule is 0.52, 21% lower than when using S′ with EGR for bias

mitigation. This means that while using bias mitigation strategies

with S results in a better p%-rule score than using them with

S′, even with different misclassification distributions, using a bias

mitigation strategy with S′ is much better than not using any bias

mitigation strategy at all.

6.4 Assessing the robustness of the bias
mitigation methods

Given the differences in p%-rule in the Wikidata, we consider

the scenario when the accuracies of the model used to infer

the sensitive attribute are “average” (0.75 balanced accuracy)

instead of “high” (0.90 balanced accuracy) and explore the

performance of the different bias mitigation methods. We choose

0.75 balanced accuracy because in many real world machine

learning applications, the prediction accuracy is mostly between

0.7 and 0.9. For example, machine learning models predicting

various diseases such as heart disease, difference cancers, diabetes

and stroke generally have accuracies between 0.7 and 0.9 (Uddin

et al., 2019) and this accuracy is similar to doctor judgments

(approximately 0.8) (Graber, 2013).5

Figure 5 shows the difference in model fairness of Mp when

using S and S′ with a balanced accuracy of 0.75 for our three data

sets. For the COMPAS and credit card client data sets, we use the

simulated sensitive attribute inference model results with random

misclassification at 0.75 balanced accuracy. We chose random

misclassification because the earlier simulation study showed that

different misclassification distributions did not significantly affect

the prediction accuracy and fairness. For the Wikidata, we use

the CLIP image model to infer S′. The y-axis in Figure 5 shows

the difference between the fairness scores of Mp using the ground

truth sensitive attribute S and the inferred sensitive attribute S′

having a 0.75 balanced accuracy. The x-axis shows the different bias

mitigation methods. We only present the fairness difference in the

figure because the difference in balanced accuracy is very small,

within 2% across all models and data sets. Given the findings in

the previous subsection, it is no surprise that the fairness scores are

the highest when using the ground truth sensitive attribute. The

Wikidata and the COMPAS data set have the largest differences,

while the credit card clients data set has the smallest difference. This

is likely a result of the larger levels of bias in the original Wikidata

and COMPAS data sets when compared to the credit card clients

data set.

When comparing bias mitigation methods, we see that

threshold optimizer (TO) and resampling (RS) are the most

sensitive to uncertainties in S′ and disparate impact remover

(DIR) is the least sensitive. The bias mitigation method sensitivity

depends on the reliance of the method on the sensitive attribute.

In the threshold optimizer and the resampling methods, they

directly use the sensitive attribute values to improve fairness. For

example, the resampling method uses sensitive attribute values

to decide if a group is under-represented or over-represented

and then performs resampling. On the other hand, the disparate

impact remover method adjusts the earth mover’s distance between

feature distributions of the two sensitive groups. When compared

to the threshold optimizer and the resampling methods, it uses the

sensitive attribute more indirectly.

6.4.1 Comparing the standard model fairness to
fairness after using bias mitigation methods

We now compare the fairness of a model before and after using

bias mitigation. Recal that we refer to a model that does not use

any bias mitigation as a standard model. Table 5 shows the fairness

and balanced accuracy scores of the best standard model for each

data set. Among the three data sets, the Wikidata data set has the

highest bias and the credit card client data set has the least bias. This

is consistent with our earlier findings that the fairness scores in the

credit card client data are higher than the COMPAS set, especially

when the inference models have relatively poor performance. In

particular, the slopes of the fairness curves in Figure 3 are steeper

5 We note that in additional to 0.75 balanced accuracy in inferred sensitive

attribute, we conduct these experiments with a balanced accuracy at 0.7 and

0.8. We found that the di�erence in fairness score is linear to the di�erence

in the balanced accuracy in inferred sensitive attribute.
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TABLE 4 Balanced accuracy and fairness score of the outcome prediction model (using inferred sensitive attribute) on Wikidata.

Bias
mitigation
algorithm

Balanced accuracy p%-rule

CLIP image BERT emoji BERT text Actual S CLIP image BERT emoji BERT text Actual

RS 0.834 0.833 0.836 0.831 0.693 0.681 0.699 0.899

RW 0.838 0.837 0.836 0.835 0.718 0.695 0.709 0.908

DIR 0.831 0.832 0.834 0.832 0.672 0.681 0.683 0.843

AD 0.839 0.835 0.837 0.834 0.681 0.682 0.674 0.862

EGR 0.828 0.825 0.824 0.827 0.733 0.726 0.721 0.894

TO 0.837 0.839 0.834 0.831 0.713 0.704 0.708 0.939

TABLE 5 Fairness and performance in the baseline prediction model.

COMPAS Credit
card client

Wikidata

Balanced accuracy score 0.693 0.758 0.84

p%-rule 0.668 0.861 0.52

than the slopes in Figure 4 because in the original data set, the

credit client data has less bias since the training features (X) are less

correlated to the sensitive attribute (S). Consequently, in less biased

data sets, bias mitigation algorithms do not need to modify the

input data (pre-processing algorithms) or the model (in-processing

algorithms) or the output (post-processing algorithms) as much

to improve fairness. Thus, bias mitigation algorithms will be less

sensitive to uncertain sensitive attributes.

Figure 6 shows the difference between the fairness of the

baseline model and the model after using each bias mitigation

method with an inferred sensitive attribute having a balanced

accuracy of 0.75. Again, we use the CLIP model to infer S′ in

the Wikidata. Similar to Figure 5, we only present the fairness

difference because accuracy scores change very little (within 2%)

across all models and data sets. We see that all six bias mitigation

methods have higher fairness scores than the standardmodel across

all the data sets. The fairness difference in the Wikidata data set is

the largest and again, the smallest is in credit clients data set. There

is no one bias mitigation method that consistently has the highest

difference.

An important takeaway from these last two experiments is that

it is possible to improve the fairness of AI systems even when

the ground truth sensitive attribute is not available when using an

inferred sensitive attribute with reasonable accuracy (75%) with any

of these different bias mitigation strategies. This is also the case

when there is a bias in the accuracy of the sensitive attribute, i.e.,

the accuracy is not random.

7 Conclusion and future work

Given the increased reliance on black-box AI systems, it is

imperative that we develop methods to ensure their fairness. In

this study, we consider the scenario of needing to determine

fairness when a ground truth sensitive attribute is not available

to a researcher. We investigate the viability of using different

bias mitigation strategies with an inferred sensitive ground truth

attribute when this scenario occurs. We consider different bias

mitigation strategies that are applied at different points in the

machine learning life cycle and evaluate their effectiveness on

three data sets. Our results show that different bias mitigation

algorithms have different levels of sensitivity with respect to

the accuracy of the inferred sensitive attribute. Across the six

bias mitigation algorithms we tested, the threshold optimizer

method and the resampling method were the most sensitive and

the disparate impact remover method was the least sensitive.

Ultimately, the sensitivity depended on the reliance of the bias

mitigation algorithm on the sensitive attribute. The more reliant

the strategy is on the sensitive attribute, the more important it is to

have a high accuracy for the inferred sensitive attribute.

We also find that if we apply the bias mitigation algorithms

using an inferred sensitive attribute with reasonable accuracy, the

fairness scores are significantly higher than the best standardmodel

and the balanced accuracy is similar to that of the standard model.

In other words, bias mitigation across all stages of the life cycle

always improves fairness if the accuracy of the inferred sensitive

attribute is reasonable, even when the error within the inferred

sensitive attribute is biased. This finding is critical for two reasons.

First, it is an indication that bias mitigation at any stage in the life

cycle can have a positive impact, even when the sensitive attribute

is not available. Second, sometimes the inferred sensitive attribute

may have its own bias, and our results show that some bias in the

inferred sensitive attribute still leads to improved fairness results.

Given these findings, we suggest that AI systems, in general, should

develop procedures that incorporate bias mitigation prior to using

the system even when the sensitive attribute needs to be inferred

and the accuracy of the inference is moderate.

7.1 Possible implications

The missing sensitive attribute problem is very common in

many real world data sets and applications. This work demonstrates

that if a reliable method to infer the sensitive attribute is used,

researchers and practitioners can improve fairness on data sets

and applications. In other words, as a community, we can begin

building models that infer different sensitive attributes and use

these models to improve equity and fairness in real world systems.

The research community has been developing different models

for inferring a range of sensitive attributes (gender, age, location,
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FIGURE 5

Prediction model fairness di�erence using the ground truth sensitive attribute S and the inferred sensitive attribute S
′ with 0.75 balanced accuracy.

FIGURE 6

Prediction model fairness di�erence between baseline model and bias mitigation methods using inferred sensitive attribute with 0.75 balanced

accuracy.

political affilation, etc.) (Liu and Singh, 2023, 2021, 2024; Culotta

et al., 2015). It is time to begin to use these models and methods

for inferring demographics to improve fairness more broadly

in AI systems that do not have sensitive attribute information,

particularly black-box AI systems.

From a practical standpoint, when working with binary

sensitive attributes, we recommend researchers only use an inferred

sensitive attribute to improve model fairness if they have access

to a binary sensitive inference model with an accuracy of at least

75%. Researchers can choose the biasmitigation algorithm based on

the sensitive attribute inference accuracy. If the sensitive attribute

inference accuracy is relatively low, around 75%, researchers can

use bias mitigation strategies that are less dependent on that

accuracy such as Disparate Impact Remover (DIR). If the accuracy

is relatively high like above 90%, researchers can use any of the

six bias mitigation strategies we tested, including ones that are

more sensitive to inferred sensitive attribute accuracy [adversarial

debiasing (AD) and Threshold Optimizer (TO)].

7.2 Future work

While there are many extensions for this work, we

present three.

7.2.1 Fairness of sparse, noisy data
In the three data sets we present in this work, the Twitter/X

data set built usingWikidata has the largest bias. Unlike established

fairness data sets, we often do not have ground truth sensitive

attribute information for social media data sets, making it difficult

for researchers designing algorithms in that arena to detect the bias

and mitigate the bias. Given the complexities of the Twitter/X data

compared to the other two data sets and the higher levels of bias

when the sensitive attribute is inferred, future work should consider

fairness for non-binary sensitive attributes and real world data sets

that contain noisy, missing, and sparse text features.

7.2.2 Multivariate sensitive attributes
Multivariate sensitive attributes are more complex and often

require different frameworks. There are two types of multivariate

sensitive attributes: single attribute and intersectional attributes.

When there is only a single attribute, fairness metrics are similar

to the binary sensitive attribute case. Bias mitigation algorithms

for multivariate sensitive attributes are very different (Kang et al.,

2022; Ma et al., 2021; Chen et al., 2024). To extend our work to

multivariate sensitive attributes, future work needs to consider bias

mitigation methods for multivariate sensitive attributes at different

stages: pre-processing (Kamiran and Calders, 2012; Feldman et al.,

2015; Chakraborty et al., 2021), in-processing (Tarzanagh et al.,
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2023; Shui et al., 2022; Chen et al., 2022; Peng et al., 2022), and

post-processing (Hardt et al., 2016; Pleiss et al., 2017). We would

expect that predicting a multivariate sensitive attribute would have

worse performance than a binary one. If we want to use the same

correction approach with multivariate sensitive attributes, we need

to choose sensitive attributes with very few categories or apply

binning to get reliable inferred sensitive attribute information. For

example, inferring the exact age using social media data is very

difficult. Researchers often bin the age into three or four bins and

build models to infer age bins (Liu and Singh, 2021; Chen et al.,

2015; Wang et al., 2019). In location inference there are different

granularity in locations from the exact address to the state and

country. Existing location inference models mostly focus on city

and state level (Simanjuntak et al., 2022; Beigi and Liu, 2020; Cho

et al., 2014). Future directions would consider different spatial

resolution.

Another type of multi-variate fairness is intersectional fairness

where groups are defined by multiple sensitive attributes, e.g., race

and gender. Classifiers can be fair when evaluated on independent

groups e.g., race and gender independently, but not at their

intersections (Buolamwini and Gebru, 2018). The fairness metrics

for intersectional fairness are different because the number of

groups can be very large. Researchers propose multiple fairness

metrics for intersectional fairness that are similar to single group

fairness (Kearns et al., 2018; Gopalan et al., 2022; Foulds et al., 2020;

Ghosh et al., 2021b). For example, Foulds et al. (2020) propose

differential fairness using the idea from differential privacy and

p%-rule. It is defined as

e−ǫ ≤
(P(Ŷ = y|S = si)

P(Ŷ = y|S = sj)
≤ e−ǫ ∀si, sj ∈ S× S

The mitigation algorithms are similar to the single attribute

mitigation algorithms described above. However, our approach for

assessing themmay need to bemodified since the number of groups

can grow large as the number of intersections grows. Therefore,

future work is needed to better understand how to assess bias

mitigation methods with larger numbers of groups.

7.2.3 Misclassification distribution on other
sensitive attribute inference tasks

In sensitive attribute inference, there are two sources of

errors: prediction accuracy and misclassification distribution. This

paper mostly focuses on errors from prediction accuracy by

studying how sensitive attribute inference models with different

levels of accuracy affect the performance of bias mitigation

algorithms. We try to understand errors from misclassification

distribution by generating three different misclassification errors.

However, in real applications, especially with multivariate sensitive

attribute, misclassification distributions could be very different.

leading to different results. Future work is needed to model

the misclassification distribution based on real sensitive attribute

inference models in different domains that have less common

sensitive attribute distributions.

In general, this work is a first step toward understanding the

relationship between accuracy of an inferred sensitive attribute

and performance of different bias mitigation approaches. Our

results show how uncertainties in the inferred sensitive attribute

negatively affect bias mitigation algorithms on various data sets

and what types of data bias mitigation algorithms are more

sensitive to uncertainties (lower accuracies) in the inferred sensitive

attribute. Our results also suggest that using an inferred sensitive

attribute is a reasonable approach for reducing the bias of a

machine learning algorithm when a ground truth one is not

available, opening the door for improving fairness of black box

AI systems.
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