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As a major worldwide health concern, influenza still requires precise modeling 
of flu dynamics and efficient treatment approaches. Deep learning architectures 
are increasingly being applied to address the complexities of influenza dynamics 
and treatment optimization, which remain critical global health challenges. This 
review explores the utilization of deep learning methods, such as Long Short-Term 
Memory (LSTM) networks, Convolutional Neural Networks (CNNs), Generative 
Adversarial Networks (GANs), transformer architectures, and large language models 
(LLMs), in modeling influenza virus behavior and enhancing therapeutic strategies. 
The dynamic nature of influenza viruses, characterized by rapid mutation rates 
and the emergence of new strains, complicates the development of effective 
treatments and vaccines. In other words, the discovery of effective treatments and 
vaccines is severely hampered by the dynamic character of flu viruses, their fast 
rates of mutation, and the appearance of novel strains. Traditional epidemiological 
models often fall short due to their reliance on manual data interpretation and 
limited capacity to analyze large datasets. In contrast, deep learning offers a more 
automated and objective approach, capable of uncovering intricate patterns within 
extensive flu-related data, including genetic sequences and patient records. The 
application of deep learning to comprehend flu dynamics and improve treatment 
strategies is examined in this review paper. Moreover, this paper discussed relevant 
research findings, and future directions in leveraging deep learning for improved 
understanding and management of influenza outbreaks, ultimately aiming for 
more personalized treatment regimens and enhanced public health responses.
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Introduction

Influenza remains a worldwide health problem, causing seasonal epidemics and occasional 
pandemics. Influenza viruses result in significant morbidity and mortality (Harrington et al., 
2021). Every year, there are about a billion cases of seasonal influenza, with 3–5 million of 
those cases resulting in serious disease and causes 290,000–650,000 respiratory deaths. In 
underdeveloped nations, lower respiratory tract infections caused by influenza account for 
99% of mortality in children under the age of five (WHO, 2023).

Influenza viruses exist in four different varieties, A, B, C, and D. Seasonal illness outbreaks 
are brought on by the spread of the influenza A and B viruses (CDC, 2023). Influenza viruses 
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are further divided into subtypes based on the patterns of the virus’s 
surface proteins. The influenza viruses of subtypes A (H1N1) and A 
(H3N2) are currently circulating in humans. Since A (H1N1) caused 
the pandemic, it is often written as A (H1N1) pdm09. The patterns of 
the virus’s effect, dissemination, and transmission within a population 
are referred to as influenza virus dynamics (Wille and Holmes, 2020). 
Comprehending these processes is essential to formulating efficacious 
tactics to regulate and alleviate the consequences of influenza 
epidemics. Influenza virus continuously evolves to escape human 
adaptive immunity and generates seasonal epidemics (Lou and 
Liang, 2024).

On the other hand, influenza viruses frequently mutate, resulting 
in antigenic shift (significant alterations brought about by 
reassortment) or antigenic drift (minor variations in surface proteins). 
These changes may have an impact on vaccination efficacy and may 
also be  a factor in recurrent pandemics (Nabakooza and 
Galiwango, 2022).

Conventional approaches for influenza dynamics and treatment 
optimization have a limitation in that they frequently rely on 
subjective and time-consuming manual interpretation of medical 
imaging data. Delays in diagnosis and treatment may result from this, 
and there may be  discrepancies in evaluations made by various 
medical specialists (Naserpor and Niakan Kalhori, 2019).

Furthermore, a lot of patient data may be difficult for traditional 
approaches to efficiently evaluate to find intricate correlations or 
patterns that could guide therapy choices. This restriction may make 
it more difficult to tailor care according to the unique needs of each 
patient and the course of their illness (Lou and Liang, 2024). 
Additionally, the quantity of information found in patient records and 
medical pictures may not be  completely utilized by conventional 
approaches, which could result in missed possibilities for better 
treatment optimization (Sansone et al., 2022).

Deep learning, however, presents novel opportunities for 
examining sophisticated flu-related data and advancing our knowledge 
of the infection (Su et  al., 2019). Moreover, deep learning can 
overcome these shortcomings of traditional methods by providing a 
more automated and objective means of assessing patient records and 
medical imaging data (Ahmed et  al., 2023). Comprehending the 
dynamics of influenza is essential for efficient prevention and 
treatment (Amirahmadi et al., 2023; Liu et al., 2024). Compared to 
conventional epidemiological models, deep learning provides an 
alternative method that enables the capture of complex patterns and 
temporal correlations (Serghiou and Rough, 2023).

Modeling the dynamics of influenza epidemics and optimizing 
influenza virus treatment approaches are two applications of deep 
learning (Du et al., 2020). Deep learning models can offer insights into 
the spread of the virus and forecast its future trajectory by evaluating 
massive datasets that include data on flu transmission rates, 
environmental factors, and patient characteristics (Wanduku et al., 
2020; Aiken and Nguyen, 2021).

Through the simulation of various situations and evaluation of 
their possible results, these models can assist in the identification of 
the best treatment approaches. Additionally, they can help identify 
those who are most likely to experience serious flu-related 
complications and, based on these assessments, suggest individualized 
treatment regimens (Borkenhagen et al., 2021).

Deep learning can also be used to examine the potential effects of 
various interventions on the virus’s ability to propagate, such as 

vaccination drives and antiviral medications. This makes it possible to 
make better-informed decisions on the implementation of public 
health measures during influenza outbreaks (Nic-May and Avila-
Vales, 2020).

The use of deep learning in predicting the efficacy of influenza 
virus treatments has grown. Deep learning algorithms are capable of 
offering important insights into the possible effectiveness of various 
treatment modalities for influenza virus infections by sifting through 
massive datasets and finding patterns within them (Aiken and 
Nguyen, 2021). This strategy could significantly advance our 
knowledge of the possible effects of specific treatments on patient 
outcomes, which could ultimately result in more individualized and 
efficacious therapeutic interventions for influenza virus-affected 
patients (Adam and Rampášek, 2020). Hence, this review will 
summarize the application of various deep learning architectures for 
the prediction of influenza dynamics and treatment optimization.

Flu dynamics modeling

Traditional epidemiological models used 
for flu dynamics

Traditional epidemiological models used for flu dynamics 
include the SIR (a susceptible-infectious-recovered) model, which 
splits the population into three compartments-susceptible 
individuals, infectious individuals, and recovered or immune 
individuals one of the classic epidemiological models used for flu 
dynamics (Osthus et al., 2017). To comprehend the disease’s spread, 
this model monitors changes in the population within each 
compartment over time.

Furthermore, extending the susceptible-exposed-infected-
removed (SEIR) model is an expansion of the SIR model that takes 
into account the virus’s incubation time by including an “exposed” 
compartment for infected but non-contagious individuals 
(Bjørnstad et al., 2020). Additionally, compartmental models can 
include demographic variables like age and risk groups and divide 
the population into numerous compartments based on varying 
stages of infection (Levy et al., 2017).

Transmission dynamics models incorporate characteristics such 
as pathogen shedding rates and individual contact rates to help 
explain the spread of influenza within a population. Finally, to 
explain how the flu spreads across different regions, spatial 
epidemiological models take into account geographic characteristics 
in addition to classic epidemiological variables (Goeyvaerts 
et al., 2015).

Moreover, geographical considerations are taken into account in 
addition to standard epidemiological variables in spatial epidemiological 
models, which help explain how the flu spreads across different locations 
(Ganesan and Subramani, 2021; He et al., 2015).

Conventional epidemiological models facilitate the 
understanding of flu dynamics by simulating different scenarios for 
researchers and public health officials. These models also help 
predict future outbreaks, aid in the effective planning of public 
health responses, and assess approaches to intervention such as 
vaccination campaigns or social distancing measures. However, the 
intricacies of the real world are difficult to capture in these 
traditional models (Park et al., 2023).

https://doi.org/10.3389/frai.2025.1521886
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Adugna et al. 10.3389/frai.2025.1521886

Frontiers in Artificial Intelligence 03 frontiersin.org

For flu dynamics, deep learning approaches offer an alternative 
to conventional epidemiological models. Artificial neural networks 
are used by deep learning techniques to handle large volumes of 
unstructured data, including genetic sequences or medical imaging 
(Zan et  al., 2022). In contrast to the compartmental models’ 
dependence on preset compartments and parameters, these 
approaches offer a more flexible and data-driven method that has 
demonstrated promise in discovering patterns and forecasting 
disease outcomes (Shah and Palomar, 2024).

In other words, for flu modeling, deep learning architectures 
using recurrent neural networks (RNNs) and convolutional neural 
networks (CNNs) offer scalability and flexibility. Deep learning 
architectures, including recurrent neural networks (RNNs) and 
convolutional neural networks (CNNs), provide flexibility and 
scalability for flu modeling (Sherstinsky, 2020) (Table 1). The table 
below encapsulates the essential elements of the review paper, 
focusing on the capabilities of various deep-learning architectures 
in understanding influenza dynamics and optimizing treatment 
strategies while contrasting them with traditional methods.

Deep learning architectures and their 
applications for flu dynamics

Data governance: sources, collection, 
preprocessing, and quality control

Accurate and appropriate utilization of multi-source, 
heterogeneous data is crucial for training and validating deep 
learning models in influenza research. Rigorous scrutiny of data 
sources, collection timeframes, preprocessing techniques, and 
quality control measures is essential to ensure the validity of 
findings (Yang and Li, 2023). These considerations include diverse 
data sources such as influenza-like illness (ILI) cases, virological 
surveillance, climate and demographic information, search engine 
data, and social media data. Integrating public health surveillance 
data, electronic health records (EHR), internet search trends, and 
social media activity can also be  highly beneficial. Specifying a 
precise timeframe for data collection is vital; for example, one study 
gathered data from week 26 of 2012 to week 25 of 2019. Robust data 
preprocessing is necessary to manage heterogeneous data, 
encompassing alignment of data with time labels, normalization of 
values, and correlation and weight analysis to select optimal 
datasets while avoiding collinearity. Establishing the reliability of 

data sources is paramount, and resolving data quality and 
consistency issues is essential for enhancing model reliability.

Model selection criteria

Model selection is a critical part of building efficient deep learning 
architectures for flu dynamics and treatment optimizations, where the 
optimal model is chosen based on specific criteria to achieve peak 
performance. In this context, models are used for forecasting influenza 
outbreaks, characterizing antigenic drift, and optimizing treatment 
options (NEPTUNE.AI, 2025).

Key selection factors include the Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC), which assess model 
fit while penalizing complexity; cross-validation, which evaluates 
model generalizability; Mean Absolute Error (MAE) and Mean 
Squared Error (MSE), which measure prediction accuracy; 
computational complexity and resource constraints, which balance 
performance with efficiency; and interpretability, which is essential for 
informed decision-making in medical applications (Shah and 
Palomar, 2024).

Advanced deep learning models, such as Long Short-Term 
Memory (LSTM) networks for time-series forecasting, Convolutional 
Neural Networks (CNNs) for image processing, Generative 
Adversarial Networks (GANs) for generating realistic data, Recurrent 
Neural Networks (RNNs), and Adaptive Boosting (AdaBoost) and 
ensemble techniques for enhanced predictive accuracy, are commonly 
employed (Durr et al., 2023).

Long-short-term memory (LSTM) for 
influenza dynamics and treatment 
optimization

An important development in flu infection rate prediction is the 
use of LSTM-based deep neural networks trained on historical 
Influenza-Like-Illness (ILI), climate, and demographic data (Tsan and 
Chen, 2022). The potential of the model to optimize flu treatment 
techniques is demonstrated by its ability to anticipate seasonal 
fluctuations in short-term flu infection rates by taking into account 
important elements including temperature, precipitation, local wind 
speed, population size, vaccination rate, and vaccination efficacy (Nic-
May and Avila-Vales, 2020). Notably, the discovery that temperature 
is the best indicator of ILI rates highlights how crucial climatic data 

TABLE 1 Traditional vs. deep-learning approaches in influenza dynamics and treatment optimization.

Criteria Traditional approaches Deep-learning approaches References

Data handling Relies on manual interpretation and 

limited data analysis capabilities.

Automates analysis of large datasets, 

revealing intricate patterns.

Sarker (2021)

Modeling flexibility Fixed compartmental models with 

predefined parameters.

Data-driven models that adapt based on 

input data characteristics.

Yu (2022)

Predictive accuracy Often struggles with complex correlations 

and temporal dynamics.

Capable of capturing complex temporal 

patterns, improving forecasting accuracy.

Lin and Huang (2020)

Personalization of treatment Limited ability to tailor treatments based 

on individual patient data.

Can analyze patient-specific data to 

optimize treatment regimens effectively.

Huang et al. (2022)
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are to comprehending the mechanics of flu transmission (Yang 
et al., 2018).

The LSTM model’s superior performance over other algorithms at 
the +1 week prediction point demonstrates how well it can capture 
intricate temporal patterns and more accurately forecast future flu 
trends (Zhao et al., 2023). This study demonstrates the application of 
deep learning architectures to maximize targeted flu prevention and 
treatment tactics and inform public health activities.

LSTM-based recurrent neural networks provide effective short-
term flu forecasting. Flu time series prediction can benefit from the 
superior sequential data handling capabilities of LSTM networks. 
LSTMs have been employed by researchers to forecast influenza 
activity based on environmental conditions and previous data 
(Amendolara et al., 2023). Recurrent neural networks of the LSTM 
type have been applied extensively to time series prediction 
applications. LSTM models can be  trained with surveillance data, 
meteorological data, and social media data from sites like Twitter to 
forecast the spread of influenza-like illnesses (Athanasiou and 
Fragkozidis, 2023).

The capacity of LSTM-based prediction models to identify 
long-term patterns and dependencies in sequential data is a benefit. 
This makes them ideal for catching intricate connections between 
many variables, like the number of flu cases, the state of the weather, 
and conversations on social media. Compared to standard 
epidemiological models, which could have trouble combining 
non-traditional data sources, LSTM models may be able to provide 
more accurate forecasts by utilizing these varied information 
sources (Li et al., 2024).

Moreover, real-time updates from social media streams and 
monitoring systems can be integrated with LSTM networks to enable 
dynamic modifications to the prediction model in response to 
changing circumstances (Zhu et  al., 2019). Multi-step influenza 
epidemic predictions can also be made using adjusted LSTM models. 
The LSTM model can be used to forecast future epidemic trends over 
a longer time horizon by training it on past influenza data, such as 
weekly or monthly case counts, and then using that training data to 
produce multi-step forecasts. This is how the procedure could appear 
(Zhang and Nawata, 2018).

Furthermore, the prior study introduced a novel multi-stage 
forecasting strategy based on LSTM that incorporates the influence of 
several external variables into state-of-the-art machine learning 
models (Livieris and Pintelas, 2022).

In LSTM models, the selection of parameters such as time step 
size and the number of hidden layer units plays a significant role in 
model performance for predicting flu dynamics and optimizing 
treatment strategies. The LSTM network is designed to learn long-
term dependencies in sequential data, making it an ideal option for 
time-series prediction, including influenza incidence prediction (Zhu 
et al., 2022). The inputs, output, and forget gates control the flow of 
information in the network, allowing the model to selectively 
remember, update, or forget information at each time step. During 
training, different hyperparameter settings, such as batch size, number 
of epochs, and the number of LSTM units, is tested to fine-tune the 
models for optimal performance (Li et al., 2024). For instance, one 
experiment attempted LSTM units of sizes 4, 8, 16, 32, and 64, and 
trained the model for 400, 450, and 500 epochs. The best 
hyperparameters are empirically tuned to achieve optimal 
performance (Tsan and Chen, 2022).

A time-series forecasting model is used in the model’s initial stage. 
In later phases, the spatial proximity of various geographic regions and 
the situational time lag between the flu incidence and meteorological 
variables are recorded to correct the inaccuracy produced by the initial 
forecasting model and enhance the model’s performance even further 
(Lee et al., 2024).

Drug development and discovery is one application. Molecular 
structures can be analyzed by deep learning techniques to find possible 
influenza virus-targeting medication candidates. This may hasten the 
search for novel antiviral drugs or enhance the efficacy of currently 
available therapies (Vamathevan et al., 2019).

Personalized medicine is another area of use. Deep learning 
models can assist in identifying patterns that may indicate which 
therapies are most successful for particular individuals or subgroups 
by examining patient data and flu symptoms (Zhang et al., 2019). 
Moreover, by examining viral mutations and forecasting potential 
viral evolution, these structures can help in the development of 
vaccines. This may aid in the creation of more potent vaccinations that 
offer a wider defense against various influenza virus strains (Thadani 
and Gurev, 2023).

LSTM models have several applications in individualized 
treatment planning. First of all, LSTMs use patient data analysis to 
forecast an individual’s response to particular medications. This allows 
physicians to more successfully customize treatment regimens based 
on patient-specific differences (Bica et al., 2021). Additionally, LSTMs 
reduce adverse effects including age, weight, and genetics while 
optimizing drug dosage based on patient variables (Wu et al., 2024). 
Moreover, LSTMs track patient reactions throughout therapy and 
make necessary modifications when deviations happen. Furthermore, 
by simulating counterfactual, time-varying, and dynamic treatment 
options, LSTMs assist physicians in making the optimal decision 
based on anticipated results (Yilmaz and Büyüktahtakın, 2023).

LSTM has the potential to be used in flu treatment optimization 
by forecasting the efficacy of various antiviral drugs based on patient 
data and clinical results. It might be able to create a predictive model 
that assists medical professionals in selecting the best antiviral therapy 
for each patient by training an LSTM model on a big dataset of patient 
records that includes symptoms, test findings, treatment regimens, 
and results (Zhu et al., 2022).

It is crucial to remember that using LSTMs or any other machine 
learning technique for medical decision-making necessitates thorough 
validation and ethical considerations. Before being included in routine 
medical practice, any application of LSTM for flu treatment 
optimization would need to go through extensive testing and 
validation through clinical studies (Aslan, 2024). Overall, even though 
LSTM has the potential to improve flu treatment strategies through 
large-scale dataset analysis and predictive modeling, its use in this 
situation necessitates rigorous thought and medical 
community confirmation.

Convolutional neural networks (CNNs) for 
influenza dynamics and treatment 
optimization

CNNs were important in ushering in the new era of artificial 
intelligence and have been at the center of the deep learning 
revolution. CNNs can analyze complex datasets by converting them 
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into pseudo pictures with little processing for any high-dimensional 
dataset. They can also identify patterns in photos with scattered pixels 
(Ersavas et al., 2024). In other words, CNNs are skilled at identifying 
spatial information in pictures. CNNs have been used in flu studies to 
evaluate chest X-rays and spot flu-related patterns, assisting with early 
identification (Montesinos López et al., 2022). CNNs have been used 
to analyze enormous amounts of data to spot patterns and trends that 
might not be immediately obvious to human observers (Mustapha 
et al., 2024). This has allowed CNNs to be applied to a variety of flu 
dynamics applications, including disease identification, monitoring, 
and prediction. CNNs are specifically used for flu dynamics in a few 
ways, such as early diagnosis and treatment assistance by analyzing 
medical pictures, such as CT or X-rays, to detect diseases 
(Sarvamangala and Kulkarni, 2022). CNNs may also track the spread 
and consequences of flu outbreaks in real time by collecting data from 
many sources, including news articles, social media posts, and medical 
records. Furthermore, by examining past data on flu cases and 
pertinent characteristics, CNNs can predict the trajectory and 
intensity of upcoming flu outbreaks.

In CNNs for flu dynamics and treatment optimization, the 
optimal selection of key parameters is crucial. The architecture of 
CNNs primarily consists of convolutional layers, pooling layers, and 
fully connected layers, with parameters like filter sizes, the number 
of filters, and stride influencing the model’s capacity for recognizing 
significant features from input data1. For instance, to forecast the 
host tropism of influenza A viruses, a CNN model (Flu-CNN) 
utilized six convolutional layers and three fully connected layers, 
with ReLU and Pooling in the convolutional layers and ReLU and 
Dropout in the fully connected layers. The training epoch and batch 
size are crucial parameters, with cross-entropy serving as the loss 
function. The choice of activation functions, such as ReLU, 
addresses the vanishing gradient problem and reduces the 
dependency between neurons. Furthermore, techniques like 
dropout can prevent overfitting of the network, enhancing its 
performance on new samples.

To infer influenza antigenic variations, a CNN model has been 
developed (IAV-CNN) (Yin et al., 2022). It efficiently examines the 
relationships between the HA1 sequence’s amino acid locations. Also, 
CNN does not include any amino acid embeddings because it only 
concentrates on the physicochemical characteristics that are essential 
for the antigenicity of influenza viruses (Jorquera et al., 2019). CNN 
can capture the interactions between different amino acid positions in 
the HA1 sequence and analyze how point mutations affect antigenic 
variation as a whole. Retrospective testing and 5-fold cross-validation 
have demonstrated that CNN outperforms its competitors in the 
prediction of antigenic variations. CNN has also helped determine the 
main antigenic clusters for A/H3N2 (Meng et al., 2024).

In the earlier work, an ensemble CNN with weights for predicting 
influenza virulence, a virus known as VirPreNet that utilizes all eight 
segments, was proposed. The core component of VirPreNet is the 
ensemble CNN, which is built as the basis model using the influenza 
dataset of each segment after the influenza strains have been divided 
and embedded. VirPreNet delivers state-of-the-art performance, 
according to the experimental results on the gathered influenza 
dataset. Additionally, this model highlights the significance of the PB2 
and HA regions in predicting pathogenicity (Yin et al., 2021).

According to the results of a prior study, the CNN model can 
considerably reduce the amount of time needed to identify influenza 

virus-induced cytopathic effects (CPE). The performance of this 
model to recognize CPE effects was 99.75% (Wang et al., 2020).

In the study of influenza dynamics, CNNs have been used to 
forecast and assess the virus’s propagation. It is also useful for 
predicting the temporal dynamics of infectious diseases such as 
influenza. They have also been effectively applied to time-series data 
analysis (Huang et al., 2022).

CNNs have been applied to influenza dynamics, for example, by 
analyzing spatiotemporal patterns in the transmission of the disease. 
By using past data from flu epidemics to train a CNN, researchers can 
find patterns and trends in the way the virus spreads over time across 
various geographic regions. This can assist in forecasting upcoming 
epidemics and guiding public health initiatives (Cai et al., 2019). CNN 
are essential for optimizing flu therapy because they can improve 
diagnosis and individualized care by improving antigenic variant 
prediction. Their uses include precision therapy and personalized 
medicine in addition to flu treatment (Vaz and Balaji, 2021).

CNNs have the potential to be  applied in multiple ways to 
optimize flu treatment. Analyzing medical imaging data, such as chest 
X-rays or CT scans, to assist in the diagnosis and monitoring of 
problems connected to influenza infections is one possible use of 
CNNs for flu therapy optimization (Li et al., 2023). It might be possible 
to create a model that helps medical professionals recognize and treat 
flu-related problems more successfully by training a CNN on a sizable 
collection of medical images from patients with these difficulties 
(Serafim et al., 2021).

Additionally, CNNs could be used to forecast the effectiveness of 
antiviral medications against certain strains of the flu virus by studying 
their molecular structures. Through the training of a CNN using 
molecular data and drug response profiles, scientists could potentially 
discover novel compounds or enhance current treatments to more 
effectively combat influenza (Singh and Singh, 2023). Using 
information about a patient’s genetic composition, medical history, 
and other pertinent factors, CNNs can also be used to predict how a 
particular patient would react to various flu treatments. This 
individualized approach may result in more successful treatment 
regimens created especially for each patient (Ali et al., 2023).

It is crucial to remember that whereas CNNs have intriguing 
opportunities for enhancing flu treatment plans via image analysis and 
medication creation, their use in healthcare necessitates strict 
validation through clinical trials and regulatory approval procedures. 
Additionally, in using deep learning models in medical settings, 
ethical concerns about patient privacy and informed permission must 
always take precedence (Sreeraman et al., 2023).

Large quantities of patient data and medical records can also 
be analyzed by CNNs to find patterns and connections that might not 
be immediately obvious to human observers. CNNs can aid in the 
optimal selection of antiviral medications or other therapies by 
utilizing this capability and taking into account each patient’s particular 
characteristics and the course of their condition (Derry et al., 2023).

Generative adversarial networks (GANs) for 
influenza dynamics and treatment 
optimization

GANs and their variants have become transformative tools in 
medical imaging, addressing challenges like data scarcity, modality 
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translation, and diagnostic accuracy enhancement. These models 
excel in tasks ranging from synthetic data generation to complex 
predictive analytics, enabling advancements in clinical decision-
making (Heng et al., 2024). In other words, GANs offer significant 
opportunities to address critical gaps in influenza research; 
specifically, in data augmentation, GANs could synthesize viral 
sequences or multi-modal medical imaging (e.g., lung CT scans) to 
alleviate data scarcity in low-resource settings, mirroring their 
successful application in augmenting chest X-rays for pneumonia 
detection (Lan et al., 2020).

Furthermore, GANs could transform molecular design by 
employing adversarial frameworks to optimize antiviral medications 
such as oseltamivir, akin to how machine learning models predict 
antigenic properties of influenza viruses, potentially improving 
vaccine strain selection (Murad and Ali, 2023). In addition, GANs 
hold promise for immune response simulation, where they might 
model cytokine storm dynamics or immune cell interactions, 
perhaps leading to the identification of biomarkers for severe 
influenza outcomes (Berman et al., 2023).

Flu dynamics and treatment optimization are two areas where 
GANs are being applied for a variety of reasons. They can produce 
synthetic flu data that is useful for running simulations and training 
predictive models since it closely mimics real-world dynamics. 
Better forecasting accuracy can also be  achieved by using 
GAN-generated data to enhance predictive models and offer a more 
varied dataset for study (Lan et al., 2020).

With the generation of synthetic data that closely mirrors real-
world patterns, GANs can help resolve data deficiency issues common 
in healthcare, particularly in influenza studies where timely and 
diverse data is often scarce (Murad and Ali, 2023). This capability 
facilitates better training and testing of models, enhancing the 
predictability of disease spread and severity forecasts. Additionally, 
GANs can simulate diverse scenarios, allowing scientists to explore 
various treatment strategies and identify optimal interventions based 
on simulated outcomes (Arora and Arora, 2022). This approach not 
only aids in developing improved treatment approaches but also 
supports public health decision-making by providing insights into 
potential disease trajectories under different conditions. In the study 
of flu dynamics, GANs can be used in addition to CNNs. Synthetic 
flu data can be produced by GANs, which improves analysis and 
comprehension of flu dynamics (Paladugu et  al., 2023). GANs 
support a more thorough approach to disease detection, monitoring, 
prediction, and vaccine development in the context of influenza 
outbreaks by giving CNNs access to extra data for analysis. Artificial 
flu data can be produced by GANs, supplementing small datasets 
used for model training. Additionally, they make data augmentation 
for reliable flu dynamics modeling easier (Mamo et al., 2024).

By modeling various scenarios based on generated data, GANs 
also help optimize treatment methods by exploring the possible 
effects of interventions like vaccination campaigns or antiviral 
medications. Lastly, by seeing odd patterns in flu data that might 
point to new strains or unique transmission patterns, GANs could 
help with anomaly detection (Abbasi et al., 2022).

GANs, a powerful class of neural networks with two neural 
networks, such as a discriminator and a generator are utilized for 
unsupervised learning (Durr et al., 2023). To provide believable 
data that mimics real data, the generator generates false data, such 
as photographs, which are subsequently trained on the discriminator 

(Kazeminia et al., 2020). This fabricated data is generated by GANs 
using adversarial training, which qualifies them for flu treatment 
optimization. The learning rate, batch size, and choice of activation 
functions are all critical parameters in GANs, significantly 
influencing the quality of the generated data. Effective training also 
requires careful tuning of the loss functions for both the generator 
and discriminator. This tuning is essential to ensure stable 
convergence and to prevent mode collapse, a scenario where the 
generator produces only a limited set of samples (Kdnuggets, 2025).

Moreover, style transfer, data enrichment, and creation of 
images are only a few of the uses for GANs. There are numerous 
ways that GANs can be used to provide personalized flu treatment 
(Putin et al., 2018). First, by creating the molecular structures of 
possible antiviral medications and refining their chemical 
characteristics to find attractive drug candidates, GANs can 
be utilized for drug discovery and optimization. Furthermore, by 
evaluating an individual’s immune response data and customizing 
vaccine components to meet their unique requirements, GANs can 
help build individualized flu shots, increasing efficacy and 
minimizing side effects (Lin et al., 2020).

GANs are also useful for customizing treatment plans by 
forecasting therapy responses based on patient data. Additionally, 
based on patient factors like age, weight, genetics, etc., GANs can 
adjust medicine dosage to maximize therapeutic benefits while 
reducing negative effects (Gan et al., 2023).

By training the generator network on currently available 
therapies and using the discriminator network to evaluate each 
therapy’s efficacy according to predetermined criteria, GANs can 
produce synthetic data that represents different flu treatment 
alternatives, such as antiviral medications and therapeutic 
antibodies (Xie et al., 2022).

Furthermore, the discriminator network inside the GAN 
framework can assess the efficacy of created therapies in fighting 
influenza by taking into account parameters like molecular 
structure and possible adverse effects. Furthermore, when 
developing and accessing flu therapies, GANs may be configured to 
take into account the specific traits of each patient as well as genetic 
variability and this allows for the recommendation of individualized 
treatment plans that are best suited to each patient’s distinct 
biological composition (Ahmad et al., 2024).

However, it is important to remember that even though GANs 
have the potential to improve flu treatment selection, rigorous 
validation through real-world data and clinical trials will 
be necessary before any AI-driven treatment choices are put into 
practice because of issues with guaranteeing the security and 
dependability of AI-generated suggestions in medical settings 
(Ghebrehiwet et  al., 2024). Moreover, generating high-quality 
synthetic data, especially for complex data types such as discrete 
categorical data or text, can be challenging (Impetus, 2024). GANs 
may require significant computational resources and extensive 
training to achieve optimal results. Furthermore, it is critical that 
the synthetic data accurately reflect the statistical characteristics 
and patterns of the real data; otherwise, the generated data may 
be unsuitable for downstream tasks such as flu dynamics modeling 
and treatment optimization (Arora and Arora, 2022) (Table 2).

The table below summarizes the various deep learning 
architectures discussed in the review paper along with their 
applications and key features.
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Other deep learning architectures for 
flu dynamics and treatment 
optimization

Transformer architectures

Transformers are powerful deep learning models that leverage 
self-attention mechanisms to efficiently process and generate 
sequential data. This technique allows them to quickly understand 
relationships, even between distant elements within a sequence 
(Geeksforgeeks, 2025). Their key advantage lies in their ability to 
model long-range dependencies and contextual information, 
making them exceptionally well-suited for tasks like language 
modeling, machine translation, and text generation (Singh and 
Raman, 2024). In these areas, transformers have driven significant 
advancements due to their superior performance and ability to 
capture nuanced relationships within data. In addition, the 
transformer model employs an encoder-decoder architecture, 
where both components consist of layered self-attention 
mechanisms and feed-forward neural networks (Kdnuggets, 2025; 
Denecke et al., 2024). This design enables parallel processing of 
input data, making it highly efficient and effective for sequential 
tasks (Li et al., 2021).

The encoder processes input sequences, creating meaningful 
representations that the decoder then uses to generate outputs, 
taking into account both the encoded information and previously 
predicted tokens. Working in tandem, the encoder and decoder 
transform the input into a desired output, such as translating 
languages or generating responses to queries 
(Machinelearningmastery, 2025).

Transformer architectures have become increasingly popular in 
healthcare applications (Anwar et al., 2025). Transformer models 
represent an innovative resource within healthcare and 

epidemiology, particularly in understanding influenza dynamics 
and optimizing treatment. Capable of employing self-attention 
mechanisms to process disparate data types, such as past flu 
incidence rates, genomic data, social media trends, and patient 
medical records, transformer models enhance predictive efficiency 
in forecasting outbreaks and resource utilization (Yang et al., 2023). 
Their ability to interpret temporal and spatial trends is useful for 
modeling disease spread, identifying emergent strains via genomic 
data, and tailoring public health interventions based on factors like 
mobility and vaccine coverage (Nerella et al., 2024).

At a clinical level, transformers streamline treatment regimens 
by incorporating patient history, biomarkers, and treatment 
responses to prescribe antiviral treatments on an individual basis 
(Nerella et al., 2023). These models also expedite drug discovery by 
predicting molecular interactions and prospecting potential 
antiviral medicines. Beyond analytics, transformers improve public 
health messaging through sentiment analysis of vaccination 
perceptions and drive real-time surveillance platforms that combine 
data from labs and hospitals to aid in early threat detection. These 
applications highlight their value in bridging genomic surveillance 
to resource planning during flu outbreaks (Cho et al., 2024).

Moreover, White-box Time Series Transformer (WhiteTST) 
framework achieves cutting-edge accuracy on influenza-like illness 
(ILI) datasets, thanks to rigorous experimental validation and the 
use of white-box transformers such as CRATE. The self-attention 
maps in WhiteTST offer valuable insights into its explainability. 
Additionally, WhiteTST employs basic white-box models for ILI 
forecasting that demonstrate both high accuracy and strong 
interpretability (Shen et al., 2024; Tian et al., 2023). In other words, 
the transformer-based model leverages the potential of the 
Transformer architecture to enhance prediction capacity. This 
model delivers approximate performance in short-term forecasting 
and superior performance in long-term forecasting (Li et al., 2021).

TABLE 2 Deep-learning architectures for influenza dynamics.

Deep-learning architecture Applications Key features References

Long short-term memory (LSTM) Predicting seasonal fluctuations in 

influenza infection rates

Optimizing treatment techniques

Analyzes time series data from various 

sources, and identifies complex patterns.

Personalized medicine

Handles sequential data effectively

Captures intricate temporal 

patterns

Adapts to real-time data inputs

Shah and Palomar (2024), Amendolara 

et al. (2023), and Yang and Li (2023)

Convolutional neural networks (CNNs) Analyzing medical imaging data

Extracting features relevant to flu dynamics

Identifying patterns in flu-related datasets

Excellent for image recognition 

tasks

Can process spatial hierarchies in 

data

Yin et al. (2021), Singh et al. (2024), Yin 

et al. (2022), and Xia et al. (2021)

Generative adversarial networks (GANs) Simulating potential viral mutations

Enhancing vaccine development

Comprises two networks 

(generator and discriminator) that 

compete against each other

Generates new data samples based 

on training data

Useful for modeling complex 

distributions

Useful for generating synthetic data 

to augment training datasets or 

simulate potential flu outbreaks.

Shah and Palomar (2024), Berman et al. 

(2023), Swanepoel (2023), and 

Marquioni and de Aguiar (2021)
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Large language models (LLMs)

LLMs are artificial intelligence models trained on vast amounts 
of text data to produce human-like outputs. They have been applied 
to a wide range of tasks in healthcare, from answering medical 
examination questions to generating clinical reports (Busch et al., 
2025). Training foundation models, including large language models, 
on multiple datasets before application enhances performance. 
Consequently, a time series model is trained using multiple datasets 
from diverse domains and viral diseases. Additionally, a pre-trained 
large language model is utilized and adapted for influenza-like illness 
(ILI) estimation. Furthermore, LLMs are revolutionizing healthcare 
by enhancing patient engagement and education through 
personalized materials, improving clinical decision support by 
analyzing large datasets and automating administrative tasks, and 
facilitating communication between patients and clinicians via 
reliable translations (Omiye and Gui, 2024).

LLMs also significantly contribute to clinical documentation by 
summarizing extensive patient notes and reports, thereby enhancing 
accuracy and efficiency. Additionally, they aid in diagnosis, treatment 
decisions, and medical research by parsing complex clinical 
information and generating valuable insights (Meng et  al., 2024). 
LLMs support patient care by answering medical questions, 
simplifying complex information, and empowering patients to 
participate in their care decisions. Despite these advancements, 
challenges persist, including limitations in contextual understanding 
and ethical concerns (Aisera, 2025).

Specifically, the novel LLM4cast architecture encodes input patches 
through a bidirectional encoder to extract rich embeddings. 
Subsequently, these encoded patches are passed to a pre-trained 
TinyLlama for fine-tuning. Finally, the output from TinyLlama is 
flattened and projected to estimate probable ILI cases (Saeed et al., 2024).

In addition, another LLM model, the spatiotemporal language 
models (SPLLM), is a large language model or a mathematical model 
applied to flu dynamics, its potential applications could include 
analyzing vast amounts of data from flu outbreaks to identify spread 
patterns and optimize public health responses (Busch et al., 2025). 
Additionally, it could be used to optimize treatments by leveraging 
data from within-host models to predict how different interventions 
affect viral load and immune response (Meng et al., 2024). The SPLLM 
model might also enable personalized medicine by developing tailored 
treatment plans based on unique patient data and responses to 
influenza infections. These applications are speculative and based on 
the broader potential of LLMs and mathematical models in medicine, 
as they lack specific details about the SPLLM model (Figure  1) 
(Denecke et al., 2024).

Clinical validation of deep learning models 
in healthcare setting: for influenza 
prediction and treatment optimization

Clinical validation is crucial for ensuring the reliability and 
effectiveness of deep learning (DL) models in healthcare, especially in 
complex fields like influenza dynamics and treatment optimization, 
bridging the gap between in-silico validation and real-world 
application (Hosny et  al., 2022). This entails several significant 
elements, beginning with establishing clinical benchmarks to ascertain 

the current standard of care (Wolterskluwer, 2025). Primary validation 
establishes the DL models’ generalizability on large external datasets 
through stepwise testing to confirm consistent performance. 
Functional validation then investigates failure modes, test–retest 
stability, and accuracy to establish their utility in real-world 
applications (Chi et al., 2023).

Moreover, end-user testing integrates expert assessments of 
automated segmentations or predictions in simulated clinical settings 
to confirm compliance with clinical specifications (Javed et al., 2024). 
For influenza dynamics and treatment optimization, DL algorithms 
can enhance the accuracy of real-time prediction through the 
integration of multiple data modalities from electronic health records, 
thereby enabling clinical decision-making in emergency departments, 
whereas DL models such as LSTMs, CNNs, and GANs, integrated 
with feature engineering methods such as PLE-DT, can predict clinical 
outcomes from variable-length time series data in clinical settings 
with high accuracy (Park and Choi, 2021; Zafar et al., 2023).

Furthermore, AI can automate coding and clinical validation 
processes, increasing efficiency and accuracy in managing a wide 
range of conditions. However, clinical validation faces limitations 
including data quality considerations, inconsistency in segmentation 
patterns among experts, and generalizability across various data 
collection methods, patient populations, and clinical practices (Bashiri 
et al., 2024; Prateek and Rathore, 2025). Because in-silico geometric 
segmentation scores may or may not reflect clinical utility in all 
instances, functional validation and end-user testing are crucial for 
identifying the practical implications of DL models in healthcare 
settings (Helaly et al., 2024; Badawy et al., 2023). Through thorough 
examination of these aspects and concerns, clinical validation enables 
effective translation of DL models into effective tools for influenza 
control and treatment optimization, thereby increasing patient safety 
and healthcare provision.

Limitations and challenges of deep 
learning models in healthcare 
applications

Model overfitting, data scarcity, and model 
interpretability

Deep learning has emerged as a powerful tool for predicting 
influenza dynamics and treatment optimization. However, several 
challenges must be addressed to enhance its effectiveness.

Overfitting is a common issue in machine learning where a model 
becomes too specialized to the training data, capturing not only the 
underlying patterns but also the noise and random fluctuations, leading 
to poor performance on new, unseen data (Huang et al., 2018). Overly 
complex models may perform well during training but poorly during 
the validation or testing phases of research (Takahashi et al., 2020). This 
issue is particularly prevalent in complex models like LSTMs, CNNs, 
and GANs, which can learn too many parameters from the training 
data, and in cases where the training data is small or noisy, or when 
models are trained for too long. Overfitting can have significant 
consequences, especially in critical applications such as medical 
diagnosis or financial forecasting. For reliable outcomes, strategies to 
prevent overfitting in deep-learning models are essential for influenza 
dynamics and treatment optimization (Chaudhary et al., 2018).
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To prevent overfitting, techniques like regularization, data 
augmentation, ensemble methods, cross-validation, and dropout are 
employed (Salehin and Kang, 2023). In the context of influenza 
dynamics modeling, these strategies are crucial for developing 
accurate predictive models (Madaeni et  al., 2022). In addition, a 
diverse and sufficiently large dataset can also reduce overfitting in 
deep-learning models (Bejani and Ghatee, 2021).

Deep learning models like LSTMs, CNNs, and GANs require 
specific approaches to mitigate overfitting: LSTMs use dropout and 
cross-validation, CNNs benefit from data augmentation and 
regularization, and GANs utilize batch normalization and 
heterogeneous datasets. Ensuring a large and diverse dataset is also 
essential for preventing overfitting in these models (Ng et al., 2023).

In addition to model overfitting, deep learning models for 
influenza dynamics face significant challenges like data scarcity and 

model interpretability (Choudhary et al., 2022). The scarcity of data 
is a major issue, as high-quality, timely, and comprehensive 
information on influenza cases is limited, making it difficult to train 
and cross-validate models effectively (Hakami, 2024). In other 
words, deep learning models need high-quality and diverse data, 
exploring multimodal data fusion, and developing explainable AI 
methods. Deep learning models require the integration of diverse 
data types, such as social media and meteorological data for effective 
predictions, combining these varied data sources while maintaining 
accuracy poses a significant challenge. Additionally, the need for 
real-time updates in predictive models to reflect changing 
epidemiological circumstances is crucial but challenging, as 
incorporating dynamic modifications based on new data inputs 
requires sophisticated modeling techniques that are still 
being developed.

FIGURE 1

Deep learning applications in influenza dynamics and treatment optimization.
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Additionally, the interpretability of complex deep neural networks, 
such as LSTMs, CNNs, and GANs, poses another challenge because 
understanding how these models make their decisions is crucial in 
healthcare applications where transparency and credibility are essential 
(Alzubaidi et al., 2023).

Furthermore, the black-box nature of these models hinders the 
interpretability of their outputs, limiting trust and acceptance in clinical 
practice. To increase the adoption of deep learning models in clinical 
practice, future research should prioritize the development of 
interpretable artificial intelligence (XAI) methods (Amendolara et al., 
2023; Thakur, 2024). Over-reliance on historical data and a potential 
inability to adapt to novel situations, such as pandemics lacking 
historical precedent, are also limitations. Addressing data quality and 
consistency, particularly in situations with disrupted healthcare systems, 
is essential for enhancing model reliability (Teng et al., 2022).

Furthermore, incorporating external variables such as weather 
patterns or social data could improve predictive power. In addition, 
overcoming these challenges requires innovative strategies, including 
the use of diverse data sources like search queries and mobility data, and 
developing methods to enhance model explainability (Bansal 
et al., 2022).

Bias, ethical considerations and data privacy

Bias in deep learning models applied to flu dynamics and treatment 
optimization can arise from various factors, including subjective clinical 
judgments, heterogeneous diagnostic criteria, and unequal distribution 
of healthcare resources. These biases can impact model performance, 
especially when training data reflect existing disparities or when models 
are not thoroughly validated across diverse populations. For example, 
models may perform differently in resource-constrained settings or 
among high-risk groups, potentially leading to misdiagnosis or 
suboptimal treatment recommendations. Mitigating these biases 
requires meticulous data curation, robust validation procedures, and 
collaboration between clinicians and AI systems to create equitable and 
accurate decision-making tools for flu diagnosis and treatment  
optimization.

Although deep learning offers potential for personalized medicine, 
the challenge remains in accurately predicting individual responses to 
treatments based on complex interactions between genetic, 
environmental, and clinical factors; thus, ethical considerations 
regarding data privacy, consent, and the implications of automated 
decision-making in clinical settings must also be addressed.

Ethical considerations and data privacy are paramount when 
deploying DL models in healthcare, especially in influenza modeling 
and treatment optimization. The use of vast amounts of individual-level 
health data to train DL models raises significant ethical and legal 
concerns, necessitating adherence to established ethical frameworks 
that regulate clinical practice and technology design (Panigutti et al., 
2021). Integrating key ethical concepts such as privacy, fairness, and 
explainability throughout the machine learning pipeline is essential. 
Principles of beneficence and non-maleficence ensure that AI 
technology benefits patients and minimizes harm through errors, 
biases, or misuse, while respecting patient autonomy by maintaining 
transparency and consent in interactions with AI (CDC, 2021).

Concepts of fairness and justice ensure that AI-driven technologies 
do not create or exacerbate inequalities, but rather promote equitable 

access to healthcare services. Moreover, fully harnessing the potential of 
AI in healthcare requires addressing major ethical issues such as 
informed consent for data usage, safety and transparency, algorithmic 
fairness and bias mitigation, and data privacy protection. Therefore, 
experts and practitioners must consider all four core medical ethics 
principles, autonomy, beneficence, non-maleficence, and justice, in all 
facets of healthcare before integrating artificial intelligence into the 
healthcare system. These challenges highlight the need for ongoing 
research and development in both deep learning methodologies and 
their application to public health strategies for influenza management.

Conclusion

The integration of deep learning architectures such as Long Short-
Term Memory (LSTM) networks, Convolutional Neural Networks 
(CNNs), Generative Adversarial Networks (GANs), transformer 
architectures, and large language models (LLMs) into influenza 
research represents a paradigm shift in understanding and managing 
influenza dynamics. Traditional epidemiological models often fall 
short due to their reliance on manual data interpretation and limited 
capacity to analyze large datasets. In contrast, deep learning offers a 
more automated, objective, and scalable approach capable of 
uncovering intricate patterns within extensive flu-related data, 
including genetic sequences and patient records. This advancement 
not only enhances the predictive capabilities regarding influenza 
outbreaks but also optimizes treatment strategies by personalizing 
therapeutic regimens based on individual patient data.

The findings underscore that deep learning methodologies can 
significantly improve the forecasting of influenza trends, the effectiveness 
of treatment modalities, and the overall public health response to 
outbreaks. By harnessing vast datasets from various sources, including 
social media and environmental factors, these models can provide timely 
insights that are crucial for effective intervention strategies.

Future directions

The future of influenza research and treatment optimization lies 
in several promising directions that harness the power of deep 
learning. Enhanced predictive models will focus on refining LSTM 
networks and other neural architectures to improve multi-step 
forecasting capabilities for influenza outbreaks by integrating 
diverse data sources. In the realm of personalized medicine, 
developing models that analyze individual patient data will facilitate 
tailored treatment approaches, predicting responses to specific 
therapies. Real-time data integration will leverage information from 
social media and health monitoring systems, allowing for dynamic 
updates to predictive models and improving their accuracy in 
response to shifting epidemiological patterns. Moreover, deep 
learning techniques will play a crucial role in vaccine development 
by analyzing viral mutations to predict potential strains, thereby 
enhancing protection against various influenza virus types. In drug 
discovery, these techniques will expedite the identification of new 
antiviral candidates through molecular analysis, potentially 
increasing treatment efficacy. Moreover, the creation of decision-
support systems utilizing deep learning insights will empower 
public health officials to implement timely interventions during 
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influenza outbreaks, ultimately leading to more effective 
management of this persistent global health challenge.

In addition, future applications of deep learning models to model 
influenza dynamics will be significantly influenced by public health 
interventions, vaccination coverage, and socioeconomic determinants. 
Robust public health interventions, including timely responses and 
resource allocation guided by deep learning forecasts, are critical, 
especially in regions with weakened healthcare systems1. Models 
incorporating vaccination coverage data can provide insights into the 
effectiveness of vaccination campaigns and enable the optimization of 
vaccine distribution plans. Socioeconomic determinants that influence 
both susceptibility to infection and access to healthcare need to 
be incorporated into such models to enhance their predictive ability 
and to enable equitable public health responses. Furthermore, the 
development of explainable AI (XAI) methods will be  needed to 
enhance the acceptability and trustworthiness of deep learning models 
in clinical practice.

By focusing on these directions, future research can significantly 
advance our understanding of influenza dynamics and improve 
treatment optimization strategies, ultimately leading to better public 
health outcomes.
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