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Understanding the environmental factors that facilitate the occurrence and

spread of infectious diseases in animals is crucial for risk prediction. As part

of the H2020 Monitoring Outbreaks for Disease Surveillance in a Data Science

Context (MOOD) project, scoping literature reviews have been conducted

for various diseases. However, pathogens continuously mutate and generate

variants with di�erent sensitivities to these factors, necessitating regular updates

to these reviews. In this paper, we propose to evaluate the potential benefits of

artificial intelligence (AI) for updating such scoping reviews. We thus compare

di�erent combinations of AI methods for solving this task. These methods

utilize generative large language models (LLMs) and lighter language models to

automatically identify risk factors in scientific articles.
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scoping review, natural language processing (NPL), large language models (LLM),
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1 Introduction

The emergence of infectious diseases, especially those involving animal hosts and/or

vectors, is significantly influenced by environmental factors that can directly impact the

pathogens, their vectors, their reservoir species, their hosts, and humans alike (Giesen

et al., 2023). Consequently, gaining a deeper understanding of these factors across the

transmission chain becomes crucial (Cataldo et al., 2023) for understanding disease

dynamics and the consequent risks faced by humans and animals. Structured literature

searches and evidence syntheses are commonly used to obtain this knowledge and identify

the significance (both positive and negative) of the observed factors (Sutton et al., 2019).

The retrieved information is combined with relevant epidemiological data to inform

predictive models (Wongnak et al., 2022). This is among the outcomes of the Monitoring

Outbreaks for Disease Surveillance in a Data Science Context (MOOD) project (grant

agreement no. 874850), which focuses on a list of prototype diseases and develops data

collection and analysis systems and tools to support the early detection, assessment, and

monitoring of the current and potential infectious disease threats in Europe and beyond.
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Given the exponential surge in the production of global

scientific literature and the relentless pace of global changes (such as

climate and environmental condition changes and human, animal,

and vector population changes), together with the emergence of

new pathogens and variants, the rapid obsolescence of information

is a pressing issue. Therefore, updating the information gained from

a scoping review of the scientific literature in a timely manner is not

just a necessity but also an urgent imperative in the face of these

evolving circumstances.

However, scoping reviews and evidence syntheses of the

scientific literature are time-consuming undertakings, hindering

the pace at which the information is updated. Our research

proposes a comparison among methods stemming from the latest

advances in artificial intelligence (AI), particularly those focused

on generative large language models (LLMs). These methods are

not only promising but also offer opportunities for automating the

update process of scoping reviews. By accelerating the pace at which

new evidence can be synthesized and incorporated, they have the

potential to revolutionize our understanding of the environmental

factors that affect disease transmission.

To effectively train and evaluate these AI models, we utilize

a dataset annotated by experts in human and animal health

epidemiology, environmental science, and microbiology. These

annotations, conducted at both the sentence and article levels,

aim to extract the environmental conditions that impact the

spread of epidemics. Our initial focus is on training the models

related to influenza that use data, but we also assess their

performance on datasets related to other infectious diseases,

such as leptospirosis and chikungunya. This comprehensive

evaluation conducted across different diseases demonstrates

the potential applicability and scalability of automated

approaches for updating systematic reviews in human and

animal health.

2 Related work

The research direction to which our study contributes is

the automation of structured literature reviews with a focus on

scoping reviews. The main scoping review process can be divided

into five main stages: searching for new references, screening

(ranking articles by relevance), extracting data (extracting data

or information relevant to the review question), assessing the

quality of articles, and formatting the obtained results (Tsafnat

et al., 2014; Marshall and Wallace, 2019). While various

efforts have been made toward automating different aspects

of scoping reviews, our proposal specifically targets the data

extraction stage.

Automating the data extraction task presents a significant

opportunity to streamline the scoping review process, as this stage

often involves labor-intensive tasks such as extracting relevant

information from a large volume of scientific literature. By

leveraging advancements in AI and natural language processing

(NLP), our study aims to develop and evaluate automated

methods for extracting key data points from research articles

that are relevant to the environmental factors influencing the

transmission of infectious diseases in human and animals. Our

focus on data extraction aligns with the recent trends in systematic

review automation research: recognizing the potential of AI-

driven approaches to improve the efficiency and accuracy of this

critical stage.

While our proposal does not aim to fully automate the entire

scoping review process, focusing specifically on data extraction

allows us to address a key bottleneck and lay the foundation

for future advancements toward comprehensive automation. By

building upon existing methodologies and exploring novel AI

techniques, our study contributes to the ongoing efforts to harness

technology for enhancing the evidence synthesis and decision-

making processes in the field of human and animal health.

Two types of tools are available for addressing this data

extraction issue. The first type, semiautomatic tools, highlight

sentences potentially containing interesting data; an example is the

ExaCT tool (Kiritchenko et al., 2010), which is a sentence classifier.

The second strategy involves performing automatic extraction

through an NLP task known as named-entity recognition (NER)

(Marshall et al., 2016). However, these tools have been trained for

randomized controlled trials (RCTs) (Marshall and Wallace, 2019).

Unfortunately, the question addressed in our review lies beyond

this clinical and medical scope, making them unsuitable for reuse

in our study, which aims to detect environmental factors.

This research direction that was highly popular in the mid-

2010s appears to have received less attention since then. The

prolific research conducted during that time led to the creation of

a collection of tools cataloged on the SR Toolbox website (Marshall

and Brereton, 2015). Unfortunately, these software solutions, which

were developed by groups of researchers, face challenges in terms of

maintenance. The reuse of these approaches a few years later is not

always feasible. Moreover, the field of NLP has evolved rapidly since

2017 with the advent of attention-based models and transformer

architectures (Vaswani et al., 2017) and since November 2022 with

the launch of ChatGPT, which has been widely used by non-NLP

experts for a variety of tasks.

Indeed, since 2019, numerous pretrained language models,

such as bidirectional encoder representations from transformers

(BERT) (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and XLM-

RoBERTa (Conneau et al., 2020), have been made available to the

community. These models are also referred to as small language

models (SLMs) due to their sizes relative to those of newer models

such as ChatGPT, or they can be alternatively referred to as masked

language models (MLMs) because of the name of their pretraining

task; such models can be easily fine-tuned for addressing a specific

task and domain. An example is the Microsoft BiomedBERT (Gu

et al., 2022) model adapted for the biomedical domain. These

pre-trained models, whether general or specific, can be fine-

tuned to detect mentions of environmental risk factors through

an NER task.

However, to truly improve these models for solving a particular

task, one must be able to compile a substantial training dataset,

i.e., at least 10,000 data points (Bayer et al., 2022). This requires

launching an annotation campaign involving epidemiology experts

in animal healthcare. Gathering such an amount of data is

inconceivable. Therefore, various techniques can be used to

artificially increase the size of the utilized training dataset, either

through data augmentation (Wei and Zou, 2019; Longpre et al.,

2020; Feng et al., 2021; Nie et al., 2020; Dai et al., 2023) or

semisupervised methods (Chen et al., 2020; Shams, 2014). The
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difference between these two types of approaches is that the

former creates new annotated sentences, whereas the latter involves

automatically labeling sentences that are not manually annotated.

Finally, since 2022, the NLP field has witnessed the emergence

of LLMs. What sets them apart from MLMs is their numbers

of parameters (exceeding 1 billion), as well as the sizes of their

pretraining datasets (exceeding one trillion tokens). These models

specialize in text generation tasks; however, with a suitable prompt,

it is possible to make them perform an NER task.

Similar to MLMs, LLMs need guidance to detect new types

of labels, such as those examined in our study. For this purpose,

different techniques are available. The first, few-shot learning

(Brown et al., 2020), involves incorporating a series of examples

into the constructed prompt (sentences with tokens labeled as risk

factors, for example). The second, retrieval-augmented generation

(RAG) (Lewis et al., 2021), involves creating a knowledge base for

the domain in the form of vectorized data embeddings of relevant

phrases. An embedding is the vector representation of a word or

group of words formed by a model such as word2vec (Mikolov

et al., 2013) or SentenceBERT (Reimers and Gurevych, 2019). Some

LLMs, such as Llama2 (Touvron et al., 2023) and Mistral (Jiang

et al., 2023), have also been made available to the community,

whereas others can only be used through a website (sometimes

paid) or via an API such as ChatGPT (with models such as GPT-

3.5 and GPT-4). The advantages of these closed models lie in

their performance and the fact that users do not need computing

resources to use them.

3 Scoping review and data extraction
by experts associated with the MOOD
project

The automated processing pipeline presented in this article

is designed to enhance and update scoping reviews previously

conducted for prototype diseases by the experts associated with the

H2020 MOOD project.

A scoping review of the literature was conducted to

gather information for a comprehensive understanding of the

human, animal, and environmental drivers of three prototype

infectious diseases included in the MOOD project: influenza

A, leptospirosis, and chikungunya. This review followed a

standardized methodology to ensure its quality and repeatability,

adhering to the guidelines provided by Tricco et al. (2018).

The key questions were harmonized, and a list of relevant

keywords was organized into a standardized search strategy. This

strategy was then applied across the following databases: PubMed,

Embase, Web of Science, and Scopus.

The inclusion and exclusion criteria were established on

the basis of the study design, language (English or other EU

languages), time frame (10 years for epidemiological and pathogen

data, 30 years for environmental data), geographical location

(Europe), and publication type. Studies were excluded if they

lacked data, contained non-original or duplicated data (such as

reviews, editorials, letters, and modeling studies without data),

lacked denominators or reference populations, had unavailable

full texts, referred to data from before 2000, or were conducted

outside Europe.

The final time frame covered the period from 2000 to 2022.

The results of the literature searches for each prototype pathogen

were uploaded onto Rayyan (Ouzzani et al., 2016) to select and

label the articles according to their main topics of interest (human,

environmental, animal, vector, and reservoir covariates). Screening

and labeling were conducted independently by three reviewers over

two steps: first, by reading titles and abstracts, and then, for the

retained articles, by reviewing their full texts. The full texts of the

relevant articles were retrieved, and data were extracted via a data

extraction sheet based on the template of the Cochrane Consumers

and Communication Review Group (Ryan et al., 2018). The

extracted data were analyzed to provide basic statistics (numbers

and frequencies) for each identified covariate. Table 1 summarizes

the study selection steps and the main environmental covariates

extracted for all the diseases. The related extraction datasets are

available on the Zenodo platform (https://doi.org/10.5281/zenodo.

10889957).

4 Automation of the scoping review
process: method descriptions

In this section, we present a comprehensive overview of

the three methods under comparison. These methods align with

the three stages delineated in the Preferred Reporting Items for

Systematic Reviews andMeta-Analyses (PRISMA) guidelines while

considering our aim of updating previously conducted scoping

reviews. Therefore, while the planning and preparation phases are

not addressed, the three methods focus on article collection and

filtering, as well as data extraction. These steps correspond to the

search and study selection phases, as well as the data extraction

steps outlined in the PRISMA guidelines.

The evaluation and comparison involving the three methods

focus on their ability to detect and extract the risk factors (also

known as covariates) associated with disease propagation from

scientific articles. This task can be conceptualized as an NER task

in NLP. Consequently, each word in a given text segment, whether

it is a sentence or a small paragraph, undergoes an analysis and is

classified into one of two labels: covariate or noncovariate. Notably,

to our knowledge, no pretrained language model is capable of

accurately identifying words or phrases as environmental risk

factors concerning human and animal diseases. Therefore, it is

imperative to devise methods for retraining models to effectively

perform this task.

1. The first method, which serves as our baseline, entails fine-

tuning BERT models to identify covariates within paragraph

segments. For model retraining purposes, we utilize a dataset

previously annotated by the H2020 MOOD project and

presented in the Section 3.

2. Given the limitations of this annotated dataset in terms

of comprehensive training, our second method involves

performing artificial augmentation via ChatGPT. This

augmentation step generates additional sentences with

corresponding annotations, thus enriching the dataset.
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TABLE 1 Study selection process and the extracted environmental covariates.

Disease Number of articles Main environmental
covariates extracted

∗∗Frequency

Retrieved Included ∗Selected

Influenza A 5,806 453 25 #Humidity 33

##Temperature 35

Leptospirosis 1,045 95 27 £Time 168

Chikungunya 1,165 65 5 Temperature 24

∗Extraction of environmental covariate data.
∗∗Number of times that the given covariate was extracted from the selected articles.

# Humidity has an impact on virus persistence.

## Temperature has an impact on disease diffusion/spread.

£Time refers to seasonal incidence, i.e., the monthly and weekly distributions of human and animal leptospirosis cases.

Subsequently, the BERT models are trained on both the

original and augmented data, forming our hybrid approach.

3. Finally, the third method relies solely on generative models.

By leveraging a blend of RAG and few-shot learning, this

method provides annotation instances akin to the considered

sentence. These annotations guide the model in identifying

this new NER category.

Prior to detailing the implementations of these methods, we

focus on the preprocessing steps applied to the annotated dataset

used for training the models.

4.1 Dataset preprocessing for model
training

As presented in Section 3, we choose to conduct annotation

at two levels, the sentence level, which is very detailed but has a

small dataset size, and the entire scientific article level, which does

not specify the locations of the identified risk factors in the text.

This choice was made because annotation is a time-consuming

process, it took about 18 months for all the three diseases and

this time frame includes literature screening and consequent

data extraction. Furthermore, the task studied here is particularly

complex and requires expert annotators in human and animal

health, epidemiology, environmental science, and microbiology in

line with One Health approach to the diseases. What is more, from

a text mining perspective, this task is particularly challenging, as a

large portion of the risk factors are found in tables or result figures.

In this study, we focused methodologically only on risk factors that

were annotated in the body text, which further reduced the size of

the dataset used to train the methods. To apply the models to whole

articles, we split the text into chunks. We choose to set the size of

the chunks to 256 characters to obtain sufficient context for the

obtained prediction while guaranteeing a reduced inference time.

The dimensions of the datasets are presented in Table 2. To

validate the generalizability of ourmethod, we train themodels only

on articles concerning influenza. The sentence-level annotations

comprise only 20 text excerpts, which we divide into 12 excerpts for

training and 8 excerpts for validation. This split of 60% for training

and 40% for validation seemed necessary to us given that the dataset

is very small.

4.2 Methodological overviews

4.2.1 Baseline: BERT-like fine-tuning
This approach aims to fine-tune SLM (with 100 of millions

of parameters) via the 12 sentences derived from the training

dataset. We compare three pretrained models: RoBERTa (Liu et al.,

2019) and XLM-RoBERTa (Conneau et al., 2020) (multilingual

model) from Meta, as well as BiomedBERT (Gu et al., 2022)

from Microsoft. The objective is to evaluate the contribution of

multilingualism to this task as well as the specialization exhibited

in the biomedical domain relative to RoBERTa, which is a general-

purpose language model.

4.2.2 Hybrid method: BERT-like fine-tuning with
data augmentation

This second method aims to compare the three previous

models, but this time they are trained on an augmented training

dataset. Indeed, this dataset has the same 12 original sentences, to

which we add 180 chunks artificially created by data augmentation

(Nie et al., 2020). This is accomplished via a generative language

model: GPT-3.5 from OpenAI (Dai et al., 2023). To achieve this

goal, we provide two annotated sentences from the original training

dataset in a prompt and ask the model to generate 20 annotations

10 times to obtain a training set of 191 sentences after removing

duplicate sentences. The evaluation is performed on the same

dataset (8 chunks).

4.2.3 Fully generative method: RAG with
few-shot learning

For this last approach, no pretrained models are fine-tuned.We

compare two generativemodels: GPT-3.5 andGPT-4 fromOpenAI.

To guide them in this task, we rely on RAG (Lewis et al., 2021). To

do this, we compute the embeddings of the 12 sentences obtained

from the training set and then store them in an embedding database

(FAISS; Douze et al., 2024).

Next, we compare the non-annotated sentence with the training

sentences through their semantic proximity (via a calculation of

the cosine similarity between their embedding vectors). The 5

annotated sentences that are closest to the sentence to be annotated

are injected into a prompt as examples; this process is also
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TABLE 2 Number of scientific articles and 256-character chunks considered.

Disease Influenza Chikungunya Leptospirosis Total count

Number of articles 43 7 22 72

Number of chunks 1,372 218 542 2,132

Number of words 52,365 7,885 18,445 78,695

known as few-shot learning (Brown et al., 2020). The number of

5 examples is often used in the literature. It balances example

diversity well while keeping the prompt context concise. The goal is

to provide the models with semantically and grammatically similar

sentences that enable them to identify new risk factors contained

within the sentences.

4.3 Evaluation

The evaluation is conducted at two levels: the sentence and

article levels.

4.3.1 Sentence-level annotation
To create this dataset, some sentences from the influenza

corpus were annotated to indicate whether they contained

covariates, specifying the exact names that appeared in the

sentences. No normalization was performed on these annotations.

Sentence-level annotation, which is time-consuming, was

performed on only 20 sentences from the influenza corpus.

Therefore, as presented in this section, we evaluate the trained

models on a limited evaluation set (8 sentences) and exclusively for

influenza disease.

The metric used is the F1-score as defined below by Equation 1.

As shown in Equation 2, Precision, or positive predictive value, is

calculated as the ratio of true positives (TP) to the sum of true

positives (TP) and false positives (FP). Similarly, Equation 3 defines

Recall, or sensitivity, as the ratio of true positives (TP) to the sum

of true positives (TP) and false negatives (FN).

F1 = 2 ·
Precision · Recall

Precision+ Recall
(1)

Positive Predictive Value = Precision =
TP

TP + FP
(2)

Sensitivity = Recall =
TP

TP + FN
(3)

For this evaluation, the true or false positive or negative as

defined as below:

• TP: The model identifies a correct risk factor.

• FP: The model labels a word but the manual annotation did

not select it.

• FN: The model misses a risk factor.

4.3.2 Document-level annotation
The dataset used for this evaluation is described in Section

3. For each scientific article contained in the corpus, the experts

provided a list of normalized covariates. For example, if an article

states that the rainy periods in April, May, and June are conducive

to the persistence of the pathogen, the annotators added the

covariate “seasonal precipitation.” This implies that the document-

level annotations do not exactly match the expressions that are

present in the documents.

The models trained on a subset of the influenza dataset are

then applied and evaluated on the full influenza, leptospirosis, and

chikungunya corpora. To do this, we divide the entire set of articles

into 256-character chunks. Each chunk is then processed by the

trained models. Finally, at the end of this inference phase, we

compile all the covariates labeled by the models for each document.

To assess the performance of the tested models, we focus

solely on the best pair of annotated and predicted covariates

for each document. Thus, our evaluation is not exhaustive, as

it does not account for false positives or the total number of

covariates per document. We focus only on the ability of the

models to identify at least one covariate. Since the annotations

are normalized, we measure the semantic similarity between

the normalized annotations and the words extracted from the

text by the models. To do this, we compute the embeddings

of these words via the all-MiniLM-L6-v2 model (Reimers and

Gurevych, 2019) and then calculate their similarity levels via

the cosine similarity metric. This measure involves calculating

the vector product between two embeddings. Its result ranges

from 0 (when the compared words have distant meanings) to 1

(when the compared words are synonyms). An embedding is the

vector representation of a word in the representation space of a

language model.

5 Results

The experiments aim to assess three distinct strategies for

identifying environmental conditions as risk factors. To accomplish

this goal, we conduct evaluations at both the sentence and

document levels. Given the two types of available annotations

(fine-grained annotations at the sentence level and broader

annotations at the document level), our approach involves

evaluating the performance of the three tested methods across

these two levels. The evaluation conducted at the sentence level

offers insights into the training efficacy of the models, whereas

the assessment implemented at the document level mirrors the

real-world scenarios identified by the H2020 MOOD project,

providing a comprehensive overview of covariates identified within

a scientific article.
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TABLE 3 F1-score produced by the three tested approaches.

Model Baseline Hybrid Generative

XLM-RoBERTa-base 0.46 0.52 -

BiomedBERT 0.15 0.14 -

RoBERTa-base 0 0.53 -

GPT-3.5 - - 0.27

GPT-4 - - 0.86

The best score among all methods is shown in bold font, and the best score yielded by each

approach is underlined.

5.1 Sentence-level evaluation

The results are reported in Table 3. This table compares the

three methods. To compare the performance of the models, the

F1 score is used. This metric is the harmonic mean of two other

measures, precision and recall, which assess the ability of a model to

identify all true positives; the F1 score is lower when false positives

are present.

The baseline and hybrid methods are trained for 100 epochs.

Although this leads to a high risk of overfitting, given the size of the

training dataset, training for only 10 epochs would not allow the

models to improve their performance on our task. The overfitting

bias of each model is evaluated in the next section.

We observe that the generative approach with GPT-4

outperforms all the other methods. However, it comes with a high

cost of $0.05 per analyzed sentence. Indeed, the incurred cost is

based on the number of words sent plus the number of generated

words. However, the prompts we construct with RAG and few-shot

learning are lengthy.

We also observe that implementing data augmentation with

the hybrid method improves the performance of the models.

Furthermore, RoBERTa-base, which is unable to detect covariates

without augmentation, becomes the second-best method through

data augmentation (behind GPT-4).

Finally, the poor results of GPT-3.5 stem from the fact that

this model hallucinates many covariates from few-shot learning.

Moreover, we notice very high variability in its predictions, which

makes this model unreliable.

5.2 Document-level evaluation

The extraction of risk factors from individual documents is a

real-world scenario. Within the entirety of a scientific article, the

objective is to identify the environmental factors impacting the

dynamics of an epidemic.

To achieve this aim, we perform a series of preprocessing

steps. The first step involves extracting textual data from PDF files

via the GROBID method.1 The advantage of this method is that

it also extracts the structure of each PDF document (including

its hierarchy of parts and subparts). This aspect is important for

1 Grobid. (2008–2024). Available online at: https://github.com/kermitt2/

grobid

filtering only the relevant sections, namely, the abstract, results,

and discussion.

We divide the extracted text into 256-character chunks and

then apply trained models (with and without data augmentation)

and OpenAI models with RAG, i.e., the baseline, hybrid, and fully

generative approaches.

This processing pipeline is applied to several scientific

articles that have already been annotated by experts. They

concern three diseases: influenza, which was used to train

the models to conduct detection within the sentences, as

well as chikungunya and leptospirosis. Thus, we evaluate

the generality of the training process for other diseases in

animal healthcare. Table 2 presents the number of scientific

articles considered.

To evaluate the ability of the methods to identify covariates in

scientific documents, we measure the semantic distances (via the

cosine similarity metric) between the embeddings of the manually

annotated and automatically extracted covariates. If two words are

synonyms, the cosine similarity of their embeddings is close to 1,

whereas if two words have completely different meanings, their

cosine similarity is close to 0.

We propose to examine two aspects, from the

least to the most challenging. The first is to assess

whether the methods were able to identify at least

one risk factor in the document, as some scientific

articles list up to ten. The second evaluation focuses

on the methods ability to extract all the risk

factors mentioned.

5.3 Identification of at least one risk factor

Figure 1 shows the statistical distribution of the cosine

similarity scores between the best pairs of annotated and predicted

covariates produced for each scientific article concerning each

disease. The distribution is presented in the form of a box plot.

The line inside each rectangle represents the median of the cosine

similarity values, indicating that 50% of the scores are above this

value and that 50% are below it. The lower and upper edges of

the rectangle indicate that 25% of the scores are below the lower

edge and above the upper edge, respectively. For this evaluation,

the more compact and closer to 1 a rectangle is, the better the

ability of the corresponding method to find at least one covariable.

The first observation concerns the spread of all the box plots.

This indicates significant variability among the capabilities of the

models to identify at least one covariable per scientific paper.

The smaller spread for chikungunya is explained by the fact that

our dataset contains only 5 articles for this disease. In general,

we observe that GPT-4 performs best, with a median close to

0.8, demonstrating its good ability to find at least one covariable.

Another observation is that, except for influenza, the hybrid

method performs worse than the baseline method. This is likely due

to excessive overfitting since the training process is only performed

on the influenza data. The final observation is that the models

manage to generalize from influenza to leptospirosis, with medians

and quartiles that are often close; however, leptospirosis yields

worse results, as expected.
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FIGURE 1

Distribution of the similarity scores between the best pairs of annotated and predicted covariates yielded by the models for each document.

5.4 Identification of all risk factors

This evaluation aims to study the percentage of risk factors

effectively extracted from the entire corpus. The Table 4 shows

the results for Leptospirosis, which allows for the evaluation of

generalization capabilities to other diseases (similar to the training

set). It is clear that only the generative method GPT-4 achieves

encouraging scores (10% of risk factors detected). However, this

method, when applied to thousands of scientific articles with expert

analysis, has the potential to extract new risk factors.

Nevertheless, before using this method operationally, work

must be done to address the numerous false positives, which could

waste too much time for epidemiologists as shown by Figure 2. In

this study, the results focused on sensitivity (i.e., recall), and future

work should be conducted on the positive predictive value (i.e.,

precision).

5.5 Method cost

Another factor to consider in the analysis of the results is the

cost of using the services of OpenAI. To implement GPT-4 and

GPT-3.5 on 72 PDF documents, the costs are $40 and $1. To process

the 8,000 articles downloaded for the scoping review, the estimated

cost of using GPT-4 is $4,500.

6 Discussion

From the results, we have identified four main points. The

first point addresses the challenges associated with environmental

driver extraction as well as the difficulties encountered when

evaluating the results. The second point involves comparing the

differences observed between the diseases, highlighting how their

specific characteristics impact the results. The third point provides

an analysis of the comparisons among the three considered

approaches. Finally, we conclude with suggestions for future

contributions based on this work.

6.1 A challenging evaluation

Automating the environmental driver extraction process is not

a trivial task. Depending on the scientific articles considered, the

linguistic contexts in which the drivers are mentioned can vary

significantly. Some articles compare different drivers and analyse

their contributions to the persistence or spread of a pathogen. In

such cases, certain drivers may be initially listed but are ultimately

dismissed on the basis of the results of the studies. Other articles

focus on a single driver and observe the influences of its value

ranges in a laboratory setting, whereas some studies examine

the spread of a pathogen in the environment. Additionally, to

improve readability, some articles do not consistently use the same

terminology for drivers throughout the manuscripts (e.g., by using

both “precipitation” and “rain”).

These challenges also impact evaluations of the performance

of automatic methods. The extracted drivers may not have the

exact same names as those annotated by experts. To address this

issue, we compare the extracted and annotated drivers via the

cosine similarity between their embeddings. Moreover, automatic

methods require the input text to be segmented into chunks. It
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TABLE 4 Evaluation results of leptospirosis.

Model TP FP FN Precision Recall F1-score % Words
found

RoBERTa_base_baseline 2.0 228.0 143.0 0.0087 0.0138 0.0107 1.38

RoBERTa_base_hybrid 0.0 114.0 145.0 0.0000 0.0000 0.0000 0.0

BiomedBERT_baseline 2.0 222.0 143.0 0.0089 0.0138 0.0108 1.38

BiomedBERT_hybrid 0.0 34.0 145.0 0.0000 0.0000 0.0 0.0

XLM_RoBERTA_base_baseline 3.0 115.0 142.0 0.0254 0.0207 0.0228 2.07

XLM_RoBERTA_base_hybrid 2.0 65.0 143.0 0.0299 0.0138 0.0189 1.38

GPT-3.5 0.0 155.0 145.0 0.0000 0.0000 0.0000 0.0

GPT-4 16.0 722.0 130.0 0.0217 0.1096 0.0362 10.96

FIGURE 2

Cosine similarity matrix between the risk factors annotated on the

y-axis (“Ground truth”) and the risk factors extracted by GPT-4 on

the x-axis, from one of the articles dealing with leptospirosis.

is possible for a candidate driver mentioned in the introduction

to be rejected in the results section. However, since a language

model does not have access to the entire article, it cannot detect

these contradictions.

6.2 Di�erences between diseases

As expected the automated extraction process yields better

results for leptospirosis than for chikungunya. Recall that the

variousmodels were trained on a dataset composed of articles about

influenza, so one might expect the models to perform better when

applied to datasets dealing with diseases that share similarities with

influenza in terms of their transmission mechanisms.

The poor results obtained for chikungunya can be attributed to

two main reasons. First, the manual annotation process considered

only indigenous cases in Europe. Since these cases are currently rare

compared with cases in tropical regions, they are less frequently

described in the considered scientific articles, consequently, the

data on environmental drivers were less than the other two diseases.

Additionally, their impact directly affects the vector life cycle,

activity, and vector competence in transmission of the virus.

Conversely, the articles on leptospirosis studied the drivers affecting

the persistence of bacteria in their environment, whichmore closely

resembles the influenza dataset.

This is also reflected in the contextualization and scientific

language used in the selected studies to describe the environmental

drivers, and their importance for the different diseases/pathogens.

Although the same driver could have been identified as important

for influenza, leptospirosis, and chikungunya, the contextual

description of the way the given driver impacts the diseases can

be common for some diseases and different for others. In our

example, the environmental drivers extracted impacted directly

on Influenza and leptospirosis, or indirectly on the habitat/life

cycle of the vectors in the case of Chickungunya. The similarities

between influenza and leptospirosis were described using the

same words, which were not the same for chikungunya (see the

example on such terms highligthed in bold in https://github.

com/tetis-nlp/automated_scoping_review/tree/main/analysing_

results). In conclusion, the performance of extraction among

the different methods examined in this study is affected by the

amount of similarity of the words used in the articles of Influenza

training dataset with the words used in the articles of the other

two diseases, as a consequence of the similarity between influenza

and leptospirosis, models generalization is better for leptospirosis

than for Chikungunya, for which the shared language and terms

were lower.

6.3 Analysis of the comparison among the
tested approaches

The baseline and generative approaches give consistent

evaluations at both the sentence level and the document level,
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FIGURE 3

Frequency distribution of risk factors extracted by GPT-3.5 on leptospirosis.

whereas the hybrid method performs poorly in terms of the

document-level evaluations and exhibits poor transferability when

applied to other diseases. The hybrid approach has the advantage

of leveraging LLMs while minimizing their financial costs and

CO2 emissions since the models are used only during the training

phase. However, the hybrid method suffers from significant

overfitting. Furthermore, while the annotated sentences extracted

from scientific articles tend to be complex in structure and contain

precise, measured information, the sentences generated by GPT-3.5

are short, very direct, and lack specificity. Below is a comparison

between two sentences:

• Real sentence: within this distance range, we estimate that the

wind-borne route on its own could explain up to 24% of the

new cases.

• Sentence generated by GPT-3.5: climate change has been

identified as a major risk factor for the spread of infectious

diseases.

To mitigate this bias, a larger training dataset is needed to

generate more diverse data via large models, along with different

epidemiological and linguistic contexts.

The generative approach produces mixed results depending on

the models used. The quality of its extractions depends on two

internal factors: the ability of the models to follow our extraction

instructions and their knowledge in the epidemiological domain.

Indeed, the performance gap between GPT-3.5 and GPT-4 stems

from GPT-3.5s struggle to follow the prompt instructions, as it

extracts risk factors based on the examples included in the prompt

by the RAG. As illustrated in the Figure 3, GPT-3.5 tends to

hallucinate, extracting terms like “wind direction” or “absolute

humidity,” unlike GPT-4.

As illustrated in the results, GPT-4 achieves encouraging scores,

but its cost is a usage barrier in operational contexts or for large-

scale literature reviews.

6.4 Future works

Given the various points discussed above, two future directions

can be considered with respect to the work presented in this article.

The first direction involves improving the baseline and hybrid

approaches, which are based on smaller models. To obtain better

results, the training datasets need to be expanded. Owing to the

poor performance of the hybrid method, artificially generating

annotated data remains challenging. However, acquiring these

annotations manually is very costly, as doing so requires the

involvement of multiple experts. To reduce the time needed for

annotation, the methods described in this article can be used on

an ongoing basis. They can help identify articles that are likely

to contain previously unrecognized drives. After these articles are

reviewed and validated by experts, they can be added to the training

datasets, thereby reducing the time spent identifying new articles.

The other improvement area focuses on generative methods.

This strategy involves comparing models provided by other

industry players, who may offer models with capabilities similar to

those of GPT-4 but at lower costs.

7 Conclusion

Updating scoping reviews or extending them to other regions

or diseases is a complex task that requires a significant amount of

time. The goal of the present work is to leverage new NLP methods
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introduced by language models such as BERT and GPT-4. This

challenge is approached as a NER task with complex labels and a

very limited amount of training data.

We provide two major contributions to accomplish this task.

The first includes three datasets derived from a scoping review

of the environmental drivers of influenza, chikungunya, and

leptospirosis. These datasets enhance the second contribution,

which involves training or specializing LLMs or AI systems to

extend scoping reviews. We thus assess three classic approaches:

fine-tuning models that are now considered small (baseline),

the artificial generation of training data to improve the fine-

tuning process (hybrid), and finally, the use of LLMs with ground

truths and RAG (generative). All the datasets and codes are

publicly available.

The results underline that GPT-4 (generative) has

encouraging outputs. However, in this context with a

very limited amount of training data, data augmentation

(hybrid) leads to significant overfitting, preventing the

resulting models from effectively generalizing to other

diseases.
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