AUTHOR=Mutawa A. M. , Alrumaih Ayshah TITLE=Determining the meter of classical Arabic poetry using deep learning: a performance analysis JOURNAL=Frontiers in Artificial Intelligence VOLUME=Volume 8 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2025.1523336 DOI=10.3389/frai.2025.1523336 ISSN=2624-8212 ABSTRACT=The metrical structure of classical Arabic poetry, deeply rooted in its rich literary heritage, is governed by 16 distinct meters, making its analysis both a linguistic and computational challenge. In this study, a deep learning-based approach was developed to accurately determine the meter of Arabic poetry using TensorFlow and a large dataset. Character-level encoding was employed to convert text into integers, enabling the classification of both full-verse and half-verse data. In particular, the data were evaluated without removing diacritics, preserving critical linguistic features. A train–test–split method with a 70–15–15 division was utilized, with 15% of the total dataset reserved as unseen test data for evaluation across all models. Multiple deep learning architectures, including long short-term memory (LSTM), gated recurrent units (GRU), and bidirectional long short-term memory (Bi-LSTM), were tested. Among these, the bidirectional long short-term memory model achieved the highest accuracy, with 97.53% for full-verse and 95.23% for half-verse data. This study introduces an effective framework for Arabic meter classification, contributing significantly to the application of artificial intelligence in natural language processing and text analytics.