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Approach for enhancing the 
accuracy of semantic 
segmentation of chest X-ray 
images by edge detection and 
deep learning integration
Lesia Mochurad *

Lviv Polytechnic National University, Lviv, Ukraine

Introduction: Accurate segmentation of anatomical structures in chest X-ray 
images remains challenging, especially for regions with low contrast and 
overlapping structures. This limitation significantly affects the diagnosis of 
cardiothoracic diseases. Existing deep learning methods often struggle with 
preserving structural boundaries, leading to segmentation artifacts.

Methods: To address these challenges, I propose a novel segmentation approach that 
integrates contour detection techniques with the U-net deep learning architecture. 
Specifically, the method employs Sobel and Scharr edge detection filters to enhance 
structural boundaries in chest X-ray images before segmentation. The pipeline 
involves pre-processing using contour detection, followed by segmentation with a 
U-net model trained to identify lungs, heart, and clavicles.

Results: Experimental evaluation demonstrated that using edge-enhancing 
filters, particularly the Sobel operator, leads to a marked improvement in 
segmentation accuracy. For lung segmentation, the model achieved an accuracy 
of 99.26%, a Dice coefficient of 98.88%, and a Jaccard index of 97.54%. Heart 
segmentation results included 99.47% accuracy and 94.14% Jaccard index, 
while clavicle segmentation reached 99.79% accuracy and 89.57% Jaccard 
index. These results consistently outperform the baseline U-net model without 
edge enhancement.

Discussion: The integration of contour detection methods with the U-net model 
significantly improves the segmentation quality of complex anatomical regions 
in chest X-rays. Among the tested filters, the Sobel operator proved to be the 
most effective in enhancing boundary information and reducing segmentation 
artifacts. This approach offers a promising direction for more accurate and 
robust computer-aided diagnosis systems in radiology.
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1 Introduction

Segmentation of chest X-ray images, particularly of the lungs, heart, and clavicles, is a critical 
and challenging problem in diagnostic processes, as it allows for precise anatomical delineation, 
which is essential for cardiothoracic assessment and pathology detection. Despite significant 
advancements, medical image segmentation remains a key challenge due to the complexity of 
anatomical structures, variations in imaging conditions, and the presence of noise. This is key for 
many clinical applications, such as pathology detection, treatment planning, and disease progression 
monitoring (Ma et al., 2024; De Fauw et al., 2018; Berezsky et al., 2024; Honchar et al., 2025). 
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However, despite significant advances, current segmentation methods still 
face several challenges, including low accuracy in distinguishing 
structures with similar intensity values, sensitivity to noise, and poor 
generalization across different datasets. These factors hinder the reliable 
use of automated segmentation in clinical practice.

For example, accurate segmentation allows doctors to efficiently 
detect abnormalities such as tumors or other changes and plan 
surgical interventions correctly, directly affecting the success of 
treatment and the overall prognosis for the patient.

The motivation for this research arises from the necessity to address 
these challenges. Traditional image processing methods often struggle 
with segmenting complex anatomical structures due to variations in 
contrast and shape deformations. Thresholding-based techniques, region-
growing methods, and classical edge detection approaches usually fail to 
provide satisfactory segmentation results in complex cases. Meanwhile, 
deep learning-based approaches, despite their high accuracy, sometimes 
produce blurry boundaries or fail to capture fine structural details 
correctly. Research on the use of deep learning methods for medical 
image analysis (Litjens et al., 2017; Oliinyk et al., 2024) demonstrates that 
the integration of deep learning into segmentation processes is a 
significant breakthrough in this area. Deep neural networks, such as 
convolutional neural networks (CNNs) and their modifications, provide 
a substantial increase in accuracy and performance compared to 
traditional image processing methods (Mochurad et al., 2021). However, 
these methods alone may not always be sufficient for precise segmentation, 
especially when dealing with closely located anatomical structures. A 
major limitation of purely deep learning-based approaches is their 
reliance on large amounts of annotated data, which is often unavailable 
for rare or complex medical conditions. These technologies can adapt to 
complex visual structures that are often a challenge for standard 
approaches. Due to their ability to automatically learn from large amounts 
of data, they can detect subtle details and features that may be invisible to 
traditional algorithms.

Recent studies have shown a growing interest in deep learning 
methods for medical image analysis, including classification and 
segmentation of chest X-rays (CXR). A systematic review (Meedeniya 
et al., 2022) provides a comprehensive analysis of current deep-learning 
solutions for pneumonia and COVID-19 detection. This study highlights 
the importance of the availability of datasets and the latest data processing 
techniques to improve medical image analysis. However, it also reveals 
key limitations in the current literature, such as the lack of integration 
between classification and segmentation models, as well as difficulties in 
trend analysis. Furthermore, recent research suggests that hybrid 
approaches combining deep learning with classical image processing 
techniques can address some of these challenges by leveraging the 
strengths of both methodologies. Our work builds on these findings by 
addressing the problem of segmentation accuracy through a novel 
integration of contour detection and deep learning techniques.

A promising solution to these challenges is the integration of edge 
detection methods into segmentation algorithms for chest X-ray images. 
The integration of edge detection methods into segmentation algorithms 
shows significant potential for improving the accuracy of visualizing the 
boundaries of different structures (Liu et al., 2022). Specifically, edge 
detection helps to more clearly define the contours of anatomical 
structures, ensuring better differentiation between closely situated 
structures, which is particularly important for accurate medical 
diagnostics (Mochurad et al., 2022). Unlike purely deep learning-based 
approaches, edge detection can enhance the precision of segmentation by 
emphasizing structural boundaries. By incorporating explicit contour 

information, hybrid models can reduce segmentation errors in cases 
where deep learning-based methods alone struggle with boundary 
refinement. These methods can effectively enhance existing medical 
image segmentation techniques, offering additional tools to refine the 
quality and precision of analysis. When integrated with deep learning 
approaches, they have the potential to substantially enhance segmentation 
performance, minimize errors, and improve the overall accuracy of 
diagnostic processes.

While lung field and heart segmentation are essential for clinical 
diagnosis, clavicle segmentation is also of significant medical 
importance. Clavicles serve as key anatomical landmarks in chest 
radiographs and play a crucial role in trauma assessment, skeletal 
anomaly detection, and enhanced anatomical localization. Their 
segmentation aids in preventing occlusion-related artifacts in lung and 
heart segmentation, leading to more accurate automated analysis. 
Prior studies have demonstrated the importance of multi-structure 
segmentation in chest radiographs, particularly involving lungs, heart, 
and clavicles (Jafar et  al., 2022; Wang et  al., 2019). The accurate 
delineation of these structures contributes to improved cardiothoracic 
assessments and pathology detection (Lyu et al., 2021; Nimalsiri et al., 
2023). Moreover, the proposed method integrates edge detection 
techniques to refine the segmentation of all three structures, 
demonstrating its broader applicability in medical diagnostics.

Thus, this study aims to improve the accuracy of semantic 
segmentation of chest X-ray images by integrating contour detection 
methods with the U-Net deep learning model for the segmentation of 
the lungs, heart, and clavicles. The novelty of our approach lies in the 
combination of edge detection techniques with deep learning 
segmentation, which enables enhanced boundary localization without 
the need for additional complex post-processing steps. The integration 
of edge detection methods with the U-Net deep learning model aims to 
enhance the precision of boundary delineation in medical image 
segmentation. Edge detection contributes to refining structural contours, 
which complements U-Net’s capability in semantic segmentation. This 
hybrid approach is motivated by the need to improve segmentation 
accuracy, particularly for closely situated anatomical structures that are 
challenging for purely deep learning-based methods.

The main contribution of the paper is as follows:

 • We have conducted a detailed analysis of the current state of 
research in the field of medical image segmentation, particularly 
for CXR, focusing on deep learning approaches and U-Net-based 
models, and identified existing limitations and gaps.

 • We propose a novel approach that integrates edge detection 
techniques with the U-Net deep learning model to enhance the 
accuracy of multi-class segmentation of anatomical structures in 
chest X-ray images. Unlike existing methods, our approach 
effectively segments both highly prominent and less 
distinguishable structures.

 • Unlike previous segmentation methods that did not leverage edge 
detection techniques, we  have introduced the integration of 
U-Net with a Sobel filter, which provided the highest accuracy 
and best Dice and Jaccard coefficients for segmenting the lungs, 
heart, and clavicles without the need for additional complex 
post-processing.

In addition, this study asks several key questions:
QR1: How does the integration of Sobel and Sharpe contour 

detection filters with the U-Net model affect the accuracy, Dice 
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coefficient and Jaccard index in the segmentation of anatomical 
structures in X-ray images?

QR2: How do the results of the proposed approach (U-Net + 
Sobel filter) compare with other medical image segmentation methods 
in terms of accuracy, Dice coefficient and Jaccard index for 
segmentation of lungs, heart and clavicles?

QR3: What are the challenges in segmenting more complex 
anatomical regions such as clavicles and how can the proposed 
method be  optimized to achieve better results in such cases?This 
research focuses on a deeper understanding of the impact of 
integrating contour detection filters on segmentation quality in the 
context of medical images, as well as comparing the proposed method 
with other state-of-the-art approaches. The results of this work can 
significantly contribute to the improvement of segmentation 
algorithms and their application in medical diagnostics, in particular 
for complex anatomical structures.

Here is how the manuscript is structured: the Related Work section 
describes previous research on the segmentation of anatomical structures 
in X-ray images. The Proposed Approach section provides a detailed 
description of our method. In the Experiments and Results section, 
we perform a comprehensive evaluation of the proposed approach. The 
Discussion section analyses our approach and compares its performance 
with relevant studies. Finally, the Conclusions section summarizes the 
results and concludes concerning the proposed method.

2 Related work

The current state of research in the field of medical image 
segmentation, specifically for CXR, is progressing rapidly, particularly 
with the advent of deep learning techniques. The main focus of these 
studies includes improving segmentation accuracy, generalizability to new 
datasets, and algorithm efficiency. Among the prominent models used are 
convolutional neural networks (CNNs) and their variations, such as 
U-Net and its modifications, which are widely recognized for their ability 
to detect complex anatomical structures. In this section, we divide the 
analysis into two categories: segmentation and segmentation followed 
by classification.

2.1 Segmentation-only approaches

Thе work Nimalsiri et al. (2023) focuses on the creation of a large 
CXR-segmented dataset based on MIMIC-CXR and the use of the 
SA-UNet model for automatic segmentation of chest X-ray images. 
This approach incorporates spatial attention (SA) to improve 
segmentation, specifically aiding in the accurate extraction of lung 
regions. The main contribution of this study is the provision of a large-
scale dataset with segmented masks, which can be utilized to train and 
refine deep-learning models for medical diagnostics. However, the 
focus of this study is on lung segmentation, and it does not fully 
address the segmentation of other anatomical structures such as the 
heart and clavicles, which are more challenging due to their complexity 
and lower contrast in X-ray images.

In contrast, our work proposes a novel approach that combines 
U-Net with contour extraction methods to improve the segmentation 
of low-contrast anatomical structures. Our method achieves superior 
segmentation results for the lungs, heart, and clavicles, outperforming 

previous studies in terms of accuracy, especially in challenging 
anatomical areas. The integration of contour analysis before applying 
deep learning enhances feature extraction, contributing to improved 
segmentation quality in complex areas, and further automating the 
process for medical diagnostics.

Further improvements to segmentation have been explored with 
various U-Net modifications. For example Wang et  al. (2019) 
presented the Mask R-CNN network, which achieved impressive 
results for segmenting the lungs, heart, and clavicles compared to 
studies conducted before 2019. This method provided a Dice 
coefficient of 97.6% for the lungs, 94.9% for the heart, and 92% for the 
clavicles. Although the results for the heart and clavicles are slightly 
inferior to the lungs, Mask R-CNN shows the potential for high 
segmentation accuracy.

The next step in the evolution of the models was the introduction 
of improved versions of U-Net. In a study Ma et al. (2021), a modified 
U-Net model with multi-channel extended convolution and dense 
deep-layer aggregation was developed. This model achieved high 
performance for lung segmentation: Dice coefficient = 97.9% and 
Jaccard index = 95.61%, but needs further improvement to improve 
the segmentation accuracy of other organs. The study Lyu et al. (2021) 
presented the RU-Net model, which combines the U-Net and residual 
network architectures. Although the model demonstrated a 
satisfactory result of the Jaccard index = 85.57% for the heart, this 
value is not high enough and indicates the need for further 
improvements. In Liu et al. (2022), an improved U-Net architecture 
was presented that integrates the EfficientNet-b4 model as an encoder 
along with residual blocks and the LeakyReLU activation function. 
This model achieved high results for lung segmentation, including 
Accuracy = 98.55% and Dice coefficient = 97.92%. While these results 
are encouraging, segmentation of other organs such as the heart and 
clavicles may require further improvements. Similar approaches to 
modifying U-Net were continued by Chavan et al. (2022), where a 
new architecture, ResUNet++, was presented, combining U-Net 
segmentation networks with ResNet feature extraction. The model 
attained a Dice coefficient of 95.95% for lung segmentation, indicating 
a strong performance. However, additional refinements may 
be necessary to enhance its accuracy further.

In contrast to the improved versions of U-Net, other approaches, 
such as graph neural networks, also show promising results. For 
example, a study Gaggion et al. (2023a) presented a landmark-based 
HybridGNet model that uses graph representations to improve 
segmentation. The model demonstrated high results for the lungs, so 
the Dice coefficient = 98%, and lower results for the heart and 
clavicles, indicating the potential of graph-based methods to improve 
segmentation accuracy, but with high computational requirements. 
Also, in Gaggion et al. (2023b), a HybridGNet model was proposed 
that combines traditional convolutional methods with graph 
convolutional neural networks (GCNN). The model achieved a Dice 
coefficient of 97.4% for the lungs and 93.3% for the heart. This 
highlights the potential of graph-based methods in improving 
segmentation, but the results for the heart can still be improved. A 
new approach combining graph and dense segmentation methods was 
proposed by the authors (Bransby et al., 2023). The model achieved a 
Dice coefficient of 96.98% for lung segmentation and 94.51% for heart 
segmentation, indicating that further improvement is needed.

Significant progress in segmentation is also observed in dual 
coding-decoding systems. In Ullah et  al. (2023), a framework is 
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presented that uses the VGG19 model as an encoder and recurrent 
residual blocks to improve segmentation. Although the model 
demonstrated the following results for the lungs: Jaccard index = 95.5% 
and Dice coefficient = 97.6%, the results for the heart and clavicles 
were worse.

The paper Müller and Kramer (2021) presents the open source 
Python library MIScnn, which simplifies the process of creating 
medical segmentation pipelines. The main goal of the library is to 
provide an intuitive API for rapidly building medical segmentation 
pipelines, including data input and output, preprocessing, data 
augmentation, piecewise analysis, metric evaluation, and the use of 
advanced deep models for learning and prediction. MIScnn also 
allows for parameter tuning and flexibility in working with different 
CNN models, making it easy to quickly switch between architectures 
and add custom models. However, despite its flexibility and ease of 
use, this approach has limitations in the context of specific 
segmentation tasks, as most models are targeted at standard datasets 
and are not optimized for complex or specific cases, such as 
low-contrast medical images, where our method, which integrates 
contour detection with U-net, demonstrates significantly better 
accuracy and segmentation results for complex anatomical structures.

The recent advances in deep learning-based medical image 
segmentation are studied and analyzed by the authors in Rayed et al. 
(2024), with a focus on applications, algorithms and challenges in this 
field. This study provides a comprehensive analysis of recent 
applications, commonly used datasets, preprocessing methods, and 
deep learning algorithms, and analyses the state-of-the-art in deep 
learning medical image segmentation through experimental results.

In the current study Agarwal et al. (2024), a new approach for 
biomedical segmentation using a two-channel decoder and Attention-
gated Swin transformers is proposed, which effectively extracts local and 
global image dependencies. The main advantage is the improvement of 
segmentation quality without increasing computational costs. However, 
despite the successful application of this model for the segmentation of 
liver and spleen tumors, its main disadvantage is the need for a large 
dataset for training, as well as potentially high computational costs due 
to the complexity of the transformer networks. Compared to our work, 
where we apply contour detection methods together with the U-Net 
model to improve the lung, heart, and clavicle segmentation accuracy 
in Chest X-ray images, our approach demonstrates high accuracy and 
does not require such a large amount of data or significant computational 
resources, making it more accessible and efficient for 
practical applications.

2.2 Segmentation followed by classification

The work Kumarasinghe et al. (2022) integrates a modified U-Net 
architecture for segmentation, followed by infectious disease 
classification based on the segmented regions. While this approach excels 
in classification accuracy, it only evaluates segmentation as a preliminary 
step to support classification tasks rather than improving the 
segmentation accuracy for each anatomical structure individually. In 
contrast, our study focuses solely on improving the segmentation itself, 
particularly for low-contrast anatomical structures such as the lungs, 
heart, and clavicles. By combining U-Net with contour extraction 
methods, we achieve superior segmentation accuracy without requiring 
post-processing steps typically used for classification.

Moreover, the Jafar et al. (2022) study, presenting the CardioNet 
model for multi-class segmentation, aims to more accurately segment 
the heart, lungs, and clavicles with fewer parameters. Although high 
results are obtained for the lungs (Dice coefficient = 98.61%), the heart 
and clavicles still present significant challenges (heart Dice 
coefficient = 94.76%, clavicles Dice coefficient = 92.74%). These 
results underscore the need for further improvements, especially in 
the segmentation of more anatomically complex regions.

Our approach, by focusing exclusively on enhancing segmentation 
accuracy for each anatomical structure, offers a more efficient and 
precise solution for applications in automated medical systems, 
bypassing the need for additional classification steps to achieve robust 
anatomical segmentation.

A recent study Hasan et al. (2024) provides valuable insights into 
segmentation and classification approaches, though they focus on 
histopathological images for breast cancer diagnosis.

This paper presents a hybrid model that integrates SegNet and 
U-Net architectures for the segmentation of histopathological images. 
The decoder is modified to incorporate ResNet, VGG, and DenseNet, 
which are used for classification tasks. The models were trained and 
evaluated using both private and public datasets. The proposed 
method achieved a high pixel-based segmentation F1-score of 0.902 
for private datasets and 0.903 for public datasets, along with a 
classification F1-score of 0.833 for private datasets. This study 
demonstrates the effectiveness of hybrid models and the integration 
of various architectures to achieve high segmentation and classification 
performance in histopathological analysis. However, this approach is 
limited by its reliance on hybrid architectures and the need for further 
improvement in real-time applications, particularly in processing at 
higher magnifications.

The study Breesam et  al. (2024) considers the importance of 
segmentation and classification of medical images using artificial 
intelligence methods, in particular convolutional neural networks 
(CNNs). Their role in detecting and identifying diseased areas and 
anatomical structures in medical images such as MRI, CT, and X-rays 
is described. In addition, it is noted that despite the difficulties 
associated with data privacy, the need for large annotated datasets, and 
the interpretability of models, artificial intelligence has the potential 
to improve diagnostic accuracy and clinical decision-making. In our 
research, we  propose improvements in the segmentation of 
low-contrast structures such as clavicles using contour detection 
techniques integrated with the U-Net model to improve segmentation 
accuracy in medical chest images. We  will focus on optimizing 
methods for segmenting complex anatomical regions and developing 
solutions for automating processes in medical diagnostics.

In summary, significant progress has been made in chest 
X-ray image segmentation, especially using deep learning 
techniques such as U-Net modifications and graph neural 
networks, but significant challenges remain in the accuracy of 
segmentation of anatomically complex areas such as the heart and 
clavicles. The studies reviewed show that the segmentation of 
structures such as the lungs has achieved high accuracy, but 
further advances are needed to improve the segmentation of more 
complex anatomical structures. Future research should focus on 
optimizing these models to both achieve high accuracy and reduce 
computational complexity, especially for clinical applications 
requiring real-time processing and automated analysis of 
complex areas.
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3 Materials and methods

3.1 Segmentation algorithm for chest X-ray 
images

This research presents a new approach to chest X-ray image 
segmentation, which consists of enhancing X-ray images using edge 
detection algorithms before training the segmentation model. This 
preprocessing step is designed to improve the model’s ability to more 
accurately delineate the lungs, heart, and clavicles, which pose 
segmentation challenges due to their varying contrast and overlap in 
X-ray projections.

Edge detection is an important step in image processing, 
especially for extracting meaningful information from medical 
images, where the clarity of the edges can have a significant impact on 
diagnostic results. By applying edge detection algorithms suitable for 
capturing fine details in X-ray images, this method achieves 
several purposes:

 1. Edge detection algorithms improve the visibility of boundaries 
between different anatomical structures by emphasizing 
intensity transitions, which are the hallmarks of edges.

 2. Medical images, especially X-ray images, often contain a 
significant amount of noise. Edge detection helps to reduce the 

impact of this noise by focusing on significant transitions and 
ignoring insignificant variations in pixel values.

 3. Thanks to clearer boundaries and reduced noise, the neural 
network training process becomes more efficient. The model 
can better learn to recognize and generalize from discernible 
features, instead of adjusting to noise or fuzzy edges.

After the edge detection process is applied to the X-ray images, 
the resulting images, which now display improved edges, serve as 
input to the convolutional neural network model.

First of all, a set of CXR is loaded along with the corresponding 
segmentation masks. Next, an edge detection algorithm is applied to 
the X-ray images. This step emphasizes the boundaries and contours 
of anatomical structures such as lungs, heart, and collarbones. Next, 
data augmentation is performed to increase the size of the dataset and 
improve the model’s robustness to variations in new, unseen data. The 
next step is data preprocessing to prepare the data for transmission to 
the network. After that, the model is trained using preprocessed 
images with enhanced edges as input and appropriate masks. The last 
step is to evaluate the model performance using metrics such as the 
Dice coefficient and the Jaccard index.

Below is a pseudo-code (see Algorithm 1) representation of the 
proposed segmentation algorithm, summarizing these processing 
steps in a structured format.

ALGORITHM 1

Pseudocode for image segmentation pipeline using U-Net.
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3.2 Edge detection methods

In this paper, two edge detection methods are investigated: the 
Sobel filter and the Scharr filter. The choice of these two methods 
is motivated by their effectiveness and balance between 
computational efficiency and edge detection accuracy. Both 
methods effectively detect the edges of objects in images by 
highlighting important boundaries, which is particularly useful for 
segmentation, where clear boundary definition is essential to 
accurately delineate objects. Detected edges help segmentation 
algorithms better understand where one object ends and 
another begins.

The Sobel method is one of the most well-known edge 
detection algorithms that use two filters (matrices) to calculate 
brightness gradients for each pixel of an image. These gradients 
are used to detect areas where the intensity changes, which is a 
sign of the presence of edges. This method was chosen for its 
simplicity, computational efficiency, and ability to highlight 
significant edges, which makes it well-suited for medical 
image segmentation.

The Scharr filter was selected due to its increased sensitivity to 
small changes in intensity compared to Sobel. This method is known 
to provide sharper and more precise edge detection, especially in 
situations where fine boundaries are critical for accurate segmentation. 
While alternative methods such as Canny, Laplacian, or Rand exist, 
the focus on Sobel and Scharr in this study is based on their well-
established performance in segmentation rather than on 
implementation complexity. These methods provide a balance 
between detection accuracy and computational efficiency, which is 
particularly relevant for medical applications requiring both precision 
and real-time processing capabilities, ensuring effective 
segmentation performance.

Imagine that we have an image where each pixel has a different 
brightness value. To detect changes in intensity, we use filters that 
calculate the difference in pixel intensities in the horizontal and 
vertical axes (X and Y axes). Gradients in both directions are 
calculated using the following formulas Equations 1,2:

 1. Horizontal gradient xg
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 2. Vertical gradient yg
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where ( ),I i j  – is the intensity of the pixel at the point ( ),i j , and xg  
and yg  are filter elements used to calculate gradients in the horizontal 
and vertical directions, respectively.

After calculating the gradients in both directions, you can 
determine the total gradient at each pixel as the combination of these 
two values Equation 3:

 ( ) ( ) ( )= +2 2, , ,x yg i j g i j g i j  (3)

This general gradient ( ),g i j  shows the amount of intensity change 
at each pixel, allowing you to detect areas with a sharp transition 
between light and dark parts of the image, i.e., edges.

The Sharpe method is similar to the Sobel method, but it improves 
accuracy and maintains better rotational symmetry, allowing it to 
work better with more detailed image structures (Qian, 2024). To 
detect gradients, this method uses other filters that give more weight 
to the central pixels that are close to the target pixel. The 
corresponding filters for horizontal and vertical edge detection are 
as follows:

 • Horizontal filter:
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Similarly to the Sobel method, the horizontal and vertical 
gradients are calculated for each pixel using these filters, and then the 
total gradient for each pixel is calculated using the Equation 6.

Both of these methods help us to find edges in images, which is 
important for accurately isolating anatomical structures such as lungs, 
heart, and collarbones in chest X-ray images. Clear edge detection can 
significantly improve the results of subsequent segmentation, as the 
model better recognizes and separates these structures, even if they have 
similar pixel intensities or overlap with other structures.

3.3 U-Net model architecture

The U-Net model is widely used due to its efficiency and effectiveness 
in solving various image segmentation problems, especially in the field 
of medical imaging (Ronneberger et al., 2015). The U-Net architecture 
is characterized by a symmetrical “U-shaped” design, which consists of 
two main parts: compression (encoder) and expansion (decoder).

In the context of chest X-ray segmentation, U-Net is particularly 
well suited for several reasons:

 • The model’s ability to work at different scales makes it effective in 
recognizing the fine details needed to accurately delineate 
anatomical structures such as lungs, heart, and collarbones.

 • Medical images can vary greatly in terms of structure visibility 
due to different patient positions, pathologies, or imaging 
conditions. U-Net’s robust learning and generalization 
capabilities make it effective in handling this variability.
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 • For this work, the integration of edge enhancement techniques 
before image input into the U-Net model can further improve its 
ability to accurately detect and segment relevant medical 
structures. By using edge detection to enhance the boundaries, 
the U-Net model is able to capture fine details and improve 
segmentation accuracy.

The model uses a sigmoid activation function on the output layer. 
In this case, classes can overlap (i.e., one-pixel region can 
simultaneously belong to several classes), so using a sigmoid activation 
function for each channel of the output layer may be a better option 
than the softmax function.

The formula of the sigmoid function (Xu et al., 2021; Kovtun 
et al., 2023):

 
( )σ

−
=

+

1
1 xx

e

where x  is the input signal to the neuron.
The sigmoid activation function processes each output channel 

independently. Each channel of the output layer represents the 
probability that a pixel belongs to a certain class. For example, if the 
output layer has three channels for three different classes (lungs, heart, 
collarbone), each channel gives the probability of belonging to each of 
these classes.

In the semantic segmentation problem, when there are classes 
such as lungs, heart, and collarbones in medical images, the dataset is 
considered unbalanced. Despite the fact that each image contains all 
three classes, the lungs in X-ray images occupy a much larger area 
compared to the heart and collarbones. This means that the number 
of pixels representing the lungs is much higher than the number of 
pixels for the heart and collarbones. Thus, it is important to calculate 
class weights to make the model more sensitive to classes that are 
represented by less data.

The calculation of class weights is based on the idea 
of inverse weighting of class frequencies in a dataset (Sugino 
et al., 2021):

 • The class frequency is defined as the ratio of the number of 
occurrences of a particular class to the total number of 
occurrences of all classes.

 • The class weight is inversely proportional to the class 
frequency. This means that less-represented classes are 
assigned higher weights, which helps compensate for their 
lower frequency and ensures that the model prioritizes them 
during processing.

This ensures that the model does not favor any class at the expense 
of others, while giving more attention to the less frequently 
occurring classes.

To calculate the loss value, Categorical Focal Cross entropy is 
used, which is based on Focal Loss (Hadinata et  al., 2023). This 
function was developed to improve the efficiency of model training 
on data with strong class imbalance, especially in segmentation 
problems. The main idea is to modify the usual cross-entropy in such 
a way as to reduce the influence of easy-to-classify examples on the 
overall loss function and focus the model’s attention on more difficult 

examples. Mathematically, this is implemented using the 
following mechanism:

 ( ) ( )γα= − − 1 logt t tFocal Loss p p

where tp  is the probability of the correct class for the current pixel; 
αt  is the class weight, which helps to compensate for class imbalance 
(less represented classes receive higher weight); γ  is the focusing 
parameter that controls how strongly the model focuses on difficult 
examples by reducing the attention to easy ones.

This mechanism allows the model to concentrate on examples that 
are difficult to classify or have a higher error rate, improving overall 
model performance in the presence of class imbalance. The use of class 
weights ensures that the model pays more attention to 
underrepresented classes, thus providing more balanced training 
across all stages.

As for the learning rate of the model, the value of the learning rate 
is regulated by a polynomial decay function. The formula for 
calculating the learning rate (Boulaaras, 2020) is as follows:
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where 
ratelearninginitial  is the initial learning rate; 

ratelearningend  is the 
final learning rate; step  is the current training step; stepsdecay  is the 
number of steps (epochs) during which the learning rate will decrease; 
power  is the polynomial degree. The use of this function provides a 
smoother and less aggressive decrease in the learning rate, which can 
contribute to better model convergence in the final stages of training.

The methodology for medical image segmentation in this study 
involves enhancing X-ray images using edge detection techniques 
before training a CNN for segmentation. The model is trained with 
preprocessed images that have enhanced edges, along with 
corresponding segmentation masks, to ensure accurate delineation of 
anatomical structures.

The training process starts with loading the chest X-ray images 
and their associated segmentation masks, which highlight key 
structures like the lungs, heart, and clavicles. These masks are essential 
for guiding the model’s learning process.

Edge detection algorithms, such as Sobel and Scharr filters, are 
applied to the X-ray images to enhance boundary definition between 
anatomical structures. These methods were chosen based on their 
effectiveness in highlighting intensity transitions, which aids in 
accurate segmentation by providing clearer structural differentiation.

Data augmentation follows, increasing the dataset’s variability by 
applying transformations such as rotation, reflection, and shifting. 
This step enhances the model’s robustness, allowing it to generalize 
better to unseen data.

Next, the images are preprocessed by normalizing pixel values, 
resizing them to a uniform size, and preparing them for input into the 
CNN. During training, the model learns to associate pixel patterns 
from the enhanced X-rays with corresponding mask patterns 
representing anatomical structures.
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The loss function used during training is a combination of 
categorical cross-entropy and Focal Loss, which addresses class 
imbalance by focusing the model’s attention on harder-to-classify 
examples. An optimizer adjusts the model’s weights through 
backpropagation, improving the model’s segmentation performance.

Finally, the model’s performance is evaluated using metrics like 
the Dice coefficient and the Jaccard index, which provide quantitative 
measures of the model’s ability to segment anatomical 
structures accurately.

Figure 1 illustrates the training process architecture, detailing the 
sequence of steps from data loading and edge detection to training 
and evaluation.

3.4 Evaluation metrics

To support our methodological choices, we  formalize the 
segmentation problem as a mathematical optimization task. To 
improve the accuracy of semantic segmentation of medical X-ray 
images, we set up a mathematical optimization problem. Given a set 
of medical images { }= …1 2, , , nI I I I , where each image iI  contains 
several target regions corresponding to three classes (lungs, heart, 
collarbone), the problem is to find a segmentation function S that 
maps each image to a label map, maximizing the segmentation 
accuracy. The segmentation function S should be  optimized to 
minimize the difference between the predicted segmentation and the 
ground truth segmentation. The truth for each image iI  is given in 
the form of iG , which is a label map indicating the exact 
class boundaries.

The Dice coefficient and Jaccard index are popular metrics for 
evaluating the quality of image segmentation, particularly in multi-
class segmentation problems.

The Dice coefficient is calculated as follows (Shamir et  al., 
2019) Equation 4:
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The D  estimates the overlap between the predicted segmentation S( iI ) 
and the truth iG . The aim is to maximize the D  for all images in the set 𝐼.

The Jaccard index measures the proportion of overlap between the 
predicted and true classes in relation to their combination (Costa, 2021) 
Equation 5:
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where J is the Jaccard index, S( iI ) is the predicted segmentation, 
and iG  is the ground truth segmentation. The aim is to maximize the 
J  for all images in the set 𝐼.

Thus, the main mathematical aim is to solve the following 
optimisation problem Equation 6:
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where S is a segmentation function that takes an input image and 
outputs a segmentation map; n is the number of images in the dataset; 

( )( ),i iD S I G  is the Dice Coefficient that estimates the similarity 
between the predicted segmentation ( )iS I  and the ground truth 
segmentation iG  for the i-th image; ( )( ),i iJ S I G  is the Jaccard index 
for the i-th image. By explicitly formulating the problem in 
mathematical terms, we emphasize the theoretical foundation of our 
approach. This formulation emphasizes the aim of improving the 
model’s segmentation accuracy by maximizing the values of both the 
Dice coefficient and the Jaccard index.

4 Experiments and results

4.1 Experimental setup and dataset details

The research was conducted using the Google Colab environment, 
which provides access to high-performance computing resources 

FIGURE 1

Architecture for model training for chest X-ray image segmentation.
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without the need to use your hardware. This ensured efficient 
performance of computations related to deep learning, as well as 
training models with high-performance requirements. To accelerate 
the computations, an NVIDIA T4 GPU with 15 GB of video memory 
was used, which significantly increased the speed of neural network 
training and the efficiency of task execution.

Python (version 3.x) was chosen as the main programming 
language for the experiments, as it supports a wide range of 
libraries for scientific computing and machine learning. To build 
and train the U-Net model, we used the TensorFlow library, which 
provides effective tools for working with neural networks, 
including GPU-optimized operations and flexible data 
management. The OpenCV library was used to process medical 
images, allowing for filtering, transformations, and 
contour detection.

Libraries were used for data processing: NumPy for numerical 
calculations and manipulations with tensors, SciPy for complex 
mathematical operations and optimization, Pandas for analysis and 
processing of structured data, and Matplotlib for visualization of 
image preprocessing and segmentation results. This configuration 
ensured efficient workflow organization for medical image 
segmentation, combining deep learning and computer vision methods 
with hardware acceleration.

The study used the JSRT dataset (JSRT Database, 2024), which 
was created by the Japan Society of Radiological Technology and is 
one of the classic datasets for analyzing CXR. It is widely used in 
medical imaging research, especially for detection and segmentation 
problems. The dataset includes 246 high-resolution CXRs. The images 
have a size of 2048×2048 pixels, which provides high detail 
for analysis.

The SCR (Segmentation in Chest Radiographs) dataset (van 
Ginneken, 2024) is a supplement to the JSRT dataset specifically 
designed for segmentation problems. It is designed to provide 
segmentation masks that can be used for training and testing deep 
learning models. For each image from JSRT, SCR provides 
corresponding masks that show the location and contours of key 
anatomical structures such as lungs, heart, and collarbones. The masks 
are provided in a 1024×1024 TIF format.

Figure 1 shows a flowchart illustrating the sequence of processing 
the X-ray images and masks. The data processing process for medical 
image segmentation in this study involves a complex sequence of 
steps, each of which is critical to preparing the data and ensuring 
optimal performance of the segmentation model. Below is a detailed 
description of each step:

 1. Data download.
 • The initial stage of downloading high-resolution CXR and 

associated masks.
 2. Combine mask.

 • Separate masks for different anatomical structures (left and 
right lungs, clavicles) are combined into one mask for each 
structure to simplify the segmentation process. An additional 
background channel is created for high-quality segmentation.

 3. Edge Detection.
 • Edge detection algorithms such as Sobel and Scharr filters are 

applied to enhance the visibility of anatomical boundaries, as 
these methods effectively highlight transitions in intensity, 
which is essential for delineating structures in medical imaging.

 4. Augmentation.
 • Augmentation methods are used to increase the model’s 

robustness to variations in new images. In this case, the image 
and the mask are rotated by a certain angle in the range from 
−5 ̊ to 5 ̊, except for 0 ̊. After data augmentation, the size of the 
dataset contained 492 images.

 5. Preprocessing.
 • All images and masks are resized to 512 × 512. This is 

important to ensure that all images are processed equally by 
the model. Image pixel values ( ),I i j  are normalized to the 
range from 0 to 1: ( )≤ ≤0 , 1I i j .

 6. Separation into training and test samples.
 • The dataset is divided into training and test sets in the ratio 

of 80:20.
 7. Model training.

 • Using preprocessed and supplemented data, the U-Net neural 
network model is trained. During the training, the model 
learns to associate certain pixel patterns of X-ray images with 
corresponding mask patterns indicating different 
anatomical structures.

 8. Segmentation.
 • After training, the model is used to segment new X-ray images. 

It applies the learned patterns to predict anatomical structures 
in the images, creating segmentation masks as an output.

Several experiments were conducted to analyze the impact of edge 
detection methods on the performance of the medical image 
segmentation model. First, the U-Net model was trained on the 
original images without applying any edge enhancement techniques. 
This allowed us to establish a baseline for comparing the 
model’s performance.

Next, we applied one of the edge detection methods, the Sobel 
algorithm, to the images before training the model. Images with 
enhanced edges were used to train the model, and then key 
performance metrics such as the Dice and Jaccard coefficients were 
calculated to evaluate the segmentation accuracy. After that, the 
process was repeated with another edge detection method, namely the 
Scharr algorithm, applying it to the input images. After training the 
model on the resulting images, the metrics are again measured to 
compare the performance of the different approaches.

4.2 Ablation experiments: impact of edge 
detection on segmentation

The segmentation model was trained for 400 epochs using the 
Polynomial Decay algorithm to reduce the learning rate. This method 
allowed us to gradually reduce the learning rate with each epoch, 
which contributed to better convergence to the minimum of the loss 
function during model training. The model training process lasted 
about 2 h. The effectiveness of the training process can be analyzed 
based on the changes in the loss function and accuracy, which are 
presented in Figure 2.

At the beginning of training, a rapid decrease in the loss function 
is observed (Figure  2a), indicating that the model quickly learns 
meaningful features from the data. After this initial drop, the loss 
stabilizes at a low level, suggesting that the model reaches an optimal 
state. However, periodic fluctuations are noticeable, which may 
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FIGURE 3

An example of model prediction without using edge detection methods.

be caused by variations in the complexity of different training batches. 
These peaks indicate moments when the model encounters more 
challenging examples, possibly leading to temporary increases in 
error. The accuracy curve (Figure 2b) shows a generally increasing 
trend, reaching high values. However, sharp declines in accuracy are 
observed throughout training. These fluctuations could be caused by 
batch variability or overfitting to certain parts of the training set. 
Despite these occasional drops, the overall accuracy stabilizes at a high 
level, indicating that the model successfully generalizes across most of 
the dataset. To further assess the quality of the model’s predictions, 
Figure  3 presents a visual comparison between the ground truth 
segmentation and the predicted masks.

The predicted segmentation mask closely resembles the original 
mask; however, the contours of the anatomical structures appear less 
distinct. This observation aligns with the quantitative results, 
confirming that the absence of edge detection methods reduces 
segmentation precision. The blurry contours in the predicted mask 
indicate that the model has difficulty defining sharp anatomical 
boundaries, particularly for smaller structures like the clavicles. These 
findings suggest that additional preprocessing techniques, such as 
edge detection, may be beneficial in improving segmentation accuracy.

The segmentation model was similarly trained for 400 epochs 
using the Polynomial Decay algorithm to reduce the learning rate. 
Figure 4 consists of two subfigures: (a) training and validation loss, 

and (b) training and validation accuracy, illustrating the changes in 
the loss function and accuracy over the training process, 
demonstrating the model’s learning behavior and 
performance stabilization.

A noticeable sharp drop in losses at the beginning of the training 
indicates that the model quickly adapts to the training data. Following 
this rapid decline, the losses stabilize, with occasional peaks suggesting 
instances of increased error, possibly due to challenging cases in the 
dataset. At the start of training, the accuracy graph exhibits large 
fluctuations, indicating that the model is highly sensitive to variations 
in the data. After approximately 80 epochs, the accuracy stabilizes at 
a high level, with occasional minor drops, demonstrating the model’s 
ability to generalize effectively.

Figure 5 provides a comparative visualization of the model’s 
segmentation results, showcasing both the predicted masks and 
their overlay with the original X-ray images. The predicted masks 
align closely with the original masks, confirming the high quality 
of the model’s segmentation. Furthermore, when overlaid on the 
X-ray images, the segmented structures correctly follow anatomical 
boundaries, demonstrating the model’s effectiveness in 
distinguishing different regions. The use of the Sobel method 
contributes to sharper contours, which is particularly evident 
when compared to segmentation results without edge 
enhancement. This highlights the advantage of integrating edge 

FIGURE 2

Training results of the model without using edge detection methods: (a) training and validation loss; (b) training and validation accuracy.
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detection techniques into deep learning-based medical 
image segmentation.

The segmentation model was similarly trained for 400 epochs, 
using the Polynomial Decay algorithm to reduce the learning rate. 
Figure 6 presents the variations in the loss function and accuracy 
throughout the training process.

The results depicted in Figure 6a indicate that the training and 
validation loss initially decrease sharply, followed by a stabilization 
phase with occasional spikes. These spikes may correspond to 
instances where the model encounters new or more challenging 
samples in the dataset. This behavior suggests that the model adapts 
dynamically to the variability in training data, improving its 
generalization capabilities over time (Figure  6b) illustrates the 
accuracy progression during training. At the early training stages, 
significant instability is observed, which could be  attributed to 
sensitivity to weight initialization or the complexity of the dataset. 
However, after the initial fluctuations, the accuracy stabilizes at a high 
level, indicating that the model effectively learns the segmentation 
task. Figure 7 presents an example of model predictions using the 
Scharr method. The predicted masks demonstrate a high level of 
agreement with the original ground-truth masks. The lungs and heart 
segmentation exhibit some minor contour irregularities, yet the 
overall result is visually superior to segmentation performed without 
edge detection. The enhanced delineation of structures suggests that 

integrating edge detection helps in refining the model’s performance 
by emphasizing boundaries and reducing noise, leading to better 
anatomical segmentation.

Table  1 provides a comparative analysis of the segmentation 
performance across different anatomical structures using three 
different approaches: the baseline model (without edge detection), and 
the Sobel and Scharr edge detection methods. The performance 
metrics accuracy, Dice coefficient, and Jaccard index are presented for 
each anatomical class: lungs, heart, and clavicles. This allows for a 
detailed evaluation of how each edge detection technique affects the 
segmentation results, particularly for smaller structures like 
the clavicles.

As shown in Table 1, the Sobel edge detection method consistently 
outperforms both the baseline model and the Scharr method 
regarding accuracy, Dice coefficient, and Jaccard index across all 
anatomical structures. Notably, the Sobel method significantly 
improves segmentation of the lungs and heart, yielding high values for 
both Dice and Jaccard metrics. For clavicles, while the Sobel method 
also shows an improvement, its segmentation remains less precise 
compared to the larger structures, likely due to the clavicles’ smaller 
size and less distinct edges.

The Scharr method, on the other hand, demonstrates a 
noticeable improvement over the baseline model, particularly for the 
clavicles, although its performance still falls slightly behind the Sobel 

FIGURE 4

Training results of the model using the Sobel method: (a) training and validation loss; (b) training and validation accuracy.

FIGURE 5

An example of model prediction using the Sobel method.
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method. Despite this, the accuracy for the clavicles remains the 
highest among all three methods, suggesting that the Scharr method 
is effective for structures with more explicit boundaries but may 
require further refinement for smaller or more complex anatomical 
structures. Overall, these results highlight the benefits of 
incorporating edge detection techniques to refine segmentation 
boundaries, with Sobel providing the most consistent improvements 
across the board.

Overall, the results indicate that the Scharr method effectively 
improves segmentation accuracy while maintaining computational 

efficiency. However, further fine-tuning and additional post-
processing techniques may be beneficial for refining the segmentation 
of complex structures such as the clavicles.

The results of experiments with edge detection using the Sobel 
and Scharr methods showed an improvement in segmentation 
accuracy, in particular, in detecting organ boundaries. However, 
despite the improvement, there are still artifacts that affect the 
segmentation accuracy. In future experiments, we  will focus on 
applying additional methods to reduce these artifacts and improve 
segmentation results.

FIGURE 6

Training results of the model using the Scharr method: (a) training and validation loss; (b) training and validation accuracy.

FIGURE 7

An example of model prediction using the Scharr method.

TABLE 1 Comparison of segmentation results without edge detection methods and with the use of Sobel and Scharr methods.

Class Edge detection method Accuracy Dice coefficient Jaccard index

Lungs

No edge detection 98.52 97.46 95.07

Sobel 99.26 98.88 97.54

Scharr 98.81 98.19 96.25

Heart

No edge detection 99.08 94.78 90.62

Sobel 99.47 96.96 94.14

Scharr 99.26 96.63 92.54

No edge detection 99.52 88.06 78.84

Clavicles
Sobel 99.79 94.43 89.57

Scharr 99.66 91.72 85.04
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4.3 Comparative assessment of edge 
detection methods and validation 
strategies in segmentation

To further assess the impact of edge detection methods on 
segmentation accuracy, additional experiments were conducted using 
the COVID-19 Radiography Database (Agarwal et al., 2024) and the 
Shenzhen Hospital X-ray Set (Raddar, n.d.). The objective was to 
determine whether edge detection methods, specifically Sobel and 
Scharr, introduce artifacts that negatively affect segmentation, 
particularly in small datasets.

To evaluate the potential artifacts caused by edge detection, 
preliminary contour detection was performed using the Sobel and 
Scharr algorithms. The original images were compared with their 
processed versions, and changes in frequency components were 
analyzed. The results indicated that in some cases, edge detection led 
to noise amplification and over-emphasis on small objects, including 
minor artifacts or contours not belonging to primary 
anatomical structures.

Some artifacts, particularly in regions with small or poorly 
defined structures (e.g., clavicles), were mitigated by additional 
filtering techniques such as CLAHE (Contrast Limited Adaptive 
Histogram Equalization) (Yussof et al., 2022). Furthermore, adaptive 
thresholding (Roy et al., 2014) was applied post edge detection to 
minimize the adverse effects of artifacts. This approach reduced noise 
by enhancing only the most significant contours while preventing 
over-segmentation of minor elements, which can introduce 
segmentation errors. The CLAHE method was employed to improve 
image contrast, effectively compensating for uneven illumination and 
enhancing local details, which is particularly beneficial for medical 
imaging. Adaptive thresholding helped suppress noise and artifacts 
resulting from edge detection, leading to more precise delineation of 
anatomical structures.

Experiments demonstrated that adaptive thresholding 
significantly reduced the number of artifacts and improved 
segmentation accuracy. A comparative analysis of segmentation 
performance with and without thresholding is presented in Table 2.

These findings suggest that adaptive thresholding effectively 
mitigates the negative impact of artifacts while preserving the benefits 
of edge detection. The results obtained from the Shenzhen Hospital 
X-ray Set further validate the robustness of this approach, 
demonstrating improved segmentation accuracy across 
different datasets.

Additional numerical experiments confirmed that while edge 
detection enhances contour visibility, it may also introduce noise, 
particularly in small structures. However, adaptive thresholding 
mitigates these effects by refining the most critical contours and 
reducing over-segmentation of minor artifacts. This approach ensures 
a balance between contour enhancement and artifact suppression, 
ultimately improving segmentation performance in medical 
imaging applications.

For evaluating the stability and reliability of the results, the 
Shenzhen Hospital X-ray Set was chosen. This dataset is important for 
chest radiograph (CXR) analysis and was selected due to its diversity 
and ability to provide generalized results when applied to various 
types of medical X-ray images. The Shenzhen Hospital X-ray 
Set allows for assessing the model’s ability to adapt and its robustness 
when applied to images of different origins and characteristics.

To evaluate the stability of the results, a 10-fold cross-validation 
was performed on the Shenzhen Hospital X-ray Set. This process 
allowed testing whether the model’s accuracy was maintained across 
different data subsets. Each of the 10 splits provided independent 
model testing, enabling the calculation of average accuracy, Dice 
coefficient, and Jaccard index across all splits. The results of the 10-fold 
cross-validation for both Sobel and Scharr methods are shown in 
Table 3.

TABLE 2 Segmentation results for different edge detection methods with adaptive thresholding on two datasets.

Edge 
detection 
method

Class Accuracy (%) 
(COVID-19 

radiography)

Dice 
coefficient 
(COVID-19 

radiography)

Jaccard index 
(%) (COVID-19 
radiography)

Accuracy 
(%) 

(Shenzhen 
hospital)

Dice 
coefficient 
(Shenzhen 
hospital)

Jaccard 
index (%) 

(Shenzhen 
hospital)

No edge 

detection
Lungs 98.52 97.46 95.07 97.94 96.48 93.56

Sobel + adaptive 

thresholding
Lungs 99.14 98.21 96.89 98.46 97.11 94.63

Scharr + 

adaptive 

thresholding

Lungs 99.32 98.55 97.12 98.64 97.35 94.94

TABLE 3 Results of 10-fold cross-validation for the Sobel and Scharr methods (Shenzhen hospital X-ray set).

Class Accuracy (%) 
(Sobel)

Accuracy (%) 
(Scharr)

Dice coefficient 
(Sobel)

Dice coefficient 
(Scharr)

Jaccard 
index (%) 
(Sobel)

Jaccard 
index (%) 
(Scharr)

Lungs 99.12 98.92 98.62 97.75 97.04 95.80

Heart 99.30 99.12 97.12 96.01 94.54 93.75

Clavicles 99.78 99.63 94.60 93.42 89.84 88.57
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Stratification was also applied when splitting the data into training 
and test sets for both methods. This ensured that the class proportions 
were preserved in each subset, which is crucial for ensuring a balanced 
representation of all classes during testing. Stratification ensures that 
each class is adequately represented, reducing the potential for biased 
results due to uneven class distribution in the sample. The results of 
applying stratification for both Sobel and Scharr methods are 
presented in Table 4.

The results showed that the application of these strategies 
improves the stability of the results and allows for a better assessment 
of the overall model performance for both methods. The use of 
stratification helped maintain class balance in the subsets, which is 
particularly important for medical images where certain classes may 
be underrepresented. This ensures more even training of the model 
and enhances the accuracy and stability of the results.

5 Discussion

5.1 Segmentation performance on JSRT + 
SCR dataset

Table 5 presents the segmentation performance of the proposed 
method and baseline approaches on the JSRT + SCR dataset, which was 
used for both training and evaluation. This provides a controlled 
comparison within the same experimental setup, allowing us to quantify 
the direct improvements introduced by edge detection techniques.

The results in Table 5 demonstrate that the integration of the Sobel 
filter with U-Net consistently outperforms the baseline U-Net model 
across all anatomical structures. While these results confirm the 
effectiveness of edge detection, an independent evaluation is necessary 
to validate the generalization capability of the proposed approach.

5.2 Generalization to an independent 
dataset

To address this, additional testing was conducted on an external 
dataset (Shenzhen Hospital X-ray Set), as shown in Table 6.

To verify the generality of the proposed method, all models were 
tested on an independent dataset. The results confirm that the 
U-Net + Sobel approach maintains the highest segmentation accuracy 
for all evaluated anatomical structures. This supports the claim that 
edge detection improves boundary accuracy, especially in complex 
anatomical regions such as clavicles. The use of an external dataset 
ensures that the observed improvements are not dataset specific, but 
rather reflect the robustness of the proposed approach.

5.3 Research questions analysis

Next, we  will analyze how the results obtained in the study 
correspond to the research questions posed.

RQ1: The results obtained with the Sobel and Scharr filters 
confirm the importance of integrating these methods into the U-Net 
model. Integrating the Sobel filter resulted in significant improvements 
in all metrics for lung, heart, and clavicle segmentation compared to 
the baseline U-Net model.

RQ2: Comparison of the proposed approach with other state-of-
the-art methods showed that the U-net + Sobel filter method 
outperforms all categories for all anatomical structures, including 
lung, heart, and clavicle segmentation.

RQ3: The results of the clavicle segmentation indicate that although 
the proposed method improves accuracy compared to the baseline 
U-Net model, further improvement is needed for this region. This can 
be explained by the variability of the anatomical structures in this area 
and the insufficient contrast between cellular structures, which requires 
additional methods to more accurately account for these features.

5.4 Limitations

In this study, the proposed method was compared with both the 
baseline U-Net model and its modifications (U-Net++, RU-Net), 
which are among the most widely used architectures for medical 
image segmentation. The comparative analysis demonstrated that the 
integration of edge detection techniques improves segmentation 
accuracy, particularly in boundary delineation. While further 

TABLE 4 Results with stratification for the Sobel and Scharr methods (Shenzhen hospital X-ray set).

Class Accuracy (%) 
(Sobel)

Accuracy (%) 
(Scharr)

Dice coefficient 
(Sobel)

Dice coefficient 
(Scharr)

Jaccard 
index (%) 
(Sobel)

Jaccard 
index (%) 
(Scharr)

Lungs 99.10 98.82 98.54 97.60 96.92 95.61

Heart 99.36 99.20 96.80 95.89 94.05 93.55

Clavicles 99.75 99.55 93.87 92.94 88.99 87.87

TABLE 5 Summary of X-ray image segmentation results using different edge detection methods.

Method Lungs Heart Clavicles

Acc Dice Jaccard Acc Dice Jaccard Acc Dice Jaccard

U-net 98.52 97.46 95.07 99.08 94.78 90.62 99.52 88.06 78.84

U-net + Sobel filter 99.26 98.88 97.54 99.47 96.96 94.14 99.79 94.43 89.57

U-net + Scharr filter 98.81 98.19 96.25 99.26 96.63 92.54 99.66 91.72 85.04

The bold values in the table represent the highest accuracy (Acc), Dice coefficient, and Jaccard index for each anatomical region (Lungs, Heart, and Clavicles) among the tested methods.
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comparisons with attention-based and Transformer-based models 
could be considered in future research, the current results already 
provide strong evidence of the effectiveness of the proposed approach.

To validate the significance of the improvements, a paired t-test 
was conducted between the proposed U-Net + Sobel method and 
the baseline U-Net model. The results confirmed that the 
improvements in Dice coefficient were statistically significant 
(p < 0.05), demonstrating that the observed enhancements are not 
due to random variations but rather to the integration of edge 
detection techniques.

5.5 Future research directions

Additional preprocessing steps, such as filtering using contour 
detectors, can significantly affect the overall execution time of the 
segmentation algorithm. In our study, two filters were used to detect 
contours before the main segmentation stage: the Sobel filter and the 
Scharr filter. Although these steps increase the preprocessing time, 
their role in improving segmentation accuracy, in particular, in 
improving the visibility of anatomical structure boundaries, 
is significant.

To evaluate the impact of additional preprocessing steps on the 
runtime, we conducted a series of tests comparing the processing 
time with and without the use of the contouring step. The results 
showed that the processing time with the Sobel filter for contouring 
increased by 14.8% compared to the baseline method, and the 
processing time with the Scharr filter increased by 17.6%. For 
example, for one of the test images, the segmentation time without 
preprocessing was 2.5 s, with the Sobel filter – 2.87 s, and with the 
Scharr filter – 2.94 s.

The overall execution time of the method with preprocessing 
steps remained at an acceptable level for practical applications. 
However, future work should focus on optimizing preprocessing 
time while maintaining segmentation quality. One potential 
approach could involve using more efficient implementations of edge 
detection algorithms or integrating lightweight attention 
mechanisms to enhance feature extraction without significant 
computational overhead.

6 Conclusion

In this study, an integration strategy combining edge detection 
techniques with a deep learning model was implemented to 
enhance medical image segmentation. The results confirmed that 
incorporating Sobel and Scharr filters into the U-Net architecture 

significantly improves segmentation accuracy, particularly in 
delineating anatomical boundaries in chest X-ray images. The 
Sobel method proved to be the most effective in reducing artifacts, 
while the Scharr filter showed potential for detecting finer 
structures. The proposed approach demonstrated strong 
generalizability, validated on an independent dataset (Shenzhen 
Hospital X-ray Set).

Future research should focus on exploring the applicability of this 
approach to other modalities, such as MRI and CT, ensuring its 
robustness across diverse clinical settings. Additionally, further 
analysis of the impact of imaging artifacts and noise is necessary to 
refine preprocessing techniques. Furthermore, the reliance on 
predefined edge detection filters may limit adaptability to varying 
image qualities, suggesting the need for trainable edge detection 
mechanisms. Clinical validation is also essential to confirm the 
practical applicability of this method. Future work should also 
concentrate on enhancing model explainability through post-hoc 
visualization techniques to improve interpretability for medical 
professionals (Chumachenko and Yakovlev, 2025).

Future studies should investigate hybrid architectures, such as 
Transformer-based models, to further enhance performance. The 
proposed approach offers a promising direction for medical imaging 
applications, with potential benefits for disease diagnosis, treatment 
planning, and patient monitoring.
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TABLE 6 Comparison of segmentation methods on the independent Shenzhen hospital X-ray set dataset.

Method Additional algorithms Dice (Lungs) Dice (Heart) Dice (Clavicles)

Proposed (U-Net + Sobel) Sobel 98.62 97.12 94.60

Proposed (U-Net + Scharr) Scharr 97.75 96.01 93.42

Baseline U-Net None 96.48 94.76 88.06

U-Net++ (own implementation) Attention 97.89 96.03 92.80

RU-Net (own implementation) Residual blocks 97.50 95.60 91.50

The bold values represent the highest Dice coefficient (Dice) for each anatomical region (Lungs, Heart, Clavicles) among the tested methods.

https://doi.org/10.3389/frai.2025.1522730
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Mochurad 10.3389/frai.2025.1522730

Frontiers in Artificial Intelligence 16 frontiersin.org

Acknowledgments

The author would like to thank the reviewers for their constructive 
and concise recommendations, which improved the presentation of 
the materials, and the Department of Artificial Intelligence Systems 
for their support.

Conflict of interest

The author declares that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Agarwal, R., Ghosal, P., Sadhu, A. K., Murmu, N., and Nandi, D. (2024). Multi-scale 

dual-channel feature embedding decoder for biomedical image segmentation. Comput. 
Methods Prog. Biomed. 257:108464. doi: 10.1016/j.cmpb.2024.108464

Berezsky, O., Liashchynskyi, P., Pitsun, O., and Izonin, I. (2024). Synthesis of 
convolutional neural network architectures for biomedical image classification. Biomed. 
Signal Process. Control 95:106325. doi: 10.1016/j.bspc.2024.106325

Boulaaras, S. (2020). Polynomial decay rate for a new class of viscoelastic Kirchhoff 
equation related with Balakrishnan-Taylor dissipation and logarithmic source terms. 
Alex. Eng. J. 59, 1059–1071. doi: 10.1016/j.aej.2019.12.013

Bransby, K. M., Slabaugh, G., Bourantas, C., and Zhang, Q. (2023). “Joint dense-point 
representation for contour-aware graph segmentation” in Medical image computing and 
computer assisted intervention – MICCAI 2023. eds. H. Greenspan, A. Madabhushi, P. 
Mousavi, S. Salcudean, J. Duncan and T. Syeda-Mahmoodet al., Lecture 
Notes in Computer Science, vol. 14222 (Cham: Springer Nature Switzerland),  
519–528.

Breesam, A. M., Adnan, S. R., and Ali, S. M. (2024). Segmentation and classification 
of medical images using artificial intelligence: a review. Al-Furat J. Innov. Electr. Comput. 
Eng. 3, 299–320. doi: 10.46649/fjiece.v3.2.20a.29.5.2024

Chavan, M., Varadarajan, V., Gite, S., and Kotecha, K. (2022). Deep neural network 
for lung image segmentation on chest X-Ray. Technologies 10:105. doi: 
10.3390/technologies10050105

Chumachenko, D., and Yakovlev, S. (2025). Artificial intelligence applications in 
public health. Computation 13:53. doi: 10.3390/computation13020053

Costa, Luciano Da F. (2021). Further generalizations of the Jaccard index. arXiv. 
Available online at: http://arxiv.org/abs/2110.09619.

De Fauw, J., Ledsam, J. R., Romera-Paredes, B., Nikolov, S., Tomasev, N., Blackwell, S., 
et al. (2018). Clinically applicable deep learning for diagnosis and referral in retinal 
disease. Nat. Med. 24, 1342–1350. doi: 10.1038/s41591-018-0107-6

Gaggion, N., Mansilla, L., Mosquera, C., Milone, D. H., and Ferrante, E. (2023a). 
Improving anatomical plausibility in medical image segmentation via hybrid graph 
neural networks: applications to chest X-Ray analysis. IEEE Trans. Med. Imaging 42, 
546–556. doi: 10.1109/TMI.2022.3224660

Gaggion, N., Vakalopoulou, M., Milone, D. H., and Ferrante, E. (2023b). “Multi-center 
anatomical segmentation with heterogeneous labels via landmark-based models” in In 
2023 IEEE 20th international symposium on biomedical imaging (ISBI) (Cartagena, 
Colombia: IEEE), 1–5.

Hadinata, P. N., Simanta, D., Eddy, L., and Nagai, K. (2023). Multiclass segmentation 
of concrete surface damages using U-net and DeepLabV3+. Appl. Sci. 13:2398. doi: 
10.3390/app13042398

Hasan, M. J., Ahmad, W. S. H. M. W., Fauzi, M. F. A., Lee, J. T. H., Khor, S. Y., 
Looi, L. M., et al. (2024). Real-time segmentation and classification of whole-slide 
images for tumor biomarker scoring. J. King Saud Univ. Comput. Inform. Sci. 36:102204. 
doi: 10.1016/j.jksuci.2024.102204

Honchar, O., Ashcheulova, T., Chumachenko, T., and Chumachenko, D. (2025). Early 
prediction of long COVID-19 syndrome persistence at 12 months after hospitalisation: 
a prospective observational study from Ukraine. BMJ Open 15:e084311. doi: 
10.1136/bmjopen-2024-084311

Jafar, A., Hameed, M. T., Akram, N., Waqas, U., Kim, H. S., and Naqvi, R. A. (2022). 
CardioNet: automatic semantic segmentation to calculate the cardiothoracic 
ratio for cardiomegaly and other chest diseases. J. Pers. Med. 12:988. doi: 
10.3390/jpm12060988

JSRT Database. JSRT Database | Japanese Society of Radiological Technology. (2024). 
Available online at: http://db.jsrt.or.jp/eng.php.

Kovtun, V., Zaitseva, E., Levashenko, V., Grochla, K., and Kovtun, O. (2023). Small 
stochastic data compactification concept justified in the entropy basis. Entropy 25:1567. 
doi: 10.3390/e25121567

Kumarasinghe, H., Kolonne, S., Fernando, C., and Meedeniya, D. (2022). U-net based 
chest X-Ray segmentation with ensemble classification for Covid-19 and pneumonia. 
Int. J. Online Biomed. Eng. 18, 161–175. doi: 10.3991/ijoe.v18i07.30807

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et al. 
(2017). A survey on deep learning in medical image analysis. Med. Image Anal. 42, 
60–88. doi: 10.1016/j.media.2017.07.005

Liu, W., Luo, J., Yang, Y., Wang, W., Deng, J., and Liang, Y. (2022). Automatic lung 
segmentation in chest X-Ray images using improved U-net. Sci. Rep. 12:8649. doi: 
10.1038/s41598-022-12743-y

Lyu, Y., Huo, W.-L., and Tian, X.-L. (2021). RU-net for heart segmentation from CXR. 
J. Phys. Conf. Ser. 1769:012015. doi: 10.1088/1742-6596/1769/1/012015

Ma, J., He, Y., Li, F., Han, L., You, C., and Wang, B. (2024). Segment anything in 
medical images. Nat. Commun. 15:654. doi: 10.1038/s41467-024-44824-z

Ma, Ling, Hou, Xiaomao, and Gong, Zhi. (2021). Multi-path aggregation U-net for 
lung segmentation in chest radiographs. Durham, NC, USA: Research Square.

Meedeniya, D., Kumarasinghe, H., Kolonne, S., Fernando, C., Díez, I. D. L. T., and 
Marques, G. (2022). Chest X-Ray analysis empowered with deep learning: a systematic 
review. Appl. Soft Comput. 126:109319. doi: 10.1016/j.asoc.2022.109319

Mochurad, Lesia, and Dereviannyi, AndriiAntoniv. (2021). “Classification of X-Ray 
images of the chest using convolutional neural networks,” 4th International Conference 
on Informatics and Data-Driven Medicine. Valencia, Spain: IDDM 2021, 269–282.

Mochurad, Lesia, Lema, Halyna, and Vilhutska, Roksolana. (2022). “Parallel 
algorithms assessment usage of Image’s segmentation quality in medicine,” 6th 
International Conference on Computational Linguistics and Intelligent Systems, 
Gliwice, Poland: COLINS. 2022, 1509–1519.

Müller, D., and Kramer, F. (2021). MIScnn: a framework for medical image 
segmentation with convolutional neural networks and deep learning. BMC Med. 
Imaging 21:12. doi: 10.1186/s12880-020-00543-7

Nimalsiri, W., Hennayake, M., Rathnayake, K., Ambegoda, T. D., and Meedeniya, D. 
(2023). “CXLSeg dataset: chest X-Ray with lung segmentation” in 2023 international 
conference on cyber management and engineering (CyMaEn) (Bangkok, Thailand: 
IEEE), 327–331.

Oliinyk, A., Alsayaydeh, J. A. J., Yusof, M. F. B., Shkarupylo, V., Artemchuk, V., and 
Herawan, S. G. (2024). Compliance source authentication technique for person 
adaptation networks utilizing deep learning-based patterns segmentation. IEEE Access 
12, 99045–99057. doi: 10.1109/ACCESS.2024.3429332

Qian, W. (2024). Edge detection in X-Ray images of Drill mast welds based on an 
improved Scharr operator. Welding Int. 38, 1–8. doi: 10.1080/09507116.2024.2378818

Raddar (n.d.). Tuberculosis Chest X-Rays (Shenzhen). Available online at: https://
www.kaggle.com/datasets/raddar/tuberculosis-chest-xrays-shenzhen.

Rayed, M. E., Islam, S. M. S., Niha, S. I., Jim, J. R., Kabir, M. M., and Mridha, M. F. 
(2024). Deep learning for medical image segmentation: state-of-the-art advancements 
and challenges. Inform. Med. Unlocked 47:101504. doi: 10.1016/j.imu.2024.101504

Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: convolutional networks for 
biomedical image segmentation. arXiv [Preprint]. doi: 10.48550/ARXIV.1505.04597

Roy, P., Dutta, S., Dey, N., Dey, G., Chakraborty, S., and Ray, R. (2014). “Adaptive 
thresholding: a comparative study” in In 2014 international conference on control, 
instrumentation, communication and computational technologies (ICCICCT), 1182–86 
(Kanyakumari District, India: IEEE).

https://doi.org/10.3389/frai.2025.1522730
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1016/j.cmpb.2024.108464
https://doi.org/10.1016/j.bspc.2024.106325
https://doi.org/10.1016/j.aej.2019.12.013
https://doi.org/10.46649/fjiece.v3.2.20a.29.5.2024
https://doi.org/10.3390/technologies10050105
https://doi.org/10.3390/computation13020053
http://arxiv.org/abs/2110.09619
https://doi.org/10.1038/s41591-018-0107-6
https://doi.org/10.1109/TMI.2022.3224660
https://doi.org/10.3390/app13042398
https://doi.org/10.1016/j.jksuci.2024.102204
https://doi.org/10.1136/bmjopen-2024-084311
https://doi.org/10.3390/jpm12060988
http://db.jsrt.or.jp/eng.php
https://doi.org/10.3390/e25121567
https://doi.org/10.3991/ijoe.v18i07.30807
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1038/s41598-022-12743-y
https://doi.org/10.1088/1742-6596/1769/1/012015
https://doi.org/10.1038/s41467-024-44824-z
https://doi.org/10.1016/j.asoc.2022.109319
https://doi.org/10.1186/s12880-020-00543-7
https://doi.org/10.1109/ACCESS.2024.3429332
https://doi.org/10.1080/09507116.2024.2378818
https://www.kaggle.com/datasets/raddar/tuberculosis-chest-xrays-shenzhen
https://www.kaggle.com/datasets/raddar/tuberculosis-chest-xrays-shenzhen
https://doi.org/10.1016/j.imu.2024.101504
https://doi.org/10.48550/ARXIV.1505.04597


Mochurad 10.3389/frai.2025.1522730

Frontiers in Artificial Intelligence 17 frontiersin.org

Shamir, Reuben R., Duchin, Yuval, Kim, Jinyoung, Sapiro, Guillermo, and Harel, 
Noam. (2019). Continuous dice coefficient: a method for evaluating probabilistic 
segmentations. arXiv [Preprint]. Available online at: http://arxiv.org/abs/1906.11031.

Sugino, T., Kawase, T., Onogi, S., Kin, T., Saito, N., and Nakajima, Y. (2021). Loss 
weightings for improving imbalanced brain structure segmentation using fully 
convolutional networks. Healthcare 9:938. doi: 10.3390/healthcare9080938

Ullah, I., Ali, F., Shah, B., El-Sappagh, S., Abuhmed, T., and Park, S. H. (2023). A deep 
learning based dual encoder–decoder framework for anatomical structure segmentation 
in chest X-Ray images. Sci. Rep. 13:791. doi: 10.1038/s41598-023-27815-w

van Ginneken, Bram. (2024). SCR Database. Available online at: https://zenodo.org/
records/7056076.

Wang, J., Li, Z., Jiang, R., and Xie, Z. (2019). “Instance segmentation of anatomical 
structures in chest radiographs” in 2019 IEEE 32nd international 
symposium on computer-based medical systems (CBMS) (Cordoba, Spain: IEEE), 
441–446.

Xu, S., Li, X., Xie, C., Chen, H., Chen, C., and Song, Z. (2021). A high-precision 
implementation of the sigmoid activation function for computing-in-memory 
architecture. Micromachines 12:1183. doi: 10.3390/mi12101183

Yussof, W. N., Wan, J. H., Man, M., Umar, R., Zulkeflee, A. N., Awalludin, E. A., et al. 
(2022). Enhancing moon crescent visibility using contrast-limited adaptive histogram 
equalization and bilateral filtering techniques. J. Telecommun. Inform. Technol. 1, 3–13. 
doi: 10.26636/jtit.2022.155721

https://doi.org/10.3389/frai.2025.1522730
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://arxiv.org/abs/1906.11031
https://doi.org/10.3390/healthcare9080938
https://doi.org/10.1038/s41598-023-27815-w
https://zenodo.org/records/7056076
https://zenodo.org/records/7056076
https://doi.org/10.3390/mi12101183
https://doi.org/10.26636/jtit.2022.155721

	Approach for enhancing the accuracy of semantic segmentation of chest X-ray images by edge detection and deep learning integration
	1 Introduction
	2 Related work
	2.1 Segmentation-only approaches
	2.2 Segmentation followed by classification

	3 Materials and methods
	3.1 Segmentation algorithm for chest X-ray images
	3.2 Edge detection methods
	3.3 U-Net model architecture
	3.4 Evaluation metrics

	4 Experiments and results
	4.1 Experimental setup and dataset details
	4.2 Ablation experiments: impact of edge detection on segmentation
	4.3 Comparative assessment of edge detection methods and validation strategies in segmentation

	5 Discussion
	5.1 Segmentation performance on JSRT + SCR dataset
	5.2 Generalization to an independent dataset
	5.3 Research questions analysis
	5.4 Limitations
	5.5 Future research directions

	6 Conclusion

	References

