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Introduction: AI fairness seeks to improve the transparency and explainability of

AI systems by ensuring that their outcomes genuinely reflect the best interests

of users. Data augmentation, which involves generating synthetic data from

existing datasets, has gained significant attention as a solution to data scarcity.

In particular, di�usion models have become a powerful technique for generating

synthetic data, especially in fields like computer vision.

Methods: This paper explores the potential of di�usion models to generate

synthetic tabular data to improve AI fairness. The Tabular Denoising Di�usion

Probabilistic Model (Tab-DDPM), a di�usion model adaptable to any tabular

dataset and capable of handling various feature types, was utilized with di�erent

amounts of generated data for data augmentation. Additionally, reweighting

samples from AIF360 was employed to further enhance AI fairness. Five

traditional machine learning models—Decision Tree (DT), Gaussian Naive Bayes

(GNB), K-Nearest Neighbors (KNN), Logistic Regression (LR), and Random Forest

(RF)—were used to validate the proposed approach.

Results and discussion: Experimental results demonstrate that the synthetic data

generated by Tab-DDPM improves fairness in binary classification.

KEYWORDS

generative AI, AI fairness, AIF360, reweighting samples, COMPAS dataset, adult income

dataset

1 Introduction

In our rapidly evolving society, artificial intelligence (AI) has become a ubiquitous

presence, influencing everyday activities like online banking and digital assistants.

However, how can we ensure the fairness of AI-generated outcomes? AI fairness seeks to

enhance the transparency and explainability of AI systems (Li et al., 2023a). It scrutinizes

the results to determine if they genuinely consider the users’ best interests. Additionally,

guidelines are being established to ensure the safety of both corporations and consumers.

Various fairness tools have been developed to address the growing need to mitigate AI

biases (Richardson and Gilbert, 2021). For example, AIF360 (Bellamy et al., 2019) offers

a comprehensive set of fairness metrics for datasets and models, explanations for these

metrics, and algorithms to reduce bias in datasets and models concerning protected

attributes such as sex and race.

Data augmentation (Ding et al., 2019) aims to generate synthetic data from existing

datasets to enlarge the training data to enhance the machine learning performance (Bansal

et al., 2022). This technique increases both the quantity and variety of data available

for training and testing models, eliminating the need for new data collection. Data

augmentation can be achieved by either learning a generator, such as through GAN

networks (Alqahtani et al., 2021), to create data from scratch, or by learning a set of

transformations to apply to existing training set samples (Cubuk et al., 2019). Both

approaches enhance the performance of deep learning models by providing a more diverse

and abundant dataset.
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In recent years, diffusion models (Yang et al., 2023) have

emerged as a powerful technique for generating synthetic data to

address data scarcity. For example, Villaizán-Vallelado et al. (2024)

proposed a diffusion model for generating synthetic tabular data

with three key enhancements: a conditioning attentionmechanism,

an encoder-decoder transformer as the denoising network, and

dynamic masking. Nguyen et al. (2024) introduced a novel method

for generating pixel-level semantic segmentation labels using

the text-to-image generative model Stable Diffusion (SD), which

incorporates uncertainty regions into the segmentation to account

for imperfections in the pseudo-labels. Additionally, Hu et al.

(2024) developed a novel diffusion GNN model called Syngand,

capable of generating ligand and pharmacokinetic data end-to-end,

providing a methodology for sampling pharmacokinetic data for

existing ligands using this model.

In the context of tabular data augmentation (Cui et al., 2024),

GANs (Goodfellow et al., 2020), and Variational Autoencoders

(VAEs) (Kingma et al., 2019) offer distinct methodologies.

GANs excel at capturing complex data distributions, making

them highly effective for generating realistic tabular data.

However, their training process is often unstable due to the

adversarial setup, requiring meticulous tuning. In contrast, VAEs

provide stable training through their probabilistic framework

and are adept at learning latent representations, enabling data

interpolation and exploration. Despite these advantages, VAEs

tend to generate less sharp or realistic data compared to GANs,

and balancing reconstruction loss with regularization remains

a challenge. Diffusion models, compared to GANs and VAEs,

present a promising alternative. They leverage a robust theoretical

foundation for stable training to deliver high-quality generated

data, addressing some of the limitations of GANs and VAEs.

However, this advantage comes at the cost of higher computational

requirements. Therefore, this study utilized diffusion model-

based methods for tabular data augmentation to investigate

enhancements in AI fairness.

This paper aims to investigate whether diffusion models

can generate synthetic data to enhance AI fairness as well

as machine learning performance. Tabular Denoising Diffusion

Probabilistic Model (TabDDPM) (Kotelnikov et al., 2023) is a

diffusion model that can be universally applied to any tabular

dataset, handling all feature types. It uses multinomial diffusion

for categorical and binary features, and Gaussian diffusion for

numerical ones. Tab-DDPM effectively manages mixed data types

and consistently generates high-quality synthetic data. It is used to

conduct different increments of generated data samples, specifically

20,000, 100,000, and 150,000 samples. To further mitigate bias,

reweighting samples was employed to recalibrate the data. This

involves adjusting the significance or contribution of individual

samples within the training dataset, making it possible to remove

discrimination concerning sensitive attributes without altering

existing labels (Calders et al., 2009). We used techniques from

AIF360 (Bellamy et al., 2019) to determine these weights, based

on the frequency counts associated with the sensitive attribute. To

validate the proposed method, five traditional machine learning

models were applied: Decision Tree (DT), Gaussian Naive Bayes

(GNB), K Nearest Neighbor (KNN), Logistic Regression (LR),

and Random Forest (RF). Experimental results indicate that the

synthetic data generated by Tab-DDPM enhances the fairness of

binary classification. For instance, both RF performance in binary

classification and fairness evaluated by five evaluation metrics has

been improved when enlarging the training data with the generated

data.

The contributions of this paper can be summarized as:

1. Introduction of generative AI techniques for generating

synthetic data to enhance AI fairness as well as machine learning

performance.

2. Extensive experiments demonstrating that the fairness of

different machine learning models can be improved with respect

to various protected attributes.

2 Methodology

This paper aims to examine the effectiveness of Tab-DDPM

and sample reweighting in enhancing the fairness of traditional

machine learning algorithms on classification tasks, focusing on

two key AI techniques: diffusion models and sample reweighting.

2.1 TabDDPM

TabDDPM (Kotelnikov et al., 2023) is a generative model

for tabular data, an area of active research. Tabular datasets

are often limited in size due to privacy concerns during data

collection. Generative AI, like Tab-DDPM, can create new synthetic

data without these privacy issues. It is a newly developed model

capable of effectively generating new data from tabular datasets.

In detail, the DDPM process consists of three main components:

the forward process, the backward process, and the sampling

procedure (Chang et al., 2023). The forward process adds noise to

the training data. The reverse process trains denoising networks

to iteratively remove noise, differing from generative adversarial

networks (GANs) by removing noise over two timesteps instead

of one. The sampling procedure uses the optimized denoising

network to generate novel data. It uses a Gaussian diffusion

model for numerical data and a Multinomial diffusion model

for categorical and binary features. Hyperparameters play a

crucial role in TabDDPM, significantly influencing the model’s

effectiveness. The general framework of TabDDPM is shown as

Figure 1.

The numerical and categorical data were represented through

two branches: quantile transformer for numerical data and one-

hot encoding for categorical data. These new data representations

were then fed into a DDPMprocess utilizingmultilayer perceptrons

(MLP) to minimize two types of losses Lnum and Lcat using softmax

function.

2.2 Reweighting samples

Reweighting samples is a preprocessing technique that

adjusts the significance or contribution of samples within a

training dataset. Weights are strategically assigned making

it possible to render datasets free from discrimination

pertaining to sensitive attributes without altering existing
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FIGURE 1

Tab-DDPM framework.

FIGURE 2

Flow of the proposed method.

labels. One such approach is by based on the frequency

counts associated with the sensitive attribute (Calders et al.,

2009).

This paper utilized the reweighting sample technique from

the AIF360 toolbox for reweighting during the preprocessing

phase. The contribution of the reweighting process comprises

the training dataset with generated data of different increments

with these samples containing attributes (including a sensitive

attribute) and labels along with the specification of the sensitive

attribute. The result being a transformed dataset where sample

weights are adjusted for the sensitive attributes, mitigating

potential classification bias. Throughout the reweighting process,

an analysis of the allocation of the sensitive attributes within

various groups is conducted. This analysis informs the calculation

of reweighting coefficients, which, in turn, amends the sample

weights to encourage a more uniform distribution across groups

(Blow et al., 2024). For instance, given a sensitive (protected)

attribute, the privileged group of these samples includes the

samples with the positive sensitive attribute while the unprivileged

group of samples includes the samples with the negative

sensitive attribute.

2.3 Proposed method

The flow of the proposed method is depicted in Figure 2.

The process begins with the random sampling of data, which

serves as input to TabDDPM to generate synthetic tabular data.

This synthetic data is then combined with the original training

data to create a comprehensive dataset for training the ML

model. In addition, reweighting samples from AIF360 is employ

to adjust weights of different categories of samples to enhance

fairness. Finally, the trained ML model is evaluated using test data,

with performance assessed through multiple evaluation metrics,

including various fairness metrics.

TabDDPM processes numerical and categorical features

using Gaussian diffusion and Multinomial diffusion,

respectively. For instance, a tabular data sample x = <

xnum1 , ..., xnumN , xc1 , ..., xcN > consists of numN numerical features

and cN categorical features. Specifically, TabDDPM applies a

Gaussian quantile transformation to process each categorical

feature through a separate forward diffusion process, where noise

components for all features are sampled independently. The reverse

diffusion step in TabDDPM is executed by a multi-layer neural
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FIGURE 3

Attribute distribution comparison between original data and synthetic data for Adult Income and COMPAS datasets. The attributes sex and race for

both datasets were compared.

network, which produces an output with the same dimensionality

as the input.

Reweighting samples involves adjusting the weights of four

categories: wpp (weight of positive privileged samples), wpup

(weight of positive unprivileged samples), wnp (weight of negative

privileged samples), and wnup (weight of negative unprivileged

samples), as outlined below.

wpp =
Np

Ntotal
×

Npos

Npp
(1)

wpup =
Nup

Ntotal
×

Npos

Npup
(2)

wnp =
Np

Ntotal
×

Nneg

Nnp
(3)

wnup =
Nup

Ntotal
×

Nneg

Nup
(4)

where

Np: the number of samples in the privileged group.

Npp: the number of samples with the positive class in the

privileged group.

Nnp: the number of samples with the negative class in the

privileged group.

Nup: the number of samples in the unprivileged group.

Npup: the number of samples with the positive class in the

unprivileged group.

Nnup: the number of samples with the negative class in the

unprivileged group.

Npos: the number of samples with the positive class.

Nneg : the number of samples with the negative class.

Ntotal: the number of samples.

3 Experiment

3.1 Datasets

This study utilized the Adult Income and the COMPAS datasets

and applied TabDDPM to generate new synthetic data, aiming to

assess the combined effectiveness of data augmentation and sample

reweighting in mitigating fairness issues.

Adult income dataset: The dataset consists of 48, 842 samples

with 14 attributes, designed to predict whether an individual’s
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income exceeds $50K/year based on census data (Becker and

Kohavi, 1996). It was divided into training (28, 048 samples),

testing (16, 281 samples), and validation (6, 513 samples) sets.

The attributes were categorized into 8 categorical and 6

numerical features.

TABLE 1 Fairness ranges of various evaluation metrics.

Metrics Fairness ranges

DI 0.80 ≤ fair ≤ 1.25

AOD −0.10 ≤ fair ≤ 0.10

SPD −0.10 ≤ fair ≤ 0.10

EOD −0.10 ≤ fair ≤ 0.10

TI 0 ≤ fair ≤ 0.25

COMPAS dataset: The dataset consists of 7, 214 samples with

53 attributes, 18 attributes were used for generating data, which

was used to determine whether a person would recidivate after two

years. It was divided into training (4, 311 samples), testing (1, 724

samples), and validation (1, 150 samples) sets. The attributes were

categorized into 211 categorical and 13 numerical features.

Synthetic dataset: TabDDPM was employed to generate

synthetic samples to implement data augmentation, enhancing

both AI fairness and classification performance. Synthetic data

was added the Adult Income training set in sample sizes of

20, 000, 100, 000, and 150, 000. Similarly, synthetic data was added

the COMPAS training set in sample sizes 2, 500, 8, 000, and

12, 000. As show in Figure 3, the distributions of synthetic data

closely resemble the original data across sample sizes. Furthermore,

the synthetic data is free of missing values, improving overall

data quality. These observations suggest that synthetic data is a

TABLE 2 Performance comparison between all outputs before and after reweighting through one classification metric BA and fairness metrics including

SPD, AOD, DI, EOD, and TI on Adult income dataset regarding the protected attribute Race.

Performance before reweighting samples (original) Performance after reweighting samples (original)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.7426 −0.2416 −0.1959 0.4196 −0.2026 0.1130 DT 1.0 −0.1066 0.0 0.5863 0.0 0.0

GNB 0.7416 −0.2952 −0.2623 0.3252 −0.2872 0.1111 GNB 0.7432 −0.1147 −0.0252 0.7379 0.0310 0.1058

KNN 0.7390 −0.1904 −0.1409 0.4882 −0.1416 0.1207 KNN 0.7390 −0.1904 −0.1409 0.4882 −0.1416 0.1207

LR 0.7437 −0.2435 −0.1966 0.4122 −0.2020 0.1129 LR 0.7311 −0.0523 0.0419 0.8508 0.1083 0.1247

RF 0.7471 −0.2014 −0.1336 0.5380 −0.1097 0.1066 RF 0.7447 −0.1072 −0.0201 0.7449 0.0321 0.1081

Performance before reweighting samples (20,000) Performance after reweighting samples (20,000)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.7441 −0.2182 −0.1763 0.4791 −0.1791 0.1117 DT 1.0 −0.0913 0.0 0.6444 0.0 0.0

GNB 0.7373 −0.3107 −0.2975 0.2965 −0.3417 0.1129 GNB 0.7354 −0.0984 −0.0358 0.7574 −0.0051 0.1151

KNN 0.7303 −0.1021

−0.0262

0.7544 0.0262 0.1156 KNN 0.7293 −0.1067 −0.0302 0.7461 0.0236 0.1153

LR 0.7432 −0.2157 −0.1705 0.5099 −0.1678 0.1082 LR 0.7415 −0.0446 0.0204 0.8978 0.0526 0.1052

RF 0.7440 −0.1414 −0.0802 0.6776 −0.0539 0.1063 RF 0.7440 −0.0946 −0.0243 0.7842 0.0157 0.1051

Performance before reweighting samples (100,000) Performance after reweighting samples (100,000)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.7496 −0.1260 −0.0573 0.7148 −0.0313 0.1020 DT 1.0 −0.1031 0.0 0.5958 0.0 0.0

GNB 0.7345 −0.3976 −0.3794 0.2321 −0.4205 0.1003 GNB 0.7440 −0.1133 −0.0455 0.7462 −0.0191 0.1032

KNN 0.7233 −0.1619 −0.1009 0.5979 −0.0778 0.1214 KNN 0.7234 −0.1602 −0.0980 0.6022 −0.0732 0.1213

LR 0.7504 −0.2324 −0.1788 0.4756 −0.1741 0.1039 LR 0.7487 −0.1044 −0.0388 0.7554 −0.0170 0.1045

RF 0.7503 −0.1699 −0.1084 0.6144 −0.0926 0.1029 RF 0.7489 −0.1092 −0.0427 0.7525 −0.0196 0.1020

Performance before reweighting samples (150,000) Performance before reweighting samples (150,000)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.7473 −0.2262 −0.1895 0.4790 −0.2081 0.1066 DT 1.0 −0.1020 0.0 0.5995 0.0 0.0

GNB 0.7262 −0.4150 −0.3996 0.2226 −0.4418 0.1006 GNB 0.7296 −0.0906 −0.0344 0.8225 −0.0202 0.0955

KNN 0.7382 −0.1237 −0.0797 0.6983 −0.0858 0.1126 KNN 0.7382 −0.1237 −0.0797 0.6983 −0.0858 0.1126

LR 0.7468 −0.2180 −0.1782 0.5007 −0.1922 0.1062 LR 0.7414 −0.0127 0.0340 0.9709 0.0299 0.1037

RF 0.7476 −0.1862 −0.1379 0.5713 −0.1399 0.1056 RF 0.7461 −0.0895 −0.0300 0.7939 −0.0158 0.1040

It presents the performances of adding different numbers of synthetic samples to the original data, including 20, 000, 100, 000, and 150, 000. The bold values highlight the outstanding

performance regarding AI fairness of ML models.
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TABLE 3 Performance comparison between all outputs before and after reweighting through one classification metric BA and fairness metrics including

SPD, AOD, DI, EOD, and TI on Adult income dataset regarding the protected attribute Sex.

Performance before reweighting samples (original) Performance after reweighting samples (original)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.7426 −0.3608 −0.3204 0.2785 −0.3775 0.1130 DT 1.0 −0.1910 0.0 0.3740 0.0 0.0

GNB 0.7416 −0.3353 −0.2805 0.3369 −0.3184 0.1111 GNB 0.7209 −0.0861 0.0073 0.7997 0.0203 0.1192

KNN 0.7390 −0.3983 −0.4075 0.1616 −0.5311 0.1207 KNN 0.7390 −0.3983 −0.4075 0.1616 −0.5311 0.1207

LR 0.7437 −0.3580 −0.3181 0.2794 −0.3769 0.1129 LR 0.7134 −0.0705 0.0188 0.7785 0.0293 0.1401

RF 0.7471 −0.3777 −0.3292 0.2884 −0.3763 0.1066 RF 0.7271 −0.1386 −0.0638 0.7220 −0.0774 0.1065

Performance before reweighting samples (20,000) Performance after reweighting samples (20,000)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.7441 −0.2182 −0.1763 0.4791 −0.1791 0.1117 DT 1.0 −0.1957 0.0 0.3657 0.0 0.0

GNB 0.7373 −0.3600 −0.3072 0.3044 −0.3461 0.1129 GNB 0.7143 −0.0984 −0.0215 0.7791 −0.0303 0.1205

KNN 0.7303 −0.2969 −0.2315 0.4052 −0.2528 0.1156 KNN 0.7293 −0.3028 −0.2366 0.4005 −0.2556 0.1153

LR 0.7432 −0.3905 −0.3344 0.2753 −0.3699 0.1082 LR 0.7173 −0.0100 −0.0244 0.8020 −0.0369 0.1071

RF 0.7440 −0.3993 −0.3379 0.2740 −0.3656 0.1063 RF 0.7188 −0.1065 −0.0318 0.7920 −0.0458 0.1053

Performance before reweighting samples (100,000) Performance after reweighting samples (100,000)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.7496 −0.4149 −0.3538 0.2580 −0.3871 0.1020 DT 1.0 −0.2029 0.0 0.3394 0.0 0.0

GNB 0.7345 −0.4182 −0.3477 0.3047 −0.3588 0.1003 GNB 0.7195 −0.1084 −0.0220 0.7711 −0.0242 0.1123

KNN 0.7233 −0.3791 −0.3225 0.2478 −0.3491 0.1214 KNN 0.7234 −0.3795 −0.3229 0.2477 −0.3495 0.1213

LR 0.7504 −0.4016 −0.3460 0.2601 −0.3883 0.1039 LR 0.7249 −0.1089 −0.0196 0.7639 −0.0216 0.1124

RF 0.7503 −0.4047 −0.3447 0.2631 −0.3806 0.1029 RF 0.7192 −0.0633 0.0257 0.8602 −0.0240 0.1137

Performance before reweighting samples (150,000) Performance before reweighting samples (150,000)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.7473 −0.4031 −0.3579 0.2494 −0.4098 0.1066 DT 1.0 −0.1956 0.0 0.3600 0.0 0.0

GNB 0.7262 −0.3525 −0.2867 0.4090 −0.3007 0.1006 GNB 0.7189 −0.0964 −0.0245 0.7967 −0.0433 0.1118

KNN 0.7382 −0.3494 −0.2938 0.3124 −0.3296 0.1126 KNN 0.7382 −0.3493 −0.2938 0.3124 −0.3296 0.1126

LR 0.7468 −0.3961 −0.3487 0.2641 −0.3977 0.1062 LR 0.7200 −0.0976 −0.0254 0.8069 −0.0441 0.1048

RF 0.7476 −0.3916 −0.3383 0.2725 −0.3799 0.1056 RF 0.7230 −0.1065 −0.0289 0.7914 −0.0411 0.1032

The bold values highlight the outstanding performance regarding AI fairness of ML models.

promising way for data augmentation, particularly in terms of

maintaining data quality.

3.2 Evaluation metrics

This paper utilized five evaluation metrics to determine the

effectiveness of reweighting samples for mitigating bias.

Disparate Impact (DI) refers to the unintentional bias that can

occur when predictions result in varying error rates or outcomes

across different demographic groups, where certain attributes like

race, sex, religion, and age are considered protected. This bias may

arise from training models on biased data or from the model itself

being discriminatory. In this study, Disparate Impact is defined as

the differential effects on prediction outcomes.

DI =
ppup

ppp
(5)

where ppup presents the prediction probability for unprivileged

samples with positive predictions, while ppp denotes the prediction

probability for privileged samples with positive predictions. A

disparate impact value approaching 0 indicates bias in favor of the

privileged group, while a value >1 indicates bias in favor of the

unprivileged group. A value of 1 reflects perfect fairness in the

predictions (Feldman et al., 2015).

Average odds difference (AOD) measures the average

difference in false positive rates (FPR) and true positive rates (TPR)

between unprivileged and privileged groups. It is calculated as:

AOD =
(FPRup − FPRp)+ (TPRup − TPRp)

2
(6)

where FPRup and FPRp represent the False Positive Rates for

unprivileged and privileged samples, respectively, while TPRup
and TPRp represent the True Positive Rates for unprivileged and

privileged samples. An AOD value of 0 indicates perfect fairness. A
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FIGURE 4

Navigating trade-o� between BA and fairness metrics on Adult Income datasets including DI, AOD, SPD, EOD, and TI across all models through

calculating composite scores. (A) Race Before (20, 000 samples). (B) Race After (150, 000 samples). (C) Sex Before (20, 000 samples). (D) Sex After

(100, 000 samples).

positive AOD suggests bias in favor of the unprivileged group, while

a negative AOD indicates bias in favor of the privileged group.

Statistical parity difference (SPD) is to calculate the difference

between the ratio of favorable outcomes in unprivileged and

privileged groups. It is defined by

SPD = ppup − ppp (7)

A score below 0 suggests benefits for the unprivileged group, while

a score above 0 implies benefits for the privileged group. A score of

0 indicates that both groups receive equal benefits.

Equal opportunity difference (EOD) assesses whether all

groups have an equal chance of benefiting from predictions. EOD

focuses on the True Positive Rate (TPR), which reflects the model’s

ability to correctly identify positives in both unprivileged and

privileged groups. It is defined as follows:

EOD = TPRup − TPRp (8)

A value of 0 signifies perfect fairness. A positive value indicates bias

in favor of the unprivileged group, while a negative value indicates

bias in favor of the privileged group.

Theil index (TI) is also called the entropy index which

measures both the group and individual fairness. It is defined by

TI =
1

n

n∑

i=1

bi

µ
ln
bi

µ
(9)

where bi = ŷi − yi + 1 and µ is the average of bi. A lower

absolute value of TI value in this context would indicate a more

equitable distribution of classification outcomes, while a higher

absolute value suggests greater disparity.

Table 1 presents the fairness ranges and levels of various

evaluation metrics. If the values of evaluation metrics fall into

these ranges, it indicates that the machine learning models perform

classification without bias. For the DI, the commonly accepted

fairness range is [0.8, 1.25]. If the selection rate for the protected

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1530397
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Hastings Blow et al. 10.3389/frai.2025.1530397

FIGURE 5

Performance comparison of BA and AOD in augmenting training data with 150, 000 synthetic samples on the Adult Income dataset, considering the

protected attribute Race for LR. Subfigures (A) and (C) illustrate the performance comparison between the original training data and the augmented

training data (with 150, 000 synthetic samples) before reweighting the samples. In contrast, Subfigures (B) and (D) present the comparison after

reweighting the samples. (A) LR BA vs. AOD Before (Original). (B) LR BA vs. AOD After (Original). (C) LR BA vs. AOD Before (150,000 samples). (D) LR

BA vs. AOD After (150,000 samples).

group is at least 80% of the selection rate for the unprotected

group, the disparity is generally considered fair. Conversely, a DI

>1.25 indicates a reverse disparity, potentially disadvantaging the

unprotected group. For AOD, the range is the same as that of SPD

and EOD. AOD = 0 signifies no difference in TPR (True Positive

Rate) or FPR (False Positive Rate) between groups, indicating

perfect fairness. The acceptable fairness range for AOD is typically

[−0.1, 0.1], where AOD>0.1 indicates bias in favor of the protected

group. AOD < −0.1 indicates bias in favor of the unprotected

group. For the TI, higher values indicate greater unfairness, while

TI = 0 represents perfect fairness.

3.3 Results and discussion

To comprehensively validate the proposed method, we conduct

extensive experiments in that regard of two protect attributes,

namely Race and Sex, to examine the effectiveness of bias

mitigation.

3.3.1 Case study on adult income datasets
Race: Table 2 presents a performance comparison across all

outputs before reweighting samples, using one classificationmetric,

BA, and five fairness metrics–SPD, AOD, DI, EOD, and TI–on

the Adult Income dataset, focusing on the protected attribute

of Race. Generally, before reweighting samples to mitigate bias,

augmenting the training data does not appear to effectively

reduce bias. For example, the SPD value for GNB increases

with the addition of synthetic samples, indicating that synthetic

data may actually exacerbate bias. Additionally, the performance

of LR in terms of classification and bias mitigation remains

relatively unchanged, as reflected in the BA, AOD, and TI

values. However, it is observed that the fairness of KNN is

improved regarding the changes of values of PSD, AOD, DI, EOD,

and TI.

On the other hand, after reweighting the samples, bias is

mitigated for most ML models, as indicated by improvements in

SPD, AOD, and TI values. For instance, the bias in LR significantly

decreases across all fairness metrics–SPD, AOD, DI, EOD, and TI.

Similar trends are observed for other models like DT, GNB, and RF.

Moreover, when more synthetic samples are added to the original

training data, bias is further reduced, particularly in the case of the

(150, 000) sample size, as shown in the improved performance of

LR and RF.

Sex: Table 3 presents a performance comparison of all outputs

before reweighting samples, using one classification metric (BA)
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FIGURE 6

Performance comparison of BA and AOD in augmenting training data with 100, 000 synthetic samples on the Adult Income dataset, considering the

protected attribute Sex for RF. Subfigures (A) and (C) illustrate the performance comparison between the original training data and the augmented

training data (with 100, 000 synthetic samples) before reweighting the samples. In contrast, Subfigures (B) and (D) present the comparison after

reweighting the samples. (A) RF BA vs. AOD Before (Original). (B) RF BA vs. AOD After (Original). (C) RF BA vs. AOD Before (100,000 samples). (D) RF

BA vs. AOD After (100,000 samples).

and five fairness metrics (SPD, AOD, DI, EOD, and TI) on the

Adult Income dataset, focusing on the protected attribute Sex.

Before reweighting samples to address bias, similar patterns are

observed: augmenting the training data does not effectively reduce

bias, as shown consistently across ML models like KNN and LR,

particularly in fairness metrics such as SPD and AOD for the cases

of the (150, 000) sample size.

However, after reweighting the samples, bias is reduced in

most ML models, as indicated by improvements in SPD, AOD,

and TI. For example, significant bias reductions are observed

across all fairness metrics–SPD, AOD, DI, EOD, and TI–for

models like LR, GNB, DT, and RF. Moreover, when additional

synthetic samples are added to the original training data, bias is

further mitigated, particularly in the case of GNB at the (150, 000)

sample size.

Furthermore, to address the trade-off between BA and fairness

metrics such as DI, AOD, SPD, EOD, and TI, we introduce the

composite score defined below,

ScoreCS = wBA × BA− wSPD × |SPD| − wAOD × |AOD|

−wEOD × |EOD| − wTI × TI − wDI × DI (10)

where the weights wBA, wSPD, wAOD, wEOD, wTI , and wDI

are adjusted depending on the scenario. In this study, we set

wBA = 0.5, while the other weights are equally set to 0.1.

Additionally, all metric values are normalized, and a higher ScoreCS
indicates better model performance. Figure 4 illustrates an example

of navigating the trade-off by calculating the composite score across

all models. Figures 4A, B are based on the results of performance

before reweighting samples (20,000) and after reweighting samples

(100,000) for the protected attribute Race. Similarly, Figures 4C, D

are based on the results of performance before reweighting samples

(20,000) and after reweighting samples (150,000) for the protected

attribute Race. The results reveal that for the protected attribute

Race, RF and LR generally outperformed other models in terms

of ScoreCS, as shown in Figures 4A, B, respectively. In the case of

the protected attribute Sex, DT demonstrated better performance

compared to the other models.

Finally, Figures 5, 6 illustrate the impact of synthetic data on

model fairness and accuracy by comparing the performance of

models trained on the original data to those trained on augmented

datasets incorporating synthetic samples. In Figures 5A, C show

performance comparisons between the original training data and
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FIGURE 7

Navigating trade-o� between BA and fairness metrics on COMPAS datasets including DI, AOD, SPD, EOD, and TI across all models through calculating

composite scores. (A) Race Before (12, 000 samples). (B) Race After (80, 000 samples). (C) Sex Before (8, 000 samples). (D) Sex After (8, 000 samples).

the augmented data (with 150, 000 synthetic samples) before

reweighting. The results reveal that adding 150, 000 synthetic

samples improves the stability of LR fairness, particularly evident

in the stable AOD values near the optimal trade-off point, marked

by the green box in Figure 5B. Notably, this augmentation does not

significantly affect BA values.

Conversely, Figures 5B, D demonstrate the effects of

reweighting on the augmented training data. Reweighting

further emphasizes the benefits of synthetic augmentation by

narrowing the range of absolute AOD values from [–0.25, 0] to

[–0.04, 0.08]. Near the optimal trade-off point highlighted in the

green box of Figures 5D, the augmented data exhibits greater

stability, as evidenced by the less pronounced changes in AOD

values.

A similar trend is observed in Figure 6. Figures 6A, C compare

the original data and the augmented data (with 100, 000 synthetic

samples) before reweighting. The stable AOD values in the green

box of Figure 6C suggest that the augmented data enhances

fairness stability for RF. Figures 6B, D reveal that reweighting

further improves fairness, as indicated by the reduced range of

absolute AOD values, reinforcing the notion that combining

reweighting with data augmentation effectively enhances

model fairness.

3.3.2 Case study on COMPAS datasets
Race: Table 4 presents a performance comparison on the

COMPAS dataset, focusing on the protected attribute Race.

Prior to reweighting, adding 12, 000 synthetic samples to the

training set significantly enhanced the fairness of RF in terms

of fairness metrics such as SPD and DI, albeit at the cost of

BA performance. After reweighting, the inclusion of synthetic

samples further improved the fairness of multiple models in the

training dataset.
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TABLE 4 Performance comparison between all outputs before and after reweighting through one classification metric BA and fairness metrics including

SPD, AOD, DI, EOD, and TI on COMPAS dataset regarding the protected attribute Race.

Performance before reweighting samples (original) Performance after reweighting samples (original)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.6586 −0.1516 −0.0970 0.7791 −0.1212 0.1835 DT 1.0 −0.1769 0.0 0.7060 0.0 0.0

GNB 0.6553 −0.2493 −0.1994 0.6155 −0.1980 0.2382 GNB 0.6437 −0.1782 −0.1318 0.6926 −0.1251 0.2594

KNN 0.6414 −0.2139 −0.1727 0.7282 −0.1131 0.1607 KNN 0.6311 −0.3432 −0.3105 0.5945 −0.2391 0.1762

LR 0.6774 −0.2494 −0.1927 0.6600 −0.1877 0.1774 LR 0.6342 −0.0546 0.1042 1.1062 0.1215 0.2257

RF 0.6432 −0.1539 −0.1057 0.6873 −0.1166 0.3003 RF 0.6234 0.1459 0.1953 1.4012 0.1977 0.2867

Performance before reweighting samples (2,500) Performance after reweighting samples (2,500)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.6636 −0.2480 −0.2182 0.6604 −0.1588 0.2106 DT 1.0 −0.1283 0.0 0.7940 0.0 0.0

GNB 0.6605 −0.2715 −0.2388 0.5787 −0.2068 0.2734 GNB 0.6495 −0.1913 −0.1603 0.6768 −0.1275 0.2838

KNN 0.6554 −0.3124 −0.2783 0.4966 −0.2686 0.3074 KNN 0.6560 −0.4031 −0.3723 0.4333 −0.3791 0.2848

LR 0.6638 −0.2705 −0.2408 0.6196 −0.1832 0.2300 LR 0.6483 −0.0122 0.0424 1.0248 0.1006 0.2701

RF 0.6611 −0.2148 −0.1842 0.7049 −0.1307 0.2017 RF 0.6414 −0.0625 −0.0925 1.1290 0.1456 0.2604

Performance before reweighting samples (8,000) Performance after reweighting samples (8,000)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.6468 −0.0895 −0.0461 0.8310 −0.0568 0.2749 DT 1.0 −0.1469 0.0 0.7615 0.0 0.0

GNB 0.6399 −0.2965 −0.2562 0.4838 −0.2953 0.3283 GNB 0.6332 −0.1917 −0.1518 0.6266 −0.1858 0.3325

KNN 0.6353 −0.2984 −0.2637 0.4961 −0.2674 0.3016 KNN 0.6293 −0.1861 −0.1509 0.6602 −0.1539 0.3123

LR 0.6547 −0.1959 −0.1553 0.7193 −0.1416 0.2082 LR 0.6453 −0.0331 −0.0203 0.9403 −0.0061 0.2409

RF 0.6523 −0.1770 −0.1356 0.7496 −0.1304 0.1981 RF 0.6385 0.0167 0.0600 1.0297 0.0477 0.2244

Performance before reweighting samples (12,000) Performance before reweighting samples (12,000)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.5869 −0.2013 −0.1846 0.5897 −0.2166 0.4046 DT 1.0 −0.0794 0.0 0.8665 0.0 0.0

GNB 0.5895 −0.1650 −0.1524 0.6982 −0.1475 0.3484 GNB 0.5871 −0.1445 −0.1317 0.7346 −0.1302 0.3434

KNN 0.5780 −0.1238 −0.1115 0.8329 −0.1160 0.2128 KNN 0.5662 0.0438 0.0543 1.0617 −0.0568 0.1776

LR 0.5952 −0.3114 −0.2988 0.5477 −0.2938 0.3075 LR 0.5996 0.0320 0.0428 1.0607 0.0847 0.2760

RF 0.6038 −0.0308 −0.0170 0.9385 0.0034 0.3144 RF 0.6121 0.1153 0.1315 1.2704 0.1508 0.3003

It presents the performances of adding different numbers of synthetic samples to the original data, including 2, 500, 8, 000, and 12, 000. The bold values highlight the outstanding performance

regarding AI fairness of ML models.

Sex: Table 5 presents a performance comparison on the

COMPAS dataset, focusing on the protected attribute Sex. Adding

synthetic samples to the training set alone does not appear to

improve model fairness. However, combining reweighting with

synthetic sample augmentation proves effective in enhancing

fairness.

Figure 7 illustrates an example of navigating the trade-off by

computing the composite score across all models. Figures 7A,

B depict performance results for the protected attribute Race

before reweighting with 12,000 samples and after reweighting

with 8,000 samples, respectively. Similarly, Figures 7C, D present

results before reweighting with 8,000 samples and after reweighting

with 80,000 samples for Race. The findings indicate that, prior

to reweighting, RF outperformed other models, whereas DT

achieved the highest ScoreCS after reweighting, as shown in

Figures 7A, B. For the protected attribute Sex, LR exhibited

superior performance before reweighting, while DT performed best

after reweighting.

Figures 8, 9 compare the original outputs for RF vs the

data augmented outputs for 8, 000 for race and sex. Reweighting

samples further amplifies the benefits of synthetic augmentation by

reducing the variability in fairness metric values. Near the optimal

trade-off point, highlighted in the green box, the augmented

data demonstrates greater stability, as reflected in the smaller

fluctuations.

In summary, data augmentation is a valuable approach for

improving model fairness in machine learning. However, different

models respond uniquely to synthetic data augmentation,
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TABLE 5 Performance comparison between all outputs before and after reweighting through one classification metric BA and fairness metrics including

SPD, AOD, DI, EOD and TI on COMPAS dataset regarding the protected attribute Sex.

Performance before reweighting samples (original) Performance after reweighting samples (original)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.6586 −0.1637 −0.1340 0.7759 −0.0597 0.1835 DT 1.0 −0.1383 0.0 0.7732 0.0 0.0

GNB 0.6553 −0.4129 −0.3877 0.5066 −0.3090 0.2382 GNB 0.6581 −0.1998 −0.1720 0.7154 −0.0899 0.2146

KNN 0.6414 −0.2336 −0.2095 0.7256 −0.1350 0.1607 KNN 0.6311 −0.2551 −0.2318 0.7003 −0.1708 0.1762

LR 0.6774 −0.2724 −0.2439 0.6631 −0.1392 0.1774 LR 0.6562 −0.1188 −0.0946 0.8342 0.0111 0.1730

RF 0.6432 −0.3759 −0.3484 0.4700 −0.3002 0.3003 RF 0.6585 −0.1615 −0.1279 0.7081 −0.0760 0.2776

Performance before reweighting samples (2,500) Performance after reweighting samples (2,500)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.6636 −0.1766 −0.1594 0.7557 −0.1257 0.2106 DT 1.0 −0.0728 0.0 0.8795 0.0 0.0

GNB 0.6605 −0.3307 −0.3153 0.5577 −0.2769 0.2734 GNB 0.6463 −0.0525 −0.0401 0.8930 0.0088 0.3038

KNN 0.6554 −0.2076 −0.1917 0.6535 −0.1576 0.3074 KNN 0.6560 −0.2076 −0.1917 0.6535 −0.1576 0.3074

LR 0.6638 −0.1926 −0.1744 0.7261 −0.1463 0.2300 LR 0.6538 −0.0325 −0.0210 0.9448 0.0387 0.2272

RF 0.6611 −0.1852 −0.1701 0.7523 −0.1269 0.2017 RF 0.6523 0.0188 0.0350 1.0333 0.0687 0.2181

Performance before reweighting samples (8,000) Performance after reweighting samples (8,000)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.6468 −0.2197 −0.1762 0.6659 −0.1607 0.2749 DT 1.0 −0.1734 0.0 0.7417 0.0 0.0

GNB 0.6399 −0.3116 −0.2718 0.5236 −0.2579 0.3283 GNB 0.6192 −0.0371 −0.0034 0.9050 0.0234 0.3682

KNN 0.6353 −0.3909 −0.3487 0.4691 −0.3533 0.3216 KNN 0.6293 −0.2432 −0.1971 0.6182 −0.2136 0.3123

LR 0.6547 −0.1886 −0.1516 0.7438 −0.1022 0.2082 LR 0.6432 0.0252 0.0656 1.0457 0.1025 0.2206

RF 0.6523 −0.2428 −0.2078 0.6970 −0.1576 0.1981 RF 0.6394 0.0015 0.0451 1.0025 0.0645 0.2026

Performance before reweighting samples (12,000) Performance before reweighting samples (12,000)

Model BA SPD AOD DI EOD TI Model BA SPD AOD DI EOD TI

DT 0.5870 −0.3378 −0.3213 0.4793 −0.3453 0.4046 DT 1.0 −0.0742 0.0 0.8781 0.0 0.0

GNB 0.5895 −0.3767 −0.3694 0.5035 −0.3442 0.3484 GNB 0.5830 −0.1196 −0.1104 0.7677 −0.0956 0.3756

KNN 0.5780 −0.2281 −0.2252 0.7333 −0.1834 0.2128 KNN 0.5662 −0.1450 −0.1426 0.8304 −0.1061 0.1776

LR 0.5952 −0.2848 −0.2771 0.6137 −0.2484 0.3075 LR 0.5903 −0.0703 −0.0630 0.8655 −0.0325 0.3365

RF 0.6038 −0.2275 −0.1277 0.6605 −0.1922 0.3144 RF 0.6006 0.0827 0.0883 1.1953 0.1385 0.3109

The bold values highlight the outstanding performance regarding AI fairness of ML models.

underscoring the importance of selecting an appropriate

model to achieve the desired balance between fairness

and performance.

4 Related work

4.1 Generative models

Generative models have a rich history in artificial intelligence,

starting in the 1950s with the development of Hidden Markov

Models (HMMs) (Knill and Young, 1997) and Gaussian Mixture

Models (GMMs) (Reynolds et al., 2009), which were used to

generate sequential data. However, significant advancements in

generative models occurred with the rise of deep learning.

In natural language processing (NLP), traditional methods

for sentence generation involved learning word distributions

using N-gram language models (Bengio et al., 2000) and then

searching for the best sequence. To handle longer sentences,

recurrent neural networks (RNNs) (Mikolov et al., 2010)

were introduced for language modeling tasks, allowing for

the modeling of relatively long dependencies, a capability

enhanced by Long Short-Term Memory (LSTM) and Gated

Recurrent Units (GRU), which use gating mechanisms to control

memory during training. These methods can effectively attend

to approximately 200 tokens in a sample manner (Khandelwal

et al., 2018), marking a substantial improvement over N-gram

models. In computer vision (CV), Generative Adversarial Networks

(GANs) (Goodfellow et al., 2020) have achieved remarkable results

across various applications. Additionally, Variational Autoencoders

(VAEs) (Kingma, 2013) and diffusion models (Song and Ermon,

2019) have been developed to provide more fine-grained control
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FIGURE 8

Performance comparison of BA and AOD in augmenting training data with 8, 000 synthetic samples on the COMPAS dataset, considering the

protected attribute Race for RF. Subfigures (A) and (C) illustrate the performance comparison between the original training data and the augmented

training data (with 8, 000 synthetic samples) before reweighting the samples. In contrast, Subfigures (B) and (D) present the comparison after

reweighting the samples. (A) RF BA vs. AOD Before (Original). (B) RF BA vs. AOD After (Original). (C) RF BA vs. AOD Before (8,000 samples). (D) RF BA

vs. AOD After (8,000 samples).

over the image generation process, enabling the creation of

high-quality images.

4.2 Di�usion models

Diffusion models are powerful tools for generating synthetic

data. The Denoising Diffusion Probabilistic Model (DDPM) is

a type of latent variable model inspired by non-equilibrium

thermodynamics, using a Gaussian distribution for data

generation (Nichol and Dhariwal, 2021). These models are

not only simple to define but also efficient to train, and they can

be integrated with non-autoregressive text generation methods

to improve text generation quality (Li et al., 2023b). Song et al.

(2020) introduced a stochastic differential equation (SDE) that

gradually transforms a complex data distribution into a known

prior distribution by adding noise, and a reverse-time SDE that

reconstructs the data distribution from the prior by gradually

removing the noise. The reverse-time SDE relies solely on the

time-dependent gradient field of the perturbed data distribution.

Vahdat et al. (2021) proposed the Latent Score-based Generative

Model (LSGM), a new method that trains Score-based Generative

Models (SGMs) in a latent space within the framework of

variational autoencoders for image generation.

4.3 Reweighting samples for AI fairness

AI fairness has emerged as one of the most critical challenges

of the decade (Shaham et al., 2023). Although machine learning

models are designed to intelligently avoid errors and biases in

decision-making, they can sometimes unintentionally perpetuate

bias and discrimination within society. Concerns have been raised

about various forms of unfairness in ML, including racial biases

in criminal justice, disparities in employment, and biases in

loan approvals (Angwin et al., 2022). The entire lifecycle of an

ML model, from input data through modeling, evaluation, and

feedback, is vulnerable to both external and inherent biases, which

can lead to unjust outcomes. Techniques to mitigate bias in ML

models are generally divided into three categories: pre-processing,
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FIGURE 9

Performance comparison of BA and AOD in augmenting training data with 8, 000 synthetic samples on the COMPAS dataset, considering the

protected attribute Sex for RF. Subfigures (A) and (C) illustrate the performance comparison between the original training data and the augmented

training data (with 8, 000 synthetic samples) before reweighting the samples. In contrast, Subfigures (B) and (D) present the comparison after

reweighting the samples. (A) RF BA vs. AOD Before (Original). (B) RF BA vs. AOD After (Original). (C) RF BA vs. AOD Before (8,000 samples). (D) RF BA

vs. AOD After (8,000 samples).

in-processing, and post-processing (Caton and Haas, 2020). Pre-

processing recognizes that data itself can introduce bias, with

distributions of sensitive or protected variables often being

discriminatory or imbalanced. For example, Blow et al. (2024)

conducted a systematic study of reweighting samples for traditional

ML models, using five models for binary classification on datasets

such as Adult Income and COMPAS, and incorporating various

protected attributes. Notably, the study leveraged AI Fairness

360 (AIF360), a comprehensive open-source library designed to

identify and mitigate bias in machine learning models throughout

the AI application lifecycle.

5 Conclusion

Understanding the impact of generative modeling is crucial to

preventing unintended bias when augmenting training data. This

study explores data augmentation via diffusion models, aiming

to reduce bias and improve overall performance. It involved

evaluating model performance with the generated data added in

various increments to the original dataset, and comparing the

results to the original outputs using metrics including balanced

accuracy and fairness metrics. Experimental results indicated the

effectiveness of synthetic data generated by diffusion models for

data augmentation. Future work will build on this exploration

by incorporating additional datasets and comparing the effects

of varying data increments. Additionally, different tools from AI

Fairness 360 (AIF360) will be tested to further mitigate bias.
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