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Image classification is a highly significant field in machine learning (ML), especially 
when applied to address longstanding and challenging issues in the biological 
sciences, such as specie recognition and biodiversity conservation. In this 
study, we  present the development of a hybrid machine learning-based tool 
suitable for deployment on mobile devices. This tool is aimed at processing 
and classifying three-dimensional samples of endemic lizard species from the 
Amazon rainforest. The dataset used in our experiment was collected at the 
Museu Paraense Emílio Goeldi (MPEG), Belém-PA, Brazil, and comprises three 
species: (a) Anolis fuscoauratus; (b) Hoplocercus spinosus; and (c) Polychrus 
marmoratus. We compared the effectiveness of four artificial neural networks 
(ANN) for feature extraction: (a) MobileNet; (b) MobileNetV2; (c) MobileNetV3-
Small; and (d) MobileNetV3-Large. Additionally, we evaluated five classical ML 
models for classifying the extracted patterns: (a) Support Vector Machine (SVM); 
(b) GaussianNB (GNB); (c) AdaBoost (ADB); (d) K-Nearest Neighbors (KNN); and 
(e) Random Forest (RF). The performance metrics of all classifiers were very close, 
we used the McNemar’s test on each model’s confusion matrix to evaluate and 
compare their statistical significance. Our best model was a combination of a 
2.9 million parameters MobileNetV3-Small as the feature extractor, with a linear 
kernel-based SVM as the classifier, which achieved accuracy of 0.955, precision 
of 0.948, recall of 0.948, and f1-score of 0.948. The results indicated that the use 
of a small deep learning (DL) model, in combination with a classical ML algorithm, 
emerges as a viable technique for classifying three-dimensional representations 
of lizard species samples. Such an approach facilitates taxonomic identification 
work for professionals in the field and provides a tool adaptable for integration 
into mobile data recording equipment, such as smartphones, and benefiting from 
more morphological features extracted from three-dimensional samples instead 
of two-dimensional images.
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1 Introduction

In the Squamata order, which comprises species with bodies 
covered by scales, among other characteristics, the classification of 
lizards is based on multiple morphological features (Pyron et  al., 
2013). According to (Stewart and Daniel, 1075), these morphological 
characteristics are referred to as microornamentations and are most 
prominent in the dorsal scales of the head, trunk, and tails of each 
individual. Modern biodiversity data collection equipment, such as 
sound recorders, camera traps, and other imaging methods, allow the 
measurement of many parameters, making it possible to extract vast 
amounts of information in a relatively inexpensive manner. This 
technology has become increasingly popular among scientists and 
helps to answer questions such as: (a) Which species occur in a given 
area?; (b) What are their activities/behavior?; and (c) How many 
individuals inhabit the region? (Gomez Villa et al., 2017). The success 
in inventorying and monitoring forest lizard species relies on robust 
monitoring, recognition, and sampling, and currently represents one 
of the most complex tasks in the field of herpetological conservation 
(Bell, 2009).

One of the most used data types in problems involving biodiversity 
conservation with specialized image models is camera trap images 
(Miao et al., 2019). The aim of remote monitoring can range from 
species identification to inferring the abundance and distribution of 
important conservation animals, but these motivations typically share 
a common goal: to classify target species (Chen et al., 2019). This 
interest in remote monitoring is accompanied by several challenges in 
large-scale identification (Chen et al., 2019).

The most recent research in automated identification of animal 
species can be  divided into two distinct types: laboratory-based 
investigation (LBI), and field-based investigation (FBI) (Martineau 
et al., 2017). For LBI, a pre-established image acquisition protocol 
must be followed to standardize the sampling and use of specimens, 
which are typically handled by a specialized biologist. This contrasts 
significantly with FBI, where a mobile device or camera is usually 
employed for the image acquisition process of the individuals 
(Martineau et al., 2017).

In studies of insect classification, for instance, LBI is the most 
commonly used method due to the highly manual handling of 
specimens (Martineau et  al., 2017). On the other hand, the 
identification of mammals and fish is typically accomplished using 
field-recorded images, while automated recognition of plant species 

can benefit from both the controlled environment of a laboratory and 
field conditions (Weinstein, 2018). These studies focus on the use of 
Machine Learning (ML) with Convolutional Neural Networks (CNN), 
which are models specialized in image processing that extract high-
level abstractions from data and are considered the state-of-the-art for 
tasks involving image classification (Wäldchen and Mäder, 2018).

The most common type of algorithm learning used for image 
classification is supervised learning, where input data (samples) are 
fed into the model along with their corresponding labels (class names), 
and the algorithms are trained to map the input information to the 
output label, such as the name of a species, for example (Norouzzadeh 
et al., 2021).

Before the emergence of computer vision (CV) models and 
artificial intelligence (AI) algorithms in general, the process of 
identifying and conserving animal species was and still is, in some 
places, carried out manually with a high dependence on human 
activities, which imposes several limitations on the task (Tuia et al., 
2022). These limitations, mainly physical and cognitive, hinder the 
understanding of species distribution and diversity. For instance, the 
counting of colonies of seabirds and cave-dwelling bats conducted by 
humans tends to significantly underestimate the actual number of 
individuals (Tuia et  al., 2022). This scenario of limitations and 
uncertainties changed with the advent of large-scale AI-driven 
automation of these tasks.

With recent advances in automated image classification and 
information gathering, new approaches have become possible (Pinho 
et al., 2023). Several existing examples demonstrate the applications 
of automatic classification based on deep learning (DL) using 
taxonomic data from different species (Wäldchen and Mäder, 2018). 
Table  1 summarizes recent studies where CV algorithms were 
employed to perform automated species identification on a diverse 
range of other taxonomic datasets (Weinstein, 2018; Tuia et al., 2022; 
Bolon et al., 2022; Durso et al., 2021; Binta Islam et al., 2023).

As can be seen in Table 1, most studies used pre-trained models. 
This is the case because when pre-trained networks are employed 
either as feature extractors or efficiently optimized for the new dataset, 
there exists a strong correlation between the high accuracy achieved 
by the model on its original pre-training phases with its score in the 
new training demand (Kornblith et al., 2019). Thus, incremental or 
transfer learning only requires the pre-trained model to generalize an 
additional predictive pattern that might be present in the dataset while 
retaining its previous optimal weights, often gathered on ImageNet 

TABLE 1 Recent studies employing computer vision algorithms for species classification across various taxonomic groups.

Species Samples Architecture Accuracy Study

Reptiles 386,006 Vision Transformer (ViT) 0.962 Bolon et al. (2022)

Reptiles 82,601 EfficientNet 0.870 Durso et al. (2021)

Lizards & Amphibians 6,045 MobileNetV2 0.820 Gill et al. (2024)

Lizards & Amphibians 2,700 VGG16 0.870 Binta Islam et al. (2023)

Fishes 1,080 Image Processing + SVM 0.942 Sharmin et al. (2019)

Fishes 3,068 U-NET + CNN 0.979 Robillard et al. (2023)

Lizards & Amphibians 828 CNN 0.600 Islam and Valles (2020)

Mammals 326 Mask R-CNN + ResNet101 0.980 Gray et al. (2019)

A total of seven comparable studies where pre-trained state-of-the-art deep learning models were employed on taxonomic datasets of different groups were analyzed in order to provide more 
robustness to our research. The sample size and accuracy score are reported below for each study.
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Large-Scale Visual Recognition Competition (ILSVRC) (Durso 
et al., 2021).

Despite the widespread use of CNNs in taxonomic databases 
(Weinstein, 2018; Tuia et al., 2022; Bolon et al., 2022; Durso et al., 
2021; Binta Islam et al., 2023), our literature review revealed no 
applications of these models to three-dimensional representations 
of Amazonian lizards. In this study, we have developed an open-
source system for the automatic classification of three-dimensional 
samples of Amazonian lizard species, adaptable for deployment on 
mobile equipment such as smartphones. We employed state-of-
the-art DL and ML techniques for image processing and 
classification using the family of CNNs known as MobileNets 
(Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019), 
together with classical ML models, which demonstrated 
exceptional efficiency in similar tasks. Making use of 3D 
representations of specimens as samples turned our approach 
unique, and significantly benefited our models with relevant 
morphological information about each species when compared to 
typical 2D representations as employed by Islam and Valles (2020), 
which used the same family of pre-trained CNNs we used in this 
study, but achieved less accuracy.

2 Materials and methods

2.1 Data collection and sample processing

Data was collected at MPEG, located in Belém, Para, Brazil. 
MPEG is the second-oldest scientific research institution in Brazil, 
founded in 1866, and it houses a local herpetological collection with 
approximately 100,000 specimens of amphibians and reptiles (Da 
Costa Prudente et al., 2019). Three species were selected for collection, 

namely: (a) Anolis fuscoauratus; (b) Hoplocercus spinosus; and (c) 
Polychrus marmoratus; all species found in the Amazon region (Vitt 
et al., 2003; Torres-Carvajal and De Queiroz, 2009; Murphy et al., 
2017). Figure 1 below shows pictures of individuals from each species.

All specimens were preserved in alcohol, and the preservation 
conditions of each sample were a determining factor in selecting 
both the individuals and species chosen for this study. The 
selected individuals were then placed on a black cloth, and 
positioned on the collection bench to mitigate any visual noise 
that could interfere with identification. This simple strategy can 
be  easily replicated in any environment, as in field data 
collection routines.

In recent studies using three-dimensional samples for species 
classification, the use of Light Detection and Ranging (LiDAR), and 
Spectral Imaging (SI) are extensive, particularly in studies using plants 
as specimens (Mäyrä et al., 2021; Nezami et al., 2020; Polonen et al., 
2018). However, these technologies are costly and require highly 
specialized expertise, making them impractical for everyday use by 
experts in both laboratory and field settings. Furthermore, using 
impractical solutions such as LiDAR and SI makes it almost impossible 
to safely and easily reproduce the results, especially in areas where 
research funding is unstable.

As a solution, we adopted smartphone-based image capture from 
the dorsal, lateral, and ventral points of view to compose our samples. 
The use of smartphones offers a cost-effective alternative, enabling 
broader accessibility and usability for species classification. As can 
be seen in Figure 2, three photos of each individual were taken, where 
each will represent one channel of a final RGB-like three-
dimensional sample.

It was necessary to remove some images due to poor quality; a 
total of 80 three-dimensional samples, totaling 240 unique images, 
remained. Among these, there were 49 samples of Anolis fuscoauratus, 

FIGURE 1

The three species selected for this study. (A) Anolis fuscoauratus, (B) Hoplocercus spinosus, (C) Polychurs marmoratus. All the specimens were 
preserved in alcohol, and only individuals with good preservation conditions were selected.

FIGURE 2

A sample of Anolis fuscoauratus, composed of three perspectives. (A) dorsal, (B) lateral, (C) ventral views. The images are converted to grayscale and 
then arranged into a matrix of dimensions 1 x 224 x 224 x 3, with each image occupying one color channel.
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22 samples of Hoplocercus spinosus, and 9 samples of 
Polychrus marmoratus.

Subsequently, all samples were resized to dimensions of 224 × 224 
pixels and standardized to conform to the input layer requirements of 
our Convolutional Neural Network (CNN), which are standard for the 
MobileNet family of models. The dataset was then partitioned into 
training/validation and test sets, adhering to an 80–20% split, 
respectively. This approach was chosen over the inclusion of an 
additional hold-out validation set, with a preference for employing 
cross-validation. The Figure 2 below shows one sample composed of 
different perspectives.

2.2 Data augmentation for addressing class 
imbalance

We used TensorFlow’s (TF) image data generator module (Abadi 
et al., 2016) for data augmentation, where random modifications such 
as Flip, Crop, and Translate, were applied to the samples without altering 
their fundamental characteristics, thus generating new synthetic 
observations in our dataset (Xu et  al., 2023). The outcome of data 
augmentation resulted in an increase from 80 initial three-dimensional 
samples to 3,900 in the training set, balanced between species. This 
increases the robustness of our model on handling different imaging 
conditions in different collection environments. The Figure 3 illustrates 
the data augmentation process.

2.3 Models selection and definition

We selected the class of MobileNet models for developing our 
species identification system. This class consists of highly efficient 
algorithms for mobile CV applications and embedded systems 
(Howard et al., 2017). There are three main MobileNet models: (a) 
MobileNet; (b) MobileNetv2; and (c) MobileNetV3, with the latter 
having two variants, namely: Large and Small (Howard et al., 2017; 
Sandler et al., 2018; Howard et al., 2019).

The first model (MobileNet) is based on depth wise separable 
convolutions, which are a form of factorized convolutions that 
transform a regular convolution operation into depth wise, which 
significantly reduces both computational cost and model size, 
having 4.3 M adjustable parameters, with a lower memory 
footprint in comparison to other major CNNs (Howard et  al., 
2017). The second model (MobileNetV2) introduces the new 
inverted residual with a linear bottleneck module (Sandler et al., 
2018), which expands to a higher dimension a compressed 
low-dimensional representation of the input data and then filters 
it using a lightweight depthwise convolution, having a slightly 
higher memory requirement than MobileNet, with a more robust 
architecture comprised of 3.5 M adjustable parameters. The third 
model (MobileNetV3) features an efficient redesign of the network 
architecture, coupled with a segmentation decoder that optimizes 
resource consumption for both of its variants, the Large, for 
devices with greater availability of resources, having 5.4 M 
adjustable parameters, and the Small, for scenarios with more 
limited processing power, having a total of 2.5 M adjustable 
parameters (Howard et al., 2019).

We used and compared the performance of all available 
MobileNet network variants as feature extractors only. We did not 
retrain the models, and we appended a Global Average Pooling 2D 
layer at the end of each model for dimensionality reduction, and 
then we  replaced their classification layers with classical 
ML algorithms.

The selection of classical ML algorithms was based on the 
criteria that it has to be  commonly applied in research with 
biological databases (Jovel and Greiner, 2021), and 
pre-implemented in Scikit-learn (SKL) (Pedregosa et al., 2008). The 
chosen models were: (a) Support Vector Machine (SVM) with 
linear, rbf, poly kernels; (b) K-Nearest Neighbors (KNN); (c) 
Random Forest (RF); (d) GaussianNB (GNB); and (e) 
AdaBoost (ADB).

We adopted this hybrid approach because there is enough evidence 
showing that using pre-trained models, such as MobileNets as feature 
extractors, can transfer their high accuracies acquired on ILSVRC to 

FIGURE 3

The data augmentation process illustrated. The original image set was split into train and test sets, and then the augmented images were generated for 
the training set. No images from the test set were used to augment data in the training set.
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the new models they compose, without the need for computationally 
expensive retraining (Kornblith et  al., 2019; Sowmya et  al., 2023; 
Michele et al., 2019). Moreover, the composition of a hybrid model with 
a classical algorithm serving as the final classifier drastically reduces the 
likelihood of the model presents overfitting (Michele et al., 2019).

2.4 Feature extraction and dimensionality 
reduction

From the original data, we  generated four new datasets of 
features, each one extracted with a different variant of MobileNet 
(V1, V2, V3-Large, and V3-Small), we  call these full-features 
datasets. To assess the complexity and the effectiveness of feature 
separation across our classes, we  applied the t-distributed 
Stochastic Neighbor Embedding (t-SNE) to each of the full-feature 
datasets. t-SNE is a method that compresses high-dimensional 
data into a two-or three-dimensional map (van der Maaten and 
Hinton, 2008), effectively transforming high cardinality 
information into a lower-dimensional compressed space.

Lastly, we  used the RF algorithm to ascertain the relative 
importance of features within each full-features dataset (Haq et al., 
2019). Subsequently, a significance threshold of 0.01 was applied 
to retain only those features ranking highest in importance. This 
process yielded a subset of 20 columns constituting the top-ranked 
features for each respective full-features dataset.

2.5 Model training and evaluation

For comparison, we trained our ML models on each full-features 
dataset, and also on each 20 top-ranked features dataset. All datasets 
were normalized with MinMaxScaler (Raju et al., 2020). The training 
was cross-validated, with the k-fold and random state parameters set 
to 4, and 42, respectively. For models’ performance evaluation, 
we used a total of five different metrics, namely: (a) accuracy; (b) 
precision; (c) recall; (d) f1-score; and (e) confusion matrix.

2.5.1 Accuracy
Accuracy denotes the ratio of true positives (TP) and true 

negatives (TN), against the overall predictions, also comprised of false 
positives (FP) and false negatives (FN) (Naser and Alavi, 2023). It is 
calculated as follows:

 
+

=
+ + +

TP TNAccuracy
TP TN FP FN

2.5.2 Precision
Precision denotes the ratio of correctly predicted true instances 

over the total number of positively predicted instances (Naser and 
Alavi, 2023). It is calculated as follows:

 
=

+
TPPrecision

TP FP

2.5.3 Recall
Recall denotes the ratio of correctly predicted true instances over 

the total number of positive instances (Naser and Alavi, 2023). It is 
calculated as follows:

 
=

+
TPRecall

TP FN

2.5.4 F1-score
F1-Score is the harmonic mean of precision and recall (Naser and 

Alavi, 2023). It is calculated as follows:

 
− =

+
1 2 PrecisionxRecallF Score x

Precision Recall

2.5.5 Confusion matrix
A confusion matrix presents a summary of correctly and 

misclassified samples of a classification problem (Naser and Alavi, 
2023). The entries of a confusion matrix are all the positive and 
negative predictions described so far.

2.6 Bayesian optimization evaluation

We made an additional evaluation using Bayesian Optimization 
(BO) in an attempt to further improve the best ML model’s 
hyperparameters. By using BO, a surrogate for the model’s objective 
function is created, and a Gaussian Regressor quantifies the 
uncertainty for the surrogate (Frazier, 2018). The formula below 
shows the acquisition function Expected Improvement (EI), adopted 
in this study.

 ( ) =:n nEI x E

The EI tells us how much we expect to improve our best result 
if we try a new set of optimizable parameters x, and it is popular 
due to its multi-modal nature and effective balance between 
exploration and exploitation of the search space for the best set 
of hyperparameters that will produce the lowest error on the 
model (Wang et  al., 2017). The metrics resulting from this 
attempt were compared to the model trained without the 
help of BO.

2.7 Statistical analysis

The McNemar’s test is a statistical test particularly suitable for 
comparing the performances of two classification models on the same 
dataset, assuming a null hypothesis (H0) of no statistical difference 
between the two proportions being compared. The test was used to 
evaluate both model performance and the effectiveness of BO 
throughout this study.

First, we assessed potential performance differences between the 
best-performing models trained with the full-feature dataset, both 
with and without BO. This process was then repeated for the best 
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models trained on the reduced dataset (top  20 features), again 
comparing models with and without BO.

Finally, McNemar’s test was used to determine if there were any 
significant differences between the best models trained with the 
full-feature and reduced datasets, regardless of the use of BO 
during training.

2.8 Classification pipeline technologies

Our open-source pipeline was developed using Python (Rossum, 
1995), the TF DL framework (Abadi et al., 2016), and the SKL ML 
framework (Pedregosa et al., 2008). Images were captured using an 
HTC One M8 smartphone (4MP × 2688 × 1520 440 ppi camera). The 
classification pipeline comprises five main stages:

 • Capture a dorsal photo of the specimen.
 • Capture a lateral photo of the specimen.
 • Capture a ventral photo of the specimen.

 • Compose a three-dimensional sample from the acquired images.
 • Classify the lizard species with our trained model.

3 Results

3.1 Datasets complexity analysis

The complexity of each dataset significantly influenced the 
performance of classical ML algorithms. Figure  4 illustrates the 
differences in clustering for each dataset, as revealed by t-SNE (van 
der Maaten and Hinton, 2008).

Analyses (a) and (c) show good separation between clusters, 
but the samples within each cluster are more dispersed. In 
contrast, analysis (b) reveals greater class overlap, although 
clusters are relatively well-concentrated. Analysis (d), based on 
MobileNetV3-Small-extracted data, demonstrates the optimal 
balance between cluster separation and sample concentration, 
with minimal class overlap.

FIGURE 4

The t-SNE plot for dataset complexity analysis. (A) MobileNet; (B) MobileNet V2; (C) MobileNet V3-Large; and (D) MobileNet V3-Small. The features 
extracted by MobileNet V3-Small demonstrate the most homogeneous and well-separated clusters of data points for all species. The X and Y axes 
represent compressed dimensions.
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3.2 Model performance analysis

The trained models demonstrated similar performance across all 
datasets, indicating that both full-feature and reduced datasets 
successfully captured essential morphological and structural patterns, 
such as microornamentations (Stewart and Daniel, 1075). This 
facilitated model generalization despite variations in the number of 
extracted features. Table  2 presents the top-performing models 
trained with cross-validation using all features extracted by 
MobileNet variants.

The MobileNet V3-Small + Linear SVM classifier consistently 
outperformed other models on full-feature datasets. This superior 
performance might be attributed to the relatively lower complexity 
and clearer class separation of the dataset generated with this 
MobileNet variant, as evidenced by Figure  4. Other datasets 
exhibited greater class overlap and less cluster concentration.

While the dataset with only the 20 top-ranked features 
exhibited reduced homogeneity and class separation, it remained 
representative of the underlying data. Notably, the MobileNet 
V3-Small + Linear SVM classifier again demonstrated comparable 
performance, leading the results on this reduced dataset as well as 
shown in Table 3.

The reduced dataset saw more complex classical ML 
algorithms among the top performers compared to the full-feature 
dataset (Table  2). This suggests a need for increased model 
complexity to compensate for the information loss resulting from 
feature selection.

3.3 Bayesian optimization effectiveness 
analysis and model skill evaluation

McNemar’s test was used to assess statistical differences between 
hybrid models trained with and without Bayesian Optimization (BO), 
using both full-feature and reduced datasets.

For the full-feature dataset, the model trained without BO 
significantly outperformed the BO-trained model (χ2 = 0.0, 

p = 3.05e-5), achieving an accuracy of 0.991, precision of 0.987, recall 
of 0.992, and an F1-score of 0.990 on the test set.

In contrast, for the reduced dataset, the BO-trained model 
showed superior performance (χ2 = 14.0, p = 8.58e-11), with an 
accuracy of 0.955, precision of 0.948, recall of 0.948, and an 
F1-score of 0.948.

Finally, McNemar’s test revealed no significant difference 
between the best-performing full-feature model and the best-
performing reduced-feature model (χ2 = 7.0, p = 0.80361). Thus, 
the less complex model trained with the reduced dataset can 
be safely used. Figure 5 shows the normalized confusion matrix 
for the MobileNetV3-Small + Linear SVM model on the test set.

3.4 Classification pipeline trainable 
parameters

The Table 4 summarizes the trainable parameters of the final 
classification pipeline, which includes a Min-Max scaler and a 
linear kernel SVM.

4 Discussion

This research sought to evaluate the efficacy of classifying 
three-dimensional representations of Amazonian lizard species 
using cutting-edge deep learning algorithms. The aim was to 
create a mobile-ready classification pipeline that could 
be integrated into biodiversity monitoring equipment. The use of 
image triplets, each containing dorsal, lateral, and ventral views 
of the specimens, is a distinctive approach compared to all the 
most recent and comparable studies. Our findings demonstrate 
that this approach is not only feasible but also an efficient means 
of automated classification. Furthermore, our unique dataset, 
collected at MPEG, one of Brazil’s oldest and most renowned 
research institutions, sets this study apart from a substantial 
portion of recent research.

TABLE 2 Cross-validated average performance metrics of classic ML models on each full-features dataset.

Feature Extractor Best model Accuracy Precision Recall F1-score

MobileNetV3-Small Linear SVM 0.974 0.985 0.965 0.973

MobileNetV1 Linear SVM 0.970 0.981 0.949 0.961

MobileNetV2 Linear SVM 0.951 0.964 0.924 0.937

MobileNetV3-Large Linear SVM 0.953 0.969 0.928 0.942

Four models acting as feature extractors were tested together with five different classical machine learning algorithms acting as classifiers. The accuracy, precision, recall, and f1-score for all 
hybrid models, on the full-features dataset, are reported below.

TABLE 3 Cross-validated average performance metrics of classic ML models on each 20 top-ranked features dataset.

Feature Extractor Best model Accuracy Precision Recall F1-score

MobileNetV3-Small Linear SVM 0.968 0.970 0.962 0.965

MobileNetV1 RBF SVM 0.958 0.955 0.936 0.944

MobileNetV3-Large RFC 0.935 0.934 0.923 0.925

MobileNetV2 Linear SVM 0.898 0.905 0.859 0.874

Four models acting as feature extractors were tested together with five different classical machine learning algorithms acting as classifiers. The accuracy, precision, recall, and f1-score for all 
hybrid models, on the 20 top-ranked features dataset, are reported below.
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4.1 Comparative analysis with existing 
research

Although several studies have applied deep learning to reptile 
images (Weinstein, 2018; Tuia et al., 2022; Bolon et al., 2022; Durso 
et al., 2021; Binta Islam et al., 2023), most focus on a broader scope 
of reptiles and amphibians, not specifically lizards (Binta Islam et al., 
2023; Sharmin et al., 2019; Gill et al., 2024). A notable exception is 
(Gill et al., 2024), which used MobileNetV2 to classify an open-access 
dataset of reptiles and amphibians, including lizards as one class. 
Unlike our approach, they treated each image independently, without 
aggregating triplets. Despite a larger dataset for fine-tuning, their 
accuracy of 0.820 was significantly lower than our best model. This 
discrepancy might be  due to their higher number of classes, 
potentially increasing the model’s learning difficulty. However, our 
dataset arguably presents higher complexity due to variations in 
dorsal, lateral, and ventral points-of-view, which may have forced our 
models to learn more detailed morphological patterns. Thus, our use 
of 3D representations and image triplets might be advantageous for 
capturing such details, ultimately leading to improved 
classification performance.

5 Conclusion

Our study elucidates the potential for the classification of three-
dimensional representations of lizard species through the utilization of 
mobile-ready deep learning models in the context of biodiversity 

monitoring. The deployment of three-dimensional representations of the 
specimens, generated from image triplets comprising dorsal, lateral, and 
ventral perspectives of the animals, has proven efficacious in capturing 

FIGURE 5

Confusion matrix of the MobileNetV3-Small + Linear SVM model trained with the reduced dataset. This confusion matrix corresponds to the best-
performing MobileNetV3-Small + Linear SVM model trained on the dataset with the 20 top-ranked features. Despite the highest number of 
misclassified samples being from the Polychrus species among all classes, the overall performance, on a per-sample basis, was proven to be highly 
efficient.

TABLE 4 Trainable parameters of the assembled final classification 
pipeline.

Parameter Value

minmax_rescaler__clip False

minmax_rescaler__copy True

minmax_rescaler__feature_range (0, 1)

linear_svm_classifier__C 0.10284379327993369

linear_svm_classifier__class_weight None

linear_svm_classifier__dual False

linear_svm_classifier__fit_intercept True

linear_svm_classifier__intercept_

scaling

1

linear_svm_classifier__loss squared_hinge

linear_svm_classifier__max_iter 1,000

linear_svm_classifier__multi_class ‘ovr’

linear_svm_classifier__penalty ‘l2’

linear_svm_classifier__random_

state

42

linear_svm_classifier__tol 0.0001

All the trainable model parameters for the classification algorithms are listed below to 
complete reproducibility of this study.
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intricate morphological patterns. This approach facilitates robust feature 
extraction, distinct class separation, and enhanced classification 
accuracy. The capacity of the model to be readily deployed on mobile 
devices further augments its potential for field applications in biodiversity 
research and conservation endeavors.

Future research initiatives should focus on augmenting the 
number of supported species, as well as assessing the impact of this 
increment in our model of choice, potentially exploring new 
models and architectures, thereby contributing to the burgeoning 
field of deep learning-based lizard species classification. Currently, 
there is a paucity of extensive published studies in this domain for 
direct comparison. Additionally, efforts to incorporate a broader 
spectrum of preserved specimens would address the limitations 
imposed by the current dataset.

Another critical aspect warranting further evaluation is the usability 
of deep learning-based applications across diverse biodiversity datasets. 
Research by Campos et al. (2024), Campos et al. (2023) has demonstrated 
that the efficacy of artificial intelligence algorithms in species identification 
can vary significantly depending on the animal dataset. This variability 
underscores the potential utility of applications, such as the one proposed 
in this study, as supportive technologies for field experts rather than as 
standalone solutions intended to replace human expertise.

Overall, this study underscores the necessity for further development 
and investigation of reliable models for biodiversity monitoring and 
research, with particular emphasis on endemic Amazonian lizards. The 
promising results presented herein pave the way for future advancements 
in this critical area of conservation science.
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