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Precision enhancement in
wireless capsule endoscopy: a
novel transformer-based
approach for real-time video
object detection

Tsedeke Temesgen Habe*, Keijo Haataja and Pekka Toivanen

School of Computing, University of Eastern Finland, Kuopio, North Savo, Finland

Background:Wireless Capsule Endoscopy (WCE) enables non-invasive imaging

of the gastrointestinal tract but generates vast video data, making real-time

and accurate abnormality detection challenging. Traditional detection methods

struggle with uncontrolled illumination, complex textures, and high-speed

processing demands.

Methods: This study presents a novel approach using Real-Time Detection

Transformer (RT-DETR), a transformer-based object detectionmodel, specifically

optimized for WCE video analysis. The model captures contextual information

between frames and handles variable image conditions. It was evaluated using

the Kvasir-Capsule dataset, with performance assessed across three RT-DETR

variants: Small (S), Medium (M), and X-Large (X).

Results: RT-DETR-X achieved the highest detection precision. RT-DETR-M

o�ered a practical trade-o� between accuracy and speed, while RT-DETR-S

processed frames at 270 FPS, enabling real-time performance. All three models

demonstrated improved detection accuracy and computational e�ciency

compared to baseline methods.

Discussion: The RT-DETR framework significantly enhances precision and

real-time performance in gastrointestinal abnormality detection using WCE. Its

clinical potential lies in supporting faster and more accurate diagnosis. Future

work will focus on further optimization and deployment in endoscopic video

analysis systems.

KEYWORDS

capsule endoscopy, object detection, real-time processing, transformer models, video

analysis, wireless communication, medical imaging, deep learning

1 Introduction

Wireless capsule endoscopy (WCE) is an advanced technique that has been introduced

to capture images of the gastrointestinal tract from inside using a capsule that was wireless

and could be swallowed by the patient. While in traditional endoscopy, it is only possible

to partially examine the small intestine due to the invasive procedure of colonoscopy.

A number of gastrointestinal disorders are frequently seen during wireless capsule

endoscopy, such as abnormalities of the ampulla of Vater (Weerakkody et al., 2024),

angiectasia (Igawa et al., 2015; Saltzman, 2024), fresh blood and blood hematin (Kimberly

and Baillie, 2006), erosion (Feldman et al., 2020), erythema (Ginsberg et al., 2011), foreign

bodies (Ikenberry et al., 2011), lymphatic edema (Strober et al., 1967), polyps (Machicado

et al., 2020), and ulcers (Kuipers et al., 1995). This study focuses on 10 of these pathology

classes for detection and analysis using the Kvasir-Capsule dataset.
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However, unlike colonoscopy WCE offers clinical benefits

which include early diagnosis of the disease, the technology

however poses a challenge in data analysis. WCE procedure can

produce more than fifty thousand images, which later creates

several hours of video that a specialist has to go through carefully.

However, this is not efficient in the sense that it is done

manually and involves a lot of time in contrast to the computer-

aided ones and this exposes the patient to wrong diagnosis and

ability to detect abnormalities that are noticeable. It is therefore

important to have automated systems because of the efficiency

and accuracy needs of detecting abnormalities in WCE videos in

real-time.

Our prior study benchmarked deep learning models for

WCE detection, identifying RT-DETR as a promising solution

(Habe et al., 2024). The following models were implemented and

compared: RT-MDET; RT-MDET variants; SSD; SSD variants;

YOLOv3; Faster R-CNN; EfficientDet; and RetinaNet. When these

above-mentioned models were used on WCE data, the strength

of each model could be seen in terms of the benefits it provided;

however, restrictions could also be observed in terms of their

weaknesses in the context of the ever-changing environment of the

WCE data.

In our earlier studies (Habe et al., 2024), we tested and

investigated several deep-learning models to overcome these issues

in WCE video analysis. They include RT-MDET variants, SSD

variants, YOLOv3, Faster R-CNN, EfficientDet, and RetinaNet,

which have been developed and benchmarked. All of these models

were useful in terms of the unique features they provided, yet when

implemented in the WCE data context, was comprised of certain

weaknesses.

• RT-MDET variants: These models were intended to work

in real-time detection in WCE videos because of their focus

on two parameters; efficiency and precision. Although the

method was effective in detecting abnormalities that were

visualized under stable light conditions and simple structures,

they faced issues with low precision with variability in lighting

conditions and complex structures.

• SSD variants and YOLOv3: These two models are

light weight models perfect for real time operation.

But at the same time, they have provided significantly

worse detection results in most cases, especially in the

presence of certain low-contrast abnormalities or areas with

poor lighting.

• Faster R-CNNandEfficientDet:Thesemodels were especially

effective in the aspect of detection which was occasionally

even higher compared to other techniques in terms of

distinguishing the minor elements on the WCE videos.

However, this increased their computational complexity and

often the processing time and therefore were not as suitable

for real time clinical uses.

• RetinaNet: This allowed for a more balanced model, which

gave good accuracy with realistic processing time. However,

like most models, it had its limitations in the fact that it could

not easily be applied toWCE data which had different textures

and also contained fluids.

1.1 Problem statement

The challenges in WCE imaging, particularly in the

gastrointestinal tract, are significant. Detecting abnormalities

becomes harder because of image quality variability together with

visualization blurring and motion artifacts and also mucus and

bubbles and food residues that exist in the images (Sadeghi et al.,

2024). The model faces difficulties predicting across all pathology

types because of its data imbalance. High data volumes (often

exceeding 50,000 frames per patient) create complexity in WCE

analysis while demanding significant storage capacities along

with powerful computational capabilities (Sadeghi et al., 2024;

Pascual et al., 2022). The evaluation process by medical experts

takes significant time which proves the necessity for advanced

automated processing methods. The scarcity of annotated data

presents difficulties in training reliable models because additional

methods must be employed (Pascual et al., 2022). Algorithmic

constraints also play a role, as prior object detection models

like Faster R-CNN and YOLOv3 struggle with detecting small

lesions and handling the complex, variable textures found in the

gastrointestinal tract (Zhang et al., 2024c). Studies have shown that

these models often fail due to the intricate background patterns and

illumination variability present in WCE datasets (Gui et al., 2024).

By implementing real-time processing capabilities and advanced

feature extraction methods the RT-DETR model addresses existing

limitations in Gastrointestinal endoscopy systems.

1.2 Proposed solution

In order to overcome these challenges, we introduce the Real-

Time Detection Transformer (RT-DETR) model as a video analysis

architecture built with the transformer network. Transformers

(Wang et al., 2025) have shown excellent performance in capturing

long-range dependencies and, more recently, in computer vision,

owing to their capacity tomodel long distance relations and context

in sequences of data. These strengths are utilized in the RT-

DETR model to improve the identification of GI pathologies in

WCE videos, and particularly in poor light conditions. RT-DETR

effectively addresses limitations which are listed in Section 1.1 by

leveraging multi-scale feature interaction, an optimized lightweight

design, and loss functions, self-attention mechanisms and real-time

processing (Zhang et al., 2024a; Lv et al., 2024; Guemas et al., 2024).

1.3 Contributions

The primary contributions of this work are as follows:

• Novel application:We propose the RT-DETR model for real-

time object detection on WCE videos since there are existing

models that do not achieve adequate performance.

• Model enhancements: Below, we offer several architectural

modifications aimed explicitly at enhancing the performance

of WCE data, such as the use of various preprocessing

techniques and efficient attention mechanisms.
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• Comprehensive evaluation:We perform several performance

evaluation experiments on a highly selected WCE dataset and

show that the proposed RT-DETR model is superior to all the

other existing models with regard to both accuracy and speed.

• Clinical relevance: Thus, the use and implementation of

the presented RT-DETR model in diagnosing the WCE can

accelerate the process of video analysis and increase the

effectiveness of detection results.

2 Related work

Various deep learning methods have been applied to WCE

diagnosis, evolving from traditional feature-based approaches to

advanced deep learning techniques (Bordbar et al., 2023; Varam

et al., 2023; Alawode et al., 2024; Alavala et al., 2024;Wu et al., 2023;

Oh et al., 2023). These methods aim to enhance detection accuracy

and efficiency in analyzing WCE data.

2.1 Traditional object detection
approaches

Bordbar et al. (2023) conducted a study where a 3D-CNN

model is used for multiclass classification of WCE frames which

is a major improvement as compared to traditional approaches

where handcrafted features are used along with classical machine

learning techniques such as SVM. Bordbar et al. (2023) noted that

traditional techniques did not do well when handling variability

in WCE images and specifically in identifying small and intricate

lesions. The 3D-CNN (Bordbar et al., 2023), that included temporal

information across frames of the video improved the accuracy

but it was still a problem regarding computational load and real-

time performance. The implementation of SVM demonstrates

exceptional accuracy through its ability to achieve 99.41% detection

precision when using color features based on HSI color space to

identify between normal and abnormal patterns (Li et al., 2012;

Khun et al., 2009). Current research on Random Forest and k-

NN methods in WCE detection remains scarce because these

classifiers appear in comparative analyses because of their ability

to handle diverse datasets while Random Forest offers additional

benefits in feature selection and overfitting reduction (Khun et al.,

2009). Clinicians face a major challenge with the vast number

of WCE images so additional research must focus on creating

automated systems which combine deep learning models with

current classifiers to boost accuracy and decrease processing times

(Varam et al., 2023; Li et al., 2012).

2.2 Deep learning in medical imaging

Deep learning techniques have significantly advanced medical

imaging applications, particularly in WCE image analysis. Several

CNN-based models, including InceptionV3, EfficientNetV2,

ResNet, DenseNet, and MobileNet, have been developed to

improve feature extraction and classification performance

(Varam et al., 2023; Oh et al., 2023). However, CNNs have

limitations in incorporating global contextual features, leading to

misclassification of visually similar disease classes (Oh et al., 2023).

ShuffleNetV1 and ResNet56 demonstrated effectiveness in binary

classification tasks but struggled with multiclass cases due to class

imbalance and the lack of global contextual information (Wu et al.,

2023).

To address these limitations, hybrid architectures have been

proposed. The Minimum Spanning Tree (MST) and Spatial

Pyramid Pooling, integrated with an EfficientNet-CondConv

architecture, have improved hierarchical feature extraction for

WCE images (Sharmila and Geetha, 2024). Additionally, PitTree

Fusion Algorithms and conditional convolutions have been

incorporated to enhance adaptability to varying input resolutions

and complexity (Sharmila and Geetha, 2024).

Transformer-based models have also shown promise in WCE

analysis. YOLOv8, enhanced with VanillaNet and an Advanced

Feature Pyramid Network (AFPN), has been optimized for real-

time detection with high feature extraction accuracy (Liang

et al., 2024). Comparisons across 14 different CNN-based models

indicate that YOLO series models, particularly YOLOv8n, achieve

high accuracy and fast inference speeds, reaching up to 416 FPS

(Zhang et al., 2024b).

Vision Transformer (ViT) architectures have been introduced

to further improve feature extraction. FLATer, a ViT-derived

architecture, has demonstrated superior performance by capturing

long-range dependencies and global features in endoscopic images

(Oh et al., 2023). Swin Transformer and CaiT models, achieving

79.15% accuracy on the Kvasir Capsule dataset and 98.63% on the

Red Lesion Endoscopy (RLE) dataset, have been identified as more

effective than CNNs due to their ability to model long-distance

dependencies (Wu et al., 2023). However, computational overhead

remains a limitation in clinical applications.

Recent research has explored Multi-Scale Coupled Attention

(MSCA) networks, designed to improve object detection in varying

scales (Li et al., 2024a). Ablation studies confirm that MSCCA

and MSCSA modules enhance feature recognition precision and

stability, making these networks suitable for complex visual

scenarios. The combination of CNNs and Transformers has been

shown to enhance global feature extraction, leading to improved

performance in differentiating GI lesions, including polyps and

cancers (Tang et al., 2023).

Furthermore, active learning techniques have been

incorporated into ViT models to improve training efficiency

in scenarios with limited labeled data (Tang et al., 2023). Despite

their advantages, ViTs require extensive computational resources,

and further research is needed to optimize these architectures for

real-time applications (Li et al., 2024c). Advances in lightweight

transformer models and hybrid architectures continue to refine the

balance between accuracy, computational efficiency, and real-time

diagnostic applicability (Pornvoraphat et al., 2023; Chen et al.,

2023).

2.3 Real-Time DEtection TRansformer

The VST model that applies T2T-ViT is designed to focus

on regions likely to contain polyps, thereby improving detection

accuracy (de Moura Lima et al., 2023). The DETR model, when
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integrated with a ResNet-50 backbone, effectively addresses various

object detection tasks, benefiting from transformers’ ability to

learn long-range dependencies within images (de Moura Lima

et al., 2023). These properties enable accurate detection of polyps

(de Moura Lima et al., 2023). Additionally, ViT-H/14 has been

utilized as the primary classification model for gastroscopic images,

leveraging transfer learning with pre-training on the ImageNet-21k

dataset (Chae and Cho, 2023). The ViT-H/14 and BiT-L models

facilitate relevant feature extraction from small image patches,

improving model performance and classification accuracy (Chae

and Cho, 2023).

RT-DETR and Deformable DETR models, both based on

the Transformer architecture, have been evaluated for real-time

object detection (Zhang et al., 2024a). RT-DETR achieves a

balanced trade-off between precision and recall, demonstrating

high inference speed at 46.9 FPS. Although this is lower than the

YOLO series, it remains well-suited for real-time detection tasks

(Zhang et al., 2024a).

RT-DETRv2 introduces several enhancements over the original

RT-DETR model, optimizing its performance for real-time

applications. The deformable attention module has been modified

to include multi-scale sampling points, improving the model’s

ability to learn selective multi-scale features (Lv et al., 2024).

Additionally, a discrete sampling operator is employed to replace

the grid_sample function, eliminating deployment issues without

affecting performance (Lv et al., 2024). Dynamic data augmentation

is incorporated, adjusting augmentation strength during training

to enhance generalization to target domains (Lv et al., 2024).

Moreover, RT-DETRv2 introduces scale-adaptive hyperparameter

tuning, which optimizes learning rates based on model size,

improving feature quality in smaller networks like ResNet18 while

preserving efficiency in larger networks such as ResNet101 (Lv et al.,

2024).

A comparative study demonstrated that RT-DETRv2

outperformed its predecessor in both AP and FPS metrics on

the COCO dataset across different model sizes (Lv et al., 2024). For

instance, RT-DETRv2-S, based on ResNet18, achieved an AP of

47.9, marking a 1.4-point improvement, while maintaining a stable

FPS of 217 (Lv et al., 2024). Further ablation studies validated

the improvements, showing that reducing sampling points in the

deformable attention module did not significantly compromise

accuracy while maintaining efficiency (Lv et al., 2024).

Alavala et al. (2024) proposed a pipeline utilizing the Swin

Transformer model for classifying WCE frames into bleeding

and non-bleeding categories, while RT-DETR was employed

for bleeding region detection and segmentation. The Swin

Transformer captures both local and global spatial dependencies,

while RT-DETR integrates a hybrid encoder and uncertainty-

minimal query selection for precise abnormality detection (Alavala

et al., 2024). The preprocessing techniques of Lab color space

conversion and CLAHE help models perform better through

contrast enhancement and artifact reduction according to Alavala

et al. (2024). The model attained 66.7% average precision (AP)

as well as 98.5% classification accuracy while performing on the

validation set (Alavala et al., 2024). The study (Muzammul et al.,

2024) introduced a novel approach for UAV aerial image analysis,

leveraging Slicing Aided Hyper Inference (SAHI) alongside the

RT-DETR-X model. The objective was to improve detection

accuracy and efficiency in high-resolution aerial imagery, using

the VisDrone-DET dataset for evaluation. The RT-DETR-X model

demonstrated real-time object detection capabilities, enhanced by

the SAHI method, particularly in identifying small objects within

high-resolution scenes (Muzammul et al., 2024).

DETR and Faster R-CNN have also been applied to the

localization, detection, and characterization of focal liver lesions

(FLLs) in ultrasound images (Dadoun et al., 2022). While DETR

achieved superior accuracy with a specificity of 90% and sensitivity

of 97%, making it well-suited for real-time clinical applications,

Faster R-CNN performed better in certain lesion characterization

tasks (Dadoun et al., 2022). This comparison highlights the

potential of transformer-based models to enhance diagnostic

accuracy in medical imaging.

The RT-DETR model has further been applied for malaria

diagnosis by automating the detection and classification of four

Plasmodium species in thin blood films (Guemas et al., 2024). The

model exhibited high sensitivity, achieving a 90% recall rate in

detecting P. falciparum. However, distinguishing species such as P.

vivax and P. ovale remains challenging due to their morphological

similarities. Overall, RT-DETR was found to be as effective as

YOLOv8x for patient-level detection, demonstrating potential for

real-time diagnostic applications on low-cost devices, including

smartphones (Guemas et al., 2024).

A two-stage detection algorithm incorporating depth maps,

Visual Saliency Transformer, and DETR has been developed for

polyp detection in colonoscopy images (de Moura Lima et al.,

2023). This approach achieved a detection accuracy of 92.6% on

the Kvasir-SEG dataset, demonstrating improvements in depth

map utilization, saliency extraction, and transformer-based feature

learning (de Moura Lima et al., 2023).

The Residual Convolution DETR (RPC-DETR) model

introduces several optimizations relevant to medical image

analysis, including WCE video detection (Shao et al., 2024). The

addition of a Residual Convolution block (RPC-block) enhances

feature extraction while reducing computational costs, making it

suitable for real-time applications. Additionally, the Shape-IoU

loss function improves bounding box regression by accounting

for shape variations, which is particularly useful for detecting

gastrointestinal abnormalities in WCE images (Shao et al., 2024).

For colorectal cancer screening, YOLOv5 has been enhanced

with a P-C3 module and Context Feature Augmentation (CFA)

to improve the detection of small and low-contrast polyps in

colonoscopy images (Wan et al., 2024b). The integration of a

Coordinate Attention Mechanism (CAM) further refines feature

selection, enhancing model focus on relevant areas. Evaluation

results indicate that the improved YOLOv5 outperformed

YOLOv8, RT-DETR R50, and other state-of-the-art methods in

polyp detection (Wan et al., 2024b).

The Deformable DETR model has also been applied for breast

cancer detection in mammographic images (Xu et al., 2024).

The study examined the effectiveness of design choices from

Deformable DETR in medical imaging and found that multi-scale

feature fusion and complex encoder structures, while beneficial for

natural images, may not always improve performance in medical

datasets. Instead, simpler architectures were found to be more
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effective, particularly when handling high-resolution images with

small regions of interest (Xu et al., 2024). This insight is relevant to

RT-DETR in WCE analysis, as optimizing model complexity may

enhance both speed and detection accuracy.

In segmentation tasks, Point SEGTR has been introduced

as a deep weakly semi-supervised model derived from DETR

(Shi et al., 2023). This framework leverages fully supervised and

weakly supervised data, incorporating multi-point and symmetric

consistency constraints to improve segmentation stability and

effectiveness. Such techniques are particularly beneficial for RT-

DETR applications in colonoscopy, where annotated training data

is often limited (Shi et al., 2023).

Researchers assessed RT-DETR variants (ResNet18, ResNet34,

and ResNet50) when detecting colorectal polyps on both Kvasir-

SEG and CVC-ColonDB datasets (Yu et al., 2025). RT-DETR-

ResNet34 demonstrated the best AP@0.5 performance with 0.8859

on Kvasir-SEG and 0.8551 on CVC-ColonDB by outscoring RT-

DETR-ResNet18 and RT-DETR-ResNet50 in most test cases (Yu

et al., 2025). PD-YOLO outperformed all other models in the

experiments while demonstrating an AP@0.5 score of 0.8828 on

CVC-ColonDB and 0.9478 on Kvasir-SEG and also exhibited better

recall values and F1-scores according to the research findings Yu

et al. (2025)

2.4 Classification of WCE frames

The study classified WCE frames into three categories: Lesion

Frames as frames that contain pathologies like ulcers, polyps, and

bleeding; Normal Frames as frames with no pathologically altered

tissues; and poor frames, in which visibility is compromised due to

appearances such as mucus, shadows, or bubbles (Bordbar et al.,

2023).

The study was able to categorize the WCE frames into

nine classes, and these included foreign body, reduced mucosal

view, ileocecal valve, pylorus, ulcer, erosion, lymphangiectasia,

erythema, and normal mucosa (Varam et al., 2023). There was

high classification accuracy obtained in a variety of gastrointestinal

diseases, and therefore the robustness of the ViT (Varam

et al., 2023) model in managing diversified diseases was well

demonstrated. Thus, some challenges were revealed in the study,

the key of which was the Classification issue, especially between

apparently similar classes like Erosion and Angiectasia (Varam

et al., 2023).

Another author performed the classification of WCE frames

based on various categories such as normal frames, inflammatory

diseases, vascular lesions, polyps, tumors, and bleeding and

achieved a real-time execution with an average frame rate of 30 FPS

(Wu et al., 2023).

2.5 Datasets

The research utilized a large, publicly available WCE dataset

known as the Kvasir-Capsule (Varam et al., 2023; Pogorelov et al.,

2017; Smedsrud et al., 2021; Oh et al., 2023; Wu et al., 2023;

Sharmila and Geetha, 2024), Red Lesion Endoscopy (RLE) (Wu

et al., 2023), Kvasir-SEG (de Moura Lima et al., 2023; Wan et al.,

2024b), and ETIS-Larib Polyp DB (Oh et al., 2023; Wan et al.,

2024b) datasets. Kvasir-Capsule datasets (Smedsrud et al., 2021)

consist of slightly more than 47,238 partially labeled images that

were manually reviewed and allocated to one out of 14 categories

of gastrointestinal lesions. Because of class imbalance issues, the

authors performed under-sampling operations in the preparation

of balanced samples for training the models (Varam et al., 2023).

This approach was critical in order to prevent class imbalance

towards less complex but frequent classes like Normal Mucosa

and in enhancing the performance of the model especially with

clinically relevant classes which are less frequent (Varam et al., 2023;

Oh et al., 2023).

The study (deMoura Lima et al., 2023) uses four public datasets

for training and validation: CVC-ClinicDB with 612 images, CVC-

ColonDB with 300 images, ETIS-LaribPolypDB with 196 high-

resolution images, and Kvasir-SEG with 1,000 images. The study

(Chae and Cho, 2023) uses two datasets: Gastroscopic Dataset

A and Gastroscopic Dataset B are pathological data of gastric

abnormalities and early gastric cancer, and also from AI Hub of the

National Information Society Agency of South Korea. This study

(Liang et al., 2024) used a dataset from Zhujiang Hospital with

105 GIST pathological slides that was reviewed by two pathologists

and adopted data augmentation (Random cropping and Mosaic

augmentation).

2.6 Summary of related work

The presented literature review also shows the development of

object detection and classification models in WCE video analysis

from traditional approaches to deep learning. Earlier studies used

models such as 3D-CNNs which improved the possibilities to

detect spatial and temporal characteristics in the WCE frames but

suffered from high computational costs and real-time performance

(Bordbar et al., 2023). Progressively with the development of deep

learning, models including ResNet (Varam et al., 2023; Oh et al.,

2023), EfficientNet (Varam et al., 2023; Oh et al., 2023), and Vision

Transformers (ViTs) (Varam et al., 2023; Oh et al., 2023) especially

enhance the ability to classify by their potential to capture the global

context and the long-range dependence. However, thesemodels can

be computationally intensive making their application in real-time

clinical settings challenging.

Recent studies have increasingly focused on integrating

transformers with CNNs to develop more effective models for

handling the ambiguity of WCE data (Sharmila and Geetha, 2024;

Liang et al., 2024). Transformer-based architectures have been

shown to improve class imbalance issues and enhance the detection

of small and intricate lesions (Sharmila and Geetha, 2024; Liang

et al., 2024; Lv et al., 2024). Additionally, improvements to models

such as RT-DETR have been introduced to enhance real-time

object detection, achieving better accuracy while maintaining high

operational speed-an essential requirement for clinical applications

(Zhang et al., 2024a; Lv et al., 2024; Alavala et al., 2024).

Besides, model innovations, the access to as well as usage of

such large and varied data repositories like Kvasir-Capsule and

Kvasir-SEG has been critical to the development of such solutions.
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TABLE 1 Performance metrics for RT-DETR small, medium, and large size models as per classes.

Classes RT-DETR-S RT-DETR-M RT-DETR-X

Precision Recall F1-
Score

Precision Recall F1-
Score

Precision Recall F1-
Score

Ampulla of vater 0.83 0.91 0.87 1.00 1.00 1.00 1.00 1.00 1.00

Angiectasia 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.99 0.99

Blood fresh 0.98 0.92 0.95 1.00 1.00 1.00 1.00 0.91 0.95

Blood hematin 0.83 0.83 0.83 1.00 1.00 1.00 1.00 1.00 1.00

Erosion 0.97 0.92 0.94 0.98 0.92 0.95 0.97 0.88 0.90

Erythema 0.95 0.95 0.95 0.97 0.97 0.97 1.00 0.95 0.97

Foreign body 1.00 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Lymphangiectasia 0.97 0.99 0.98 0.99 0.99 0.99 1.00 0.99 0.99

Polyp 1.00 0.93 0.97 1.00 1.00 1.00 1.00 1.00 1.00

Ulcer 0.99 0.97 0.98 0.99 0.97 0.96 0.96 0.94 0.96

Background 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

These datasets together with data augmentationmethods have been

used to overcome the issues of class imbalance and to enhance the

ability of the models to generalize (Varam et al., 2023; Smedsrud

et al., 2021; Oh et al., 2023; Wu et al., 2023).

In summary, the related work is consistent with the fact that

video analysis in WCE has been progressively enhanced by deep

learning and transformer-based models, as well as the ongoing

research to improve the accuracy, efficiency, and capacity of

handling various medical imaging tasks.

3 Methodology

The employed method is designed to enhance the precision,

computational effectiveness, and real-time suitability of RT-

DETR for WCE video analysis, as suggested in this section.

The primary problems in this technique are the class-imbalance

problem, architecture improvements, lesion detection accuracy

enhancement, and clinical significance of the data. In accordance

with best practices, the original developers provided their code,

which we used to build the model and benefit from the features and

optimizations they introduced (Lv et al., 2024).

3.1 Proposed method: RT-DETR with
ResNet for WCE pathology detection

In this research, we put forward a customized object detection

system that uses the RT-DETR framework, equipped with a

modified ResNet backbone for feature extraction. To work with

our WCE dataset, we adapt the ResNet architecture by starting

with pre-trained weights and fine-tuning the later layers, all while

keeping the early layers frozen to preserve valuable features from

the pre-training. The Hybrid Encoder exploits multi-scale feature

extraction from the varying stages of its backbone to grab both

fine and large features essential for finding small pathologies.

A customized backbone, integrated with a transformer-based

decoder, is designed to enhance both precision and computational

performance in WCE video pathology detection.

3.1.1 Data acquisition and preprocessing
The dataset used in this study consists of 16,938 WCE

images, covering various gastrointestinal pathologies (Table 1). To

ensure compatibility with the RT-DETR model, all images were

converted to COCO format for integration with the MMDetection

framework. Several preprocessing steps were applied to standardize

image dimensions, enhance visual quality, and optimize model

performance.

Each image was resized to 512 × 512 pixels to maintain

uniform input dimensions. EXIF orientationmetadata was stripped

to ensure consistent pixel alignment. To enhance contrast and

improve lesion visibility, contrast adjustment was performed using

CLAHE (Contrast Limited Adaptive Histogram Equalization),

which enhances local contrast while preventing over-amplification

of noise. Normalization was applied using mean and standard

deviation scaling to standardize pixel intensity values across the

dataset.

To improve generalization and synthetically extend the dataset,

data augmentation was applied, generating five additional copies

per image. The transformations included:

• Flipping (horizontal and vertical) with a 50% probability.

• Random rotations of 90◦ (clockwise, counterclockwise,

upside-down, or none) and minor random rotations between

–12◦ and+12◦.

• Random horizontal shearing between –5◦ and+5◦.

• Random brightness adjustments between –25% and+25%.

• Random exposure corrections between –11% and+11%.

• Gaussian blurring using variable kernel sizes, where the

standard deviation for the Gaussian filter was randomly

selected between 0 and 3.1 pixels. Since Gaussian filters

operate on discrete kernel sizes, the fractional standard

deviations were rounded to the nearest applicable kernel size.
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FIGURE 1

RT-DETR model for wireless capsule endoscopy image detection. The figure is adapted and redrawn by the author based on the architecture

presented in Lv et al. (2024).

• Salt and pepper noise applied to 1.5% of image pixels to

simulate real-world noise artifacts.

These augmentations enhance model robustness by ensuring

exposure to various transformations that may occur in real-world

WCE images.

3.1.2 Data loading strategies
Important steps in the creation and training of models include

the loading of data and the techniques used to optimize it. The

loading and preprocessing of data is done in parallel which speeds

up the training process overall by minimizing the amount of

time required to load and prepare each batch and making the

best use of the computational resources. After organizing the

dataset, additional augmentations were made dynamically during

training to increase the effectiveness of model generalization.

The augmentations incorporated random photometric distortion

with a probability of 50%, random zooming out to provide

padding, and random IoU-based cropping with a 80% chance,

to teach the model to detect pathologies in different light

conditions, scales, and contexts. Bounding boxes were processed

to guarantee their validity following transformations. To keep

input dimensions consistent, horizontal flipping was randomly

applied alongside the resizing of images to 640 × 640 pixels.

The augmentation method was applied through epoch 117,

at which time augmentations were stopped to stabilize the

training process. The batch size of 12 per single GPU was

applied for training, along with a validation batch size of

32, which ensured effective data processing in both training

and evaluation. However, the developed model uses the weight

decay in conjunction with gradient clipping techniques and the

AdamW optimizer in conjunction with the dynamic learning

rate to improve the training efficiency. All of these techniques

provide high accuracy and generality while facilitating quick model

convergence.

3.1.3 Model architecture
This work extends the RT-DETR framework, presented by

Lv et al. (2024) as shown in Figure 1, aimed at performing real-

time object detection. The fundamental part of our model is

the different size of ResNet, pre-initialized with ImageNet pre-

trained weights. To maintain learned features and modify the

model for the WCE dataset, we keep the ResNet lower layers

fixed, while fine-tuning the upper layers for pathology detection.

Within RT-DETR Model, a backbone (ResNet-18, ResNet-34, or

ResNet-101) serves to pull out hierarchical features from the images

supplied. These features are then fed into the Hybrid Encoder,

which passes the data through several modules: the AIFI Module

(Adaptive Intra-Feature Interaction), the CCFM Module (Cross-

Scale Context Fusion Module), along with the IoU Aware Query

Selection mechanism. The Transformer Decoder carries out final

detection and returns predicted bounding boxes and object labels

after the IoU Aware Query Selection module enhances object

queries prior to their passage (refer Figure 1).

Basically, our architecture integrates efficient feature extraction

with transformers’ multi-scale abilities to provide accurate and

real-time identification of pathologies in WCE data, utilizing

pre-trained weights for initialization and fine-tuning the higher

layers while leaving the early layers frozen to retain helpful pre-

trained features. The Hybrid Encoder takes advantage of multi-

scale feature extraction at different backbone stages, which helps

it detect both finer and larger features important for the discovery

of small pathologies. Integrating this personalized backbone with

an effective transformer-based decoder, our approach successfully

tackles the problem of detecting pathologies in WCE videos,

making sure to provide both precision and timely performance. The

RT-DETR model, which is known for its performance in real-time

object detection without using NMS has been developed for WCE

video analysis problem.

The preference of the RT-DETR model is based on the use of

ResNet backbone that is composed of customized connections with

the ResNet. The customized ResNet (Lv et al., 2024) connections
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are beneficial in increasing the gradient flow and decreasing the

computation while the residual connections come in handy in

the vanishing gradient problem that would allow the training

of deeper networks. This backbone is very useful for capturing

details in WCE images where many of the features are small

and the shapes irregular. The backbone architecture employed is

customized structures of varying sizes of ResNet which is to provide

both detection accuracy and computational complexity and they

include ResNet-18, ResNet-34, and ResNet-101.

RT-DETR incorporates a hybrid encoder that processes WCE

images through convolutional layers together with attention

mechanisms for local and global feature extraction. The model

extracts basic spatial features while concentrating on particular

areas of interest. The deformable attention module (Yu et al., 2025;

Lv et al., 2024) allows the model to extract features at different

resolutions which improves its capability to detect pathology

features in lesions with diverse sizes and textures.

Adaptive attention offsets were used for feature selection

optimization by altering the receptive field during training.

Positional encoding techniques were integrated for the spatial

consistency of WCE video sequences. All modifications were

implemented following the official RT-DETR repository, ensuring

compatibility with transformer-based object detection methods

(Zhao et al., 2023; Lv et al., 2024).

3.2 Training procedure

The training is carried out step by step to refine the RT-DETR

model for WCE pathology detection. Training and validation

are carried out on the Kvasir-Capsule dataset, which has been

converted to COCO format. The model is trained for 120 epochs

with two NVIDIA Quadro RTX 8000 GPUs setting and an overall

batch size of 24 (12 per GPU).

A custom loss function is employed, which is a mix of

classification, bounding box regression, and localization loss.

In order to balance class distributions and enhance detection

reliability, the loss components are dynamically weighted. The

AdamW optimizer is used with an initial learning rate of

0.0001 under a cosine annealing schedule where the learning

rate is progressively decreased. Weight decay of 0.05 and

gradient clipping are employed to avoid overfitting and stabilize

training.

Scale-adaptive hyperparameters dynamically adjust learning

rates based on detector size to ensure consistency in feature

extraction across model sizes. Data augmentation techniques

outlined in Section 3.1.1 are utilized to increase model robustness

and generalization.

3.3 Evaluation

Model performance evaluation for WCE pathology detection

relies on standard object detection metrics that include accuracy,

precision, recall, F1-score, and mean Average Precision together

with Intersection over Union. The selected metrics evaluate

detection reliability for clinical purposes across various pathology

TABLE 2 Performance comparison of RT-DETR models.

Metric RT-DETR-
S

RT-DETR-
M

RT-DETR-
X

Total time(s) 14.00 17.00 24.00

Average FPS 270.52 187.08 59.30

Evaluation time (s) 14.00 17.00 24.00

Average precision (AP)

@[IoU=0.50:0.95]

0.778 0.781 0.783

AP @[IoU=0.50] 0.982 0.980 0.974

AP [IoU=0.75] 0.841 0.853 0.855

AP [IoU=0.50:0.95 |

area=small]

0.515 0.471 0.463

AP [IoU=0.50:0.95 |

area=medium]

0.714 0.720 0.718

AP [IoU=0.50:0.95 |

area=large]

0.821 0.828 0.836

Average Recall (AR)

[IoU=0.50:0.95 |

maxDets=1]

0.803 0.806 0.807

AR [IoU=0.50:0.95 |

maxDets=10]

0.820 0.822 0.824

AR [IoU=0.50:0.95 |

maxDets=100]

0.847 0.854 0.839

AR [IoU=0.50:0.95 |

area=small]

0.646 0.603 0.556

AR [IoU=0.50:0.95 |

area=medium]

0.800 0.815 0.792

AR [IoU=0.50:0.95 |

area=large]

0.884 0.883 0.873

groups. Real-time feasibility is determined by measuring the

inference speed (FPS) and performing ROC-AUC analysis as well

as confusion matrix evaluations. Robustness testing occurs under

different conditions such as illumination levels and image artifacts

and frame rates to validate themodel’s performance. The evaluation

procedures follow previously used methods to ensure consistency

in result reporting (Habe et al., 2024; Jin and Zhang, 2024;Wu et al.,

2023; Li et al., 2024b).

4 Results

This study evaluates the performance of three RT-DETR

variants RT-DETR-S, RT-DETR-M, and RT-DETR-X on the Kvasir-

Capsule dataset for WCE pathology detection. The evaluation

considers key metrics such as Average Precision (AP), Recall, F1-

score, ROC AUC, and inference speed (FPS). The models are

compared against existing object detection methods to assess their

accuracy and efficiency.

4.1 Model performance and accuracy

The results in Table 2 highlight the high detection accuracy of

RT-DETR models. RT-DETR-X achieves the highest AP (78.3%)

at IoU 0.50:0.95, confirming its superior capability in pathology
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TABLE 3 Comparative analysis of RT-DETR variants and current object detection models for WCE pathology detection.

Model Dataset Input
Size

AP50:95val AP50val #Params
(M)

#Epochs FPS Ref.

YOLOv8-L WCE-BleedGen 640 68.9 80.2 43 150 - Alavala et al.

(2024)

CRH-YOLO LDPolypVideo 320 67.8 95.7 0.91 300 96.5 Wan et al. (2024a)

PD-YOLO CVC-ColonDB 640 70.6 94.7 11.9 300 45.2 Yu et al. (2025)

PD-YOLO Kvasir-SEG 640 63.9 88.2 11.9 300 45 Yu et al. (2025)

RT-DETR-ResNet50 CVC-ColonDB 640 65.04 84.11 42.8 150 11.8 Yu et al. (2025)

RT-DETR-ResNet18 CVC-ColonDB 640 64.17 85.23 20.1 150 21.9 Yu et al. (2025)

RT-DETR-ResNet34 CVC-ColonDB 640 66.39 85.51 30.1 150 16.9 Yu et al. (2025)

RT-DETR-ResNet50 Kvasir-SEG 640 68.66 88.30 42.8 150 11.3 Yu et al. (2025)

RT-DETR-ResNet34 Kvasir-SEG 640 71.02 88.59 30.1 150 17.3 Yu et al. (2025)

RT-DETR-ResNet18 Kvasir-SEG 640 70.38 89.42 20.1 150 21.6 Yu et al. (2025)

RT-DETR-R101 WCE-BleedGen 640 81.0 66.7 75 150 - Alavala et al.

(2024)

RT-DETR-R50 LDPolypVideo 640 65.2 90.2 42.8 300 17.2 Wan et al. (2024a)

DETR-DC5-R101 WCE-BleedGen 640 72.3 61.2 58 500 - Alavala et al.

(2024)

DETR-R50 WCE-BleedGen 224 73.28 74.47 - 500 - Alawode et al.

(2024)

RT-DETR-S-R18 Kvasir-Capsule 640 77.8 98.2 20 120 270.52 ours

RT-DETR-M-R34 Kvasir-Capsule 640 78.1 98.0 31 120 187.08 ours

RT-DETR-X-R101 Kvasir-Capsule 640 78.3 97.4 76 120 59.3 ours

RT-DETR-S-R18, RT-DETR-M-R34, and RT-DETR-X-R101 denote our models evaluated on the Kvasir-Capsule dataset with different ResNet backbone sizes.
∗∗HarDNet-CPS ∗∗achieved the highest ∗∗AP50 (91.10%)∗∗ on Kvasir-SEG, demonstrating strong segmentation performance.
∗∗RT-DETR models from PD-YOLO study∗∗ (ResNet18, ResNet34, and ResNet50) were tested on ∗∗Kvasir-SEG∗∗ and ∗∗CVC-ColonDB∗∗ datasets, showing strong detection accuracy.
∗∗RT-DETR-R50 was tested on LDPolypVideo∗∗ and showed competitive results with an ∗∗AP50 of 90.2% and FPS of 17.2∗∗.
∗∗CRH-YOLO achieved the best FPS (96.5) and highest AP50 (95.7%) on LDPolypVideo∗∗ , showing its efficiency in real-time detection.
∗∗Our models achieve the highest AP50 scores, demonstrating their effectiveness for polyp detection in endoscopic images.∗∗

RT-DETR achieves an ∗∗AP50 of 88.9% on ImageNet-VID∗∗ (Chae and Cho, 2023; Hao et al., 2024).
∗∗Real-time deep learning processing∗∗ enables ∗∗WCE video analysis in endoscopic procedures∗∗ , with an ∗∗average inference speed of 14.1 ms∗∗ (Sahafi et al., 2022).

detection. However, RT-DETR-M follows closely with AP 78.1%,

showing a marginal 0.2 percentage points difference while offering

a balanced approach between accuracy and computational

efficiency. RT-DETR-S achieves AP 77.8%, demonstrating

competitive accuracy while significantly outperforming in

inference speed.

In AP at IoU 0.50, RT-DETR-M scores slightly higher (98.0%)

than RT-DETR-X (97.4%), suggesting that it maintains strong

detection confidence at a relaxed threshold. However, RT-DETR-

X achieves the highest AP at IoU 0.75 (85.5%), making it the most

reliable in precise localization of pathology regions. These minor

differences indicate that the training process for RT-DETR-X could

be further optimized to fully utilize its parameter-rich architecture

and maximize performance.

4.2 Inference speed and computational
e�ciency

Inference speed is critical for real-time medical applications.

RT-DETR-S achieves the highest FPS (270.52), making it the best

choice for real-time WCE analysis. RT-DETR-M follows with

187.08 FPS, offering a strong balance between speed and accuracy.

RT-DETR-X, while achieving the highest detection precision,

operates at 59.3 FPS due to its larger architecture. Given the Kvasir-

Capsule dataset’s sizable 47,238 images, RT-DETR-M’s competitive

performance relative to RT-DETR-X suggests that further tuning

of hyperparameters and training epochs for RT-DETR-X might

unlock additional gains in accuracy.

These results confirm that RT-DETR models maintain

computational efficiency while ensuring high accuracy. RT-DETR-

M provides a strong trade-off between inference speed and

detection performance, making it ideal for clinical settings where

both precision and efficiency are required.

4.3 Comparative analysis with other
models

A comparison of RT-DETR models with existing object

detection frameworks is presented in Table 3. For RT-DETR-M

(ours) and RT-DETR-S (ours), Yu et al. (2025), with Kvasir-SEG
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FIGURE 2

RT-DETR-S normalized confusion matrix.

FIGURE 3

RT-DETR-M normalized confusion matrix.
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FIGURE 4

RT-DETR-X normalized confusion matrix.

TABLE 4 Comparative model performance.

Model variant ROC AUC
(Average)

Macro Avg Weighted Avg

Precision Recall F1-Score Precision Recall F1-Score

RT-DETR-S 0.93 0.87 0.85 0.86 0.96 0.94 0.95

RT-DETR-M 0.99 0.91 0.89 0.90 0.97 0.94 0.95

RT-DETR-X 0.97 0.90 0.87 0.88 0.98 0.97 0.98

dataset serves as the direct baseline. RT-DETR-M(ours) achieves an

AP50:95 of 78.1%, marking a 7.08 percentage points improvement

over RT-DETR-ResNet34 (71.02%) from Yu et al. (2025). Similarly,

RT-DETR-S records an AP50:95 of 77.8%, surpassing RT-

DETR-ResNet18 (Yu et al., 2025) (70.38%) by 7.42 percentage

points. These improvements confirm that our RT-DETR models

outperform previous RT-DETR implementations in accuracy while

maintaining a better balance between computational efficiency and

detection performance.

The RT-DETR-R101 in Alavala et al. (2024) attains an AP50:95

of 81.0% which is 2.7 percentage points higher than RT-DETR-

X (ours). This can be explained by the fact that RT-DETR-R101

(Alavala et al., 2024) has been trained for 150 epochs while RT-

DETR-X (ours) for 120 epochs, which has given additional time for

feature enhancement. However, RT-DETR-X (ours) reaches a value

of 97.4 for AP50 compared to 66.7 for RT-DETR-R101 (Alavala

et al., 2024) which shows better detection quality at several IoU

thresholds. Because of this, the RT-DETR-R101 (Alavala et al.,

2024) has a higher AP50:95 but the AP50 score is lower, it also

has the potential to be overfitting, resulting in poor stability in

analyzing real-world WCE video.

Comparing RT-DETR models with other object detection

frameworks, PD-YOLO (Yu et al., 2025) and CRH-YOLO (Wan

et al., 2024a) achieve AP50 scores of 94.7% and 95.7%, respectively.

However, their AP50:95 scores drop to 70.6% and 67.8%, indicating

weaker localization precision under stricter IoU thresholds.

This suggests that while these models excel in high-confidence

detections, they struggle with more challenging pathology cases

that require refined localization accuracy.

The overall results confirm that RT-DETR-X, RT-DETR-M,

and RT-DETR-S demonstrate superior accuracy, robustness,

and adaptability for clinical applications. While RT-DETR-

R101 (Alavala et al., 2024) reports a slightly higher AP50:95,

its lower AP50 score and longer training setup indicate trade-

offs in overfitting and computational efficiency. Our models

maintain a strong balance between precision, robustness,

and feasibility, making them highly suitable for WCE video

analysis.
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FIGURE 5

ROC curve for RT-DETR-S.

4.4 Classification performance and
diagnostic precision

The classification results in Table 1 demonstrate that RT-DETR

models effectively detect gastrointestinal abnormalities with high

accuracy. RT-DETR-M achieves the highest F1-score across most

pathology classes, ensuring a balanced trade-off between precision

and recall. The model reaches an F1-score of 1.00 for Ampulla

of Vater, Angiectasia, Blood Fresh, Blood Hematin, Polyp, and

Lymphangiectasia, indicating exceptional reliability in detecting

these abnormalities. RT-DETR-X closely follows with comparable

performance but records slightly lower recall for Erosion at 0.88

compared to 0.92 for RT-DETR-M, and for Ulcer at 0.94 compared

to 0.97. RT-DETR-S maintains competitive classification accuracy,

though its recall for Blood Fresh and Erosion remains at 0.92,

slightly lower than the other two models. These variations suggest

that RT-DETR-M achieves the best balance, while RT-DETR-X

offers higher precision for select abnormalities.

The confusion matrix analysis in Figures 2–4 further confirms

the effectiveness of the models in distinguishing between

pathological and non-pathological frames. RT-DETR-M achieves

true positive rates exceeding 99% in key pathologies such

as Ampulla of Vater, Angiectasia, and Polyp, reinforcing its

classification stability. RT-DETR-X performs similarly but shows a

slight drop in recall for a few classes. RT-DETR-S, while optimized

for real-time performance, still maintains high classification

accuracy, though it exhibits a minor reduction in sensitivity for

detecting certain abnormalities. The Background class remains

consistently undetected across all models, ensuring that the

models do not mistakenly classify non-pathological regions as

abnormalities.

The ability of the models to differentiate between pathology

and non-pathology regions is further supported by the ROC AUC

scores in Table 4 and Figures 5–7. RT-DETR-M achieves an ROC

AUC of 0.99, confirming its superior ability to generalize across

different pathology types. RT-DETR-X follows with an ROC AUC

of 0.97, demonstrating high precision in its classifications, while

FIGURE 6

ROC curve for RT-DETR-M.

FIGURE 7

ROC curve for RT-DETR-X.

RT-DETR-S, with an ROC AUC of 0.93, remains an efficient model

suited for real-time clinical applications.

5 Discussion

The study outcomes demonstrate how different RT-DETR

variants affect performance levels when detecting pathologies

through WCE. RT-DETR models offer a more adaptable and

clinically practical solution for pathology detection in WCE

compared to existing object detection frameworks. While models

like CRH-YOLO (Wan et al., 2024a) and PD-YOLO (Yu et al.,

2025) demonstrate strong performance in specific tasks, they

lack the robustness needed for comprehensive WCE analysis,

particularly in handling diverse pathology types with varying lesion

sizes. The research data shows that higher model complexity does
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FIGURE 8

Graphical user interface (GUI) of the RT-DETR video processor.

not automatically lead to better accuracy results. The additional

parameters in RT-DETR-X lead to only a 0.2 percentage points

improvement in AP50:95 detection performance when compared

to RT-DETR-M which suggests that model size may not be as

important as optimizing training strategies and hyperparameters.

The selection process for models heavily depends on how

quickly they can generate inferences. RT-DETR-S offers the

fastest frame rate of 270.52 FPS which makes it ideal for real-

time diagnostic use. The fast operation of this system leads to

slightly diminished detection accuracy for small target objects

including ulcers and polyps. The combination of high accuracy

and speed performance in RT-DETR-M results in 187.08 FPS

making this model the optimal choice for real-time WCE analysis.

RT-DETR-X demonstrates the highest AP50:95 score of 78.3

percent but runs at 59.30 FPS which makes it suitable for

offline or post-procedure analysis when real-time operation is not

necessary.

Model efficiency depends heavily on the backbone architecture

design. The RT-DETR-S model with ResNet-18 architecture

focuses on speed but struggles to detect smaller or complex

abnormalities. The RT-DETR-M network with ResNet-34

architecture demonstrates superior pathology type classification

consistency which makes it an optimal selection for medical

use. RT-DETR-X utilizes ResNet-101 for feature extraction

and detection sensitivity enhancement but requires substantial

computational power that hinders its deployment in real-time

applications.

The classification performance of RT-DETR-M shows

better detection reliability when identifying Fresh Blood and

Erosion which ensures reliable medical application detection.

The confusion matrix analysis shows that RT-DETR-M delivers

an excellent true positive rate which qualifies it as an ideal

model for medical applications. The recall performance of

RT-DETR-X remains lower than its precision rates which

may affect its ability to detect uncommon abnormalities. RT-

DETR-S offers enhanced speed performance at the cost of

sensitivity which needs thorough examination before clinical

implementation.

The ROC AUC analysis demonstrates the reliability of RT-

DETR models through its results. RT-DETR-M demonstrates the

best performance in AUC value measurements across diverse

pathology classes which demonstrates its strong capability to

detect abnormalities accurately. RT-DETR-X demonstrates strong

performance in medical context since it detects fine lesions though

RT-DETR-S stands out due to its speed advantages when operating

on WCE videos in real-time conditions.

Researchers should focus their work towards better detection

of smaller lesions and enhance model recall efficacy and

training techniques to optimize model operational performance.

Computational efficiency can be preserved through multi-scale

feature extraction techniques and adaptive learning approaches

that would improve detection performance. Research should

explore how longer training sessions combined with learning

rate modifications affect the performance of RT-DETR-X in
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terms of optimizing its complex structure for better accuracy

results.

RT-DETR models establish a flexible method for WCE

pathology detection which scales effectively according to

different requirements. RT-DETR-S serves real-time diagnostic

needs while RT-DETR-M strikes a performance and speed

equilibrium and RT-DETR-X provides maximum detection

precision for detailed offline evaluations. The flexibility of these

models allows for effective integration into clinical workflows,

enhancing early disease detection and improving patient

outcomes.

6 Conclusion

In this work, we addressed the improvement of the accuracy

and time efficiency of analyzing WCE video with help of

transformer models. The presented methodology employed

RT-DETR variants with novel backbones including ResNet-

18, ResNet-34, and ResNet-101 as well as HybridEncoder

to enhance feature learning. The obtained results in the

reformed COCO Kvasir Capsule format with the desired balance

between speed and accuracy of the models are presented in

above mentioned Table 2 and the highest accuracy for large

objects and consistent detection results in our RT-DETR-

M and RT-DETR-X as expected. It was found that these

improvements in the detection of WCE videos can be linked to

the incorporation of object detection transformer models that are

particularly useful in detecting long-range features and spatial

connections.

The conclusions also underlined the significance of choosing

the right backbone; while ResNet-101 showed the best accuracy

for important diagnostic tasks, ResNet-34 would be suitable for

faster execution without significant loss in precision. Besides, we

identified an improvement in HybridEncoder, which is responsible

for improving the multi-scale feature extraction, in all the models

with regard to detection improvement. This research adds to

the current knowledge of transformer models applied to the

medical field for analysis of images, and provides a solution with

high real-time performance for pathological diagnosis in WCE

videos.

Future investigations should concentrate on resolving

inconsistencies in assessment by fine-tuning hyperparameters,

regularization methods, and model structures to enhance

the stability and generalizability of larger-size RT-DETR

models. To mitigate overfitting, improvements can be made

to learning rate schedules, weight decay approaches, and

data augmentation techniques, while pruning and lightweight

transformer adjustments can boost efficiency. Additionally,

validating the models across a diverse range of WCE datasets

and integrating real-time optimization methods (such as

quantization and hardware acceleration) will ensure that RT-

DETR-X maintains reliable accuracy and efficiency in practical

applications. The application prototype allowed real-time testing

of WCE video analysis for detection assessment as shown in

Figure 8.
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