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Background: Clinical data is instrumental to medical research, machine 
learning (ML) model development, and advancing surgical care, but access is 
often constrained by privacy regulations and missing data. Synthetic data offers 
a promising solution to preserve privacy while enabling broader data access. 
Recent advances in large language models (LLMs) provide an opportunity 
to generate synthetic data with reduced reliance on domain expertise, 
computational resources, and pre-training.

Objective: This study aims to assess the feasibility of generating realistic tabular 
clinical data with OpenAI’s GPT-4o using zero-shot prompting, and evaluate 
the fidelity of LLM-generated data by comparing its statistical properties to the 
Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.

Methods: In Phase 1, GPT-4o was prompted to generate a dataset with 
qualitative descriptions of 13 clinical parameters. The resultant data was 
assessed for general errors, plausibility of outputs, and cross-verification of 
related parameters. In Phase 2, GPT-4o was prompted to generate a dataset 
using descriptive statistics of the VitalDB dataset. Fidelity was assessed using 
two-sample t-tests, two-sample proportion tests, and 95% confidence interval 
(CI) overlap.

Results: In Phase 1, GPT-4o generated a complete and structured dataset 
comprising 6,166 case files. The dataset was plausible in range and correctly 
calculated body mass index for all case files based on respective heights and 
weights. Statistical comparison between the LLM-generated datasets and 
VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data 
demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no 
statistically significant differences were observed in 6/6 (100.0%) categorical/
binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were 
observed in 6/7 (85.71%) continuous parameters.

Conclusion: Zero-shot prompting with GPT-4o can generate realistic tabular 
synthetic datasets, which can replicate key statistical properties of real-world 
perioperative data. This study highlights the potential of LLMs as a novel and 
accessible modality for synthetic data generation, which may address critical 
barriers in clinical data access and eliminate the need for technical expertise, 
extensive computational resources, and pre-training. Further research is 
warranted to enhance fidelity and investigate the use of LLMs to amplify and 
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augment datasets, preserve multivariate relationships, and train robust ML 
models.
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synthetic data, large language model, artificial intelligence, machine learning, 
ChatGPT, big data, education, surgery

1 Introduction

Clinical data is fundamental to advance medical research and enable 
the development of machine learning (ML) models. This is particularly 
relevant in surgical care, as procedural medicine increasingly relies on 
decision-making based on large-scale data (Maier-Hein et al., 2017). 
However, access to real-world (real) clinical data is constrained by ethical, 
legal, and logistical barriers (Pavlenko et  al., 2020; Wartenberg and 
Thompson, 2010). Data requests often require institutional review board 
approval, data sharing agreements, and compliance with various data 
privacy regulations (e.g., HIPAA, GDPR, PIPEDA) (Bentzen et al., 2021; 
Ness, 2007). In many institutions, clinical datasets are proprietary and 
restricted to internal use. Clinical data also requires significant 
pre-processing and de-identification procedures which is resource 
intensive and can delay or hinder research projects—particularly for 
students, trainees, and early career researchers (Tudur et  al., 2017; 
Willemink et al., 2020). These protections, while essential for patient 
privacy, limit the accessibility of real clinical data.

In addition to regulatory concerns, clinical data is often incomplete 
(Newgard and Lewis, 2015). Data collected in clinical settings may suffer 
from missing values, errors, or biases introduced during data entry. 
Furthermore, data de-identification processes commonly remove or 
obscure personal health information (e.g., date of birth, date of operation, 
demographic data, geographic data). These constraints limit the reliability 
of analyses as well as the accuracy and generalizability of ML models 
trained on this data. Collectively, these challenges underscore the need for 
alternative approaches to provide researchers, learners, and developers 
with necessary data while preserving patient privacy.

Synthetic clinical datasets, which are artificially generated rather 
than captured as real patient information, offer a potential solution to 
the challenges associated with accessing and using real patient data 
(Beaulieu-Jones et al., 2019; Bellovin et al., 2019; van Breugel and van 
der Schaar, 2023). Synthetic data can be shared, analyzed, and used 
freely, bypassing the regulatory and logistical obstacles associated with 
real data use (El Emam et al., 2020). Despite the potential of synthetic 
data, achieving high utility, fidelity, and privacy remains a significant 
challenge (Jordon et al., 2022). Current methods of synthetic data 
generation, including generative adversarial networks (GANs) 
(Goodfellow et  al., 2020) and variational autoencoders (VAEs) 
(Kingma and Welling, 2022), have demonstrated utility in synthetic 
data generation (Goncalves et al., 2020; Jacobs et al., 2023; Rajotte 
et al., 2022). However, privacy concerns have been raised regarding 
generative models (Chen et al., 2020; Hayes et al., 2018) including data 
extractions, model inversions, and membership inference attacks 
(Rajotte et al., 2022). Furthermore, despite some workarounds, there 
are issues with mode collapse (Thanh-Tung and Tran, 2020) and the 
applicability of GANs toward generating categorical and binary data 
(Jacobs et al., 2023). The use of GANs and VAEs is also self-limiting 
to those with technical expertise (e.g., complex architecture, fine-
tuning) as well as access to necessary computational resources and 
reference datasets for training.

In recent years, large language models (LLMs)—a computational 
model capable of language generation and other natural language 
processing tasks—offer new possibilities for generating text that is 
coherent and contextually relevant (Brown et al., 2020; Nazir and 
Wang, 2023). A prominent and publicly available LLM, OpenAI’s 
ChatGPT, has shown utility in generating synthetic text-based data 
(Calvo-Lorenzo and Uriarte-Llano, 2024; Hämäläinen et al., 2023; Li 
et al., 2021). However, the potential of generating tabular synthetic 
clinical data with ChatGPT remains largely unexplored. Use of LLMs 
for synthetic data generation may offer an accessible alternative to 
GANs and VAEs, reducing the need for specialized knowledge and 
computational resources, which could broaden the reach of synthetic 
data use in research and ML model development.

This study aims to assess the feasibility of generating realistic 
tabular clinical data with OpenAI’s GPT-4o (Hurst et al., 2024) using 
zero-shot prompting, and evaluate the fidelity of LLM-generated data 
by comparing its statistical properties to the Vital Signs DataBase 
(VitalDB) (Lee et  al., 2022), a real open-source multi-parameter 
perioperative dataset.

2 Methods

2.1 Overview

We conducted a two-phase study to evaluate the feasibility of 
generating synthetic clinical datasets with GPT-4o using a single prompt 
and without pre-training. In both phases, GPT-4o was prompted to 
generate a synthetic dataset based on 13 clinical parameters derived from 
VitalDB. In Phase 1, GPT-4o was prompted with high-level qualitative 
descriptions of the 13 clinical parameters, to assess its ability to generate 
a complete and contextually relevant tabular dataset without guiding 
statistics. In Phase 2, GTP-4o was prompted to generate a synthetic 
dataset using descriptive statistics of the VitalDB dataset. Both Phase 1 
and 2 datasets were statistically compared to VitalDB, with Phase 1 data 
serving as a baseline for comparisons.

2.2 Real dataset

The real clinical dataset used as a comparator in this study is the 
open-source VitalDB. The VitalDB dataset is a perioperative dataset 
consisting of multi-parameter data from surgery patients who 
underwent routine and emergency non-cardiac (general, thoracic, 
urological, and gynecological) operations at Seoul National University 
Hospital (Seoul, Korea) from August 2016 to June 2017 (Lee et al., 
2022). The dataset included 6,388 de-identified cases encompassing a 
wide range of clinical parameters including demographic, 
preoperative, intraoperative, and postoperative parameters.

The VitalDB dataset was selected due to its open-source availability 
and data completeness for parameters spanning the entire perioperative 
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period. The VitalDB dataset also included a variety of data formats (i.e., 
numerical, text), variable types (i.e., continuous, categorical, binary), and 
distributions (i.e., normal, skewed). These considerations ensured a 
comprehensive evaluation of GPT-4o’s ability to generate and replicate 
statistical properties of a wide array of clinical data.

2.3 Parameter selection and data cleaning

The VitalDB dataset was reviewed for data completeness and 
parameters with missing data were excluded. Included parameters 
(n = 13) were chosen based on relevance to perioperative care and to 
represent a range of data formats and variable types. Remaining 
parameters with similar data formats, variable types, or clinical 
information were excluded for redundancy in the context of a feasibility 
study. Timepoint variables in the VitalDB dataset were recorded as the 
duration from an assigned case start time in seconds. Two time variables 
were included and converted to hours: operation duration (difference 
between operation end time and operation start time) and postoperative 
length of stay (difference between discharge time and operation end 
time). Selected parameters are presented in Table 1.

To further ensure quality and relevance of the data used for 
comparison, case files for patients younger than 18 (n = 57), older 
than 89 (n = 8), missing an American Society of Anesthesiologists 
(ASA) physical status classification (n = 130), and with negative 
discharge times (n = 27) were excluded from the dataset. In total, 
n = 6,166 cases were included.

2.4 Generation of synthetic datasets

Prior to the generation of Phase 1 and 2 synthetic datasets, GPT-4o 
was not pre-trained or provided any patient data from the VitalDB 
dataset. In Phase 1, GPT-4o was prompted with qualitative descriptions 
of 13 clinical parameters and asked to generate corresponding data for 
6,166 patients. The prompt did not include descriptive statistics, 
definitions (e.g., ASA physical status classification), or formulas to 
calculate parameters (e.g., body mass index (BMI)). The prompt used 
to generate the Phase 1 synthetic dataset is presented in Box 1.

In Phase 2, GPT-4o was prompted with descriptive statistics of the 
VitalDB dataset. For continuous parameters (age, height, weight, 
operation duration, postoperative length of stay), descriptive statistics 
included mean, standard deviation, and range. Descriptive statistics were 
not provided for BMI, and GPT-4o was instructed to calculate this 

parameter using each case file’s corresponding height and weight. 
Descriptive statistics for height were inputted to GPT-4o as centimeters, 
requiring the LLM to convert the height parameter to meters in order to 
calculate BMI—this transformation was not specifically instructed 
within the prompt. For categorical and binary parameters (ASA physical 
status classification, operation type, biological sex, preoperative 
hypertension, preoperative diabetes mellitus, intraoperative transfusion), 
corresponding proportions were provided. GPT-4o was instructed to 
assign ascending whole number values for each case ID. For time 
variables, natural log transformations were used to normalize skewed 
distributions and GPT-4o was provided with descriptive statistics of the 
log-transformed values. The prompt used to generate the Phase 2 
synthetic dataset is presented in Box 2.

GPT-4o application programming interfaces (API) were not used 
in order to determine feasibility of data generation without further 
technical expertise and resources.

2.5 Dataset analysis

The Phase 1 dataset was assessed for general errors, plausibility of 
outputs, and cross-verification of related parameters. Assessment of 
general errors evaluated missing data, unexpected outputs, and 
formatting issues in the tabular data output. Plausibility of outputs 
involved evaluating time variables for positive values, ASA physical 
status classification for values between 1 and 6, and categorical and 
binary parameters for expected values (i.e., only including categories 
provided in the prompt, category proportions add to 100%). Cross-
verification of related parameters involved confirming that all BMI 
values were appropriately calculated given the corresponding height 
and weight for each case file.

The Phase 1 and 2 datasets were compared to the VitalDB dataset for 
statistical similarity. Continuous variables were compared using 
two-sample t-tests and 95% CI overlap. Given the large sample size, 
we used parametric two-sample t-tests. The log-transformed values of 
operation duration and postoperative length of stay were used for 
statistical testing with the two-sample t-tests for Phase 2 data. For each 
continuous parameter, 95% CI overlap was calculated as the proportion 
of shared values compared to the entire range of values within both 95% 
CIs from LLM-generated and VitalDB datasets. The Python library 
Matplotlib was used to generate figures visualizing the overlap of 95% CI 
for continuous parameters and proportional alignment of categorical and 
binary parameters. Categorical and binary variables were compared 
using two-sample proportion tests. Statistical testing was performed 
using RStudio v.4.4.2 and statistical significance was set at 0.05. For 
two-sample t-tests and proportion tests, p-values above 0.05 indicated 
statistically insignificant differences in means and proportions, therefore 
representing an effective replication of descriptive statistical properties 
from the VitalDB reference dataset.

2.6 Ethical considerations

Datasets generated in this study solely represented fictitious 
patient data. Use of the VitalDB dataset was used in accordance with 
the requirements outlined by the study team. No data from the 
VitalDB dataset was inputted directly into GPT-4o for pre-training 
and no direct data is included in this paper. Furthermore, the synthetic 

TABLE 1 Summary of selected parameters from the VitalDB dataset.

Category (n) Parameters (units)

Demographic data (6) Case ID, age (years), biological sex (M/F), height 

(cm), weight (kg), BMI (kg/m2)

Preoperative morbidity (3) ASA physical status classification (1–6), 

preoperative hypertension (yes/no), preoperative 

diabetes mellitus (yes/no)

Intraoperative data (3) Operation type, operation duration (hours), 

intraoperative transfusion (yes/no)

Postoperative outcomes (1) Postoperative length of stay (hours)

BMI, body mass index, ASA, American Society of Anesthesiologists.
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datasets generated by GPT-4o were evaluated solely for research 
purposes and not used in any form of clinical decision-making.

3 Results

In Phase 1, GPT-4o generated a complete and structured tabular 
dataset comprising 6,166 case files. All 13 expected columns were present, 
complete, and appropriately labeled; no missing data, unexpected outputs, 
or formatting issues were present within the generated dataset. 
Furthermore, all generated time variables were positive, ASA physical 
status classifications were within the appropriate range (1–6), and 
categorical and binary parameters only included expected values and 
proportions all added to 100%. Each case also included a correctly 
calculated BMI corresponding to the appropriate height and weight.

Review of calculated means and ranges for continuous variables 
included operation duration (6.46 h; 1.00–12.00), postoperative length 
of stay (154.84 h; 12.00–299.90), age (53.52 years; 18.00–89.00), height 
(174.51 cm; 150.00–199.00), weight (97.43 kg; 45.00–149.00), and BMI 
(32.62 kg/m2; 11.40–66.20). All continuous parameters showed 
plausible means and ranges for a perioperative dataset. However, 
proportions among categorical and binary variables did not differ 
based on context. Proportions were evenly spread across categories for 
parameters which are likely to demonstrate uniform distributions (e.g., 
sex, operation type) as well as parameters that may have skewed 
distributions (e.g., ASA physical status classification, preoperative 

comorbidities, intraoperative transfusions). A percent stacked bar plot 
displaying proportional alignment of categorical and binary parameters 
can be seen in Figure 1. Overall, generated data in Phase 1 was realistic, 
displayed appropriate ranges, included correct calculations without the 
provision of descriptive statistics, formulas, or unit conversions (e.g., 
BMI), and maintained definitional boundaries of parameters without 
explicit instructions (e.g., ASA physical status classification).

The Phase 1 and 2 datasets were statistically compared to the 
VitalDB dataset. The results of the statistical testing (Tables 2, 3) revealed 
that 12/13 (92.31%) parameters from the Phase 2 dataset did not show 
statistically significant differences from VitalDB, including 6/6 (100.00%) 
of the categorical and binary parameters and 6/7 (85.71%) of the 
continuous parameters. The only continuous parameter which 
demonstrated statistically significant differences in Phase 2 was the BMI 
parameter, which was calculated based on each case’s height and weight 
rather than generated based on descriptive statistics in the prompt. For 
the Phase 1 dataset, 2/13 (15.28%) parameters did not show statistically 
significant differences from VitalDB, one of which was the Case ID 
parameter. Overlap of 95% CI was observed in 6/7 (85.71%) of the Phase 
2 continuous parameters. The measured 95% CI overlaps were as follows: 
case ID (100.0%), weight (85.93%), height (61.31%), age (43.12%), 
postoperative length of stay (34.84%), operation duration (15.17%), and 
BMI (0.0%). The Phase 1 dataset only showed 95% CI overlap in the case 
ID parameter (100.0%). Visualization of the 95% CI overlaps of each 
continuous parameter is displayed in Figure 2. Overall, 12/13 (92.31%) 
of the Phase 2 parameters met the predefined threshold for statistical 

BOX 1

Prompt input to generate the Phase 1 synthetic dataset with GPT-4o.
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similarity, demonstrating the parameter effectively replicated statistical 
properties of corresponding data from the VitalDB dataset.

The Excel files containing the Phase 1 and 2 synthetic datasets 
generated with GPT-4o are available in the Supplementary data.

4 Discussion

4.1 Overview

The present study evaluated the feasibility of generating tabular 
synthetic clinical data with GPT-4o using zero-shot prompting, and 

assessed the fidelity of the generated data by comparing it to a real 
clinical dataset, VitalDB. By examining two phases of data 
generation—one using qualitative prompts (Phase 1) and another 
incorporating descriptive statistics from VitalDB (Phase 2)—we 
explored GPT-4o’s capacity to generate plausible data and replicate 
statistical properties, variable distributions, and contextual 
characteristics typical of clinical data. Generated data included various 
formats (numerical, text), variable types (continuous, categorical, 
binary), and distributions (normal, skewed), covering demographic, 
preoperative, intraoperative, and postoperative data. The results 
indicate: (1) GPT-4o can produce realistic synthetic data without 
descriptive statistics or reference data, and (2) GPT-4o can generate 

BOX 2

Prompt input to generate the Phase 2 synthetic dataset with GPT-4o.
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datasets that align closely with real clinical data, when provided with 
statistical guidance.

4.2 Principal findings and implications

The use of LLMs to generate structured tabular data using zero-shot 
prompting is a novel concept. Consistent with other modalities of 
synthetic data generation, LLM-generated data has the potential to 
address many of the challenges of accessing and using real clinical data 
(Beaulieu-Jones et al., 2019; El Emam et al., 2020; van Breugel and van der 
Schaar, 2023). While GPT-4o has yet to demonstrate equivalent fidelity 
and utility to GANs and VAEs, LLMs may offer solutions to some of their 
shortcomings. The generation of data using GANs and VAEs requires 
technical expertise and computational resources. However, data 
generation using LLMs is accessible to anyone with an internet 
connection, and can produce clean and ready-to-use datasets, outputted 
in a downloadable Excel file, through plain-language prompting. This 
holds substantial implications for democratizing data access in research, 
educational contexts, and ML model development (Rajotte et al., 2022).

Given that no reference data was required in Phase 1 or inputted for 
pre-training in Phase 2, LLMs may overcome privacy concerns 
associated with current approaches to synthetic data generation (Rajotte 
et al., 2022). The Phase 1 data, which generated realistic clinical data in 
the absence of guiding statistics, definitions, and formulas, further 
emphasizes the contextual relevance of outputs from GPT-4o (Brown 
et  al., 2020; Nazir and Wang, 2023). This is particularly useful in 
educational contexts, whereby learning opportunities for students and 
trainees can be enhanced by practicing data analysis using synthetic 
data generated with desired statistical properties and without requiring 
a reference dataset. LLM-generated datasets can also include synthetic 

personal health information which would otherwise be removed or 
de-identified. Since synthetic data can be used without restriction, data 
can also be re-inputted into LLMs for analysis, which further broadens 
prospects and scope of future research.

Clean and structured synthetic datasets, with the statistical 
similarity Phase 2 data demonstrated to VitalDB, has vast implications 
for data-driven medicine and ML model development. Perioperative 
data, in particular, is inherently heterogeneous, encompassing a wide 
variety of sources, formats, and qualities (Maier-Hein et al., 2017). By 
generating synthetic data which can replicate real-world data 
distributions, researchers can bypass additional challenges associated 
with the use of raw clinical data. In this way, synthetic datasets can 
accelerate the development of predictive tools and surgical decision 
support systems, ultimately contributing to patient care and 
surgical outcomes.

4.3 Limitations

While this feasibility study demonstrated remarkable preservation of 
within-column statistical properties and simple relationships between 
variables, there are some limitations and challenges to consider. First, this 
study focused solely on GPT-4o, and it remains uncertain whether similar 
results would be achieved using other LLMs. Similarly, direct comparisons 
in performance between LLMs, GANs, and VAEs are necessary to assess 
their relative utility, fidelity, and privacy preservation, which may uncover 
additional limitations and strengths. At present, it is unclear whether 
bivariate and multivariate relationships were retained by the LLM-based 
approach, as this was not directly assessed. Demonstrating the 
preservation of correlations and other nuanced interdependencies, 
present in clinical data, is necessary before meaningful comparisons can 

FIGURE 1

Percent stacked bar plot displaying proportional alignment of categorical and binary parameters between VitalDB, Phase 1, and Phase 2 datasets.
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be  made between the performance of LLMs and other data 
generation methods.

This study also revealed the importance of prompt design in 
generating accurate and relevant synthetic data outputs. In Phase 1, 
where prompts lacked descriptive statistics, generated data deviated 
significantly from the reference dataset. While this underscores the 
notable results in Phase 2, it also suggests that without explicit guidance, 
LLMs may produce plausible but statistically unaligned data. Therefore, 
the quality of outputted data is reliant on effective prompting, and 
improper prompt design can introduce bias or errors into generated data. 
It is also unknown whether an iterative approach to prompting may 
result in greater fidelity.

Continued improvements in LLMs have been previously associated 
with greater accuracy in a variety of generative and clinically associated 
tasks (Meyer et al., 2024; Rosoł et al., 2023), and further iterations of 
GPT-4o may improve upon these results and current limitations.

4.4 Future directions

This study’s use of an open-source dataset (VitalDB) as a comparator 
was intentional to facilitate reproducibility and encourage follow-up 
research. Future research should continue to investigate the capabilities 
of LLMs in generating tabular datasets, with particular focus on 
capturing complex interdependencies between parameters and further 
assessing reproducibility of results. This should involve using existing 
and robust frameworks to assess the fidelity and privacy preservation of 
LLM-generated synthetic datasets (El Emam, 2020; El Emam et al., 2022; 
Platzer and Reutterer, 2021; Vallevik et al., 2024). Direct comparisons 
should be  made between the performance of GPT-4o and other 
prominent LLMs. Following further refinement of this zero-shot 
approach, direct comparisons in utility and privacy should also 
be  conducted between LLMs, GANs, and VAEs, using a systematic 
benchmarking approach (Yan et al., 2022).

Future work should assess the potential of LLMs in data 
enhancement, including data amplification and augmentation (El Emam, 
2023)—particularly in domains with missing data or limited data 
availability (e.g., rare diseases, underrepresented patient populations) 
(Rajotte et al., 2022). By supplementing existing datasets with synthetic 
data that preserves statistical properties, LLMs could mitigate data 
scarcity and enable more robust research in data-constrained fields. 
Applications of LLM-generated synthetic data toward ML model 
development and validation, predictive tools, and surgical decision 
support systems should also be explored.

Applications in educational contexts may be evaluated. Surveys, 
qualitative interviewing, or randomized trials involving students who 
have used LLM-generated datasets may reveal whether supplementing 
educational programs with synthetic data can enhance learning for 
students training toward careers in disciplines which analyze clinical 
data (e.g., statisticians, data scientists, epidemiologists). It is also 
recommended to assess whether LLMs can be used to effectively 
summarize and analyze outputted synthetic data.

5 Conclusion

This study demonstrates that zero-shot prompting with GPT-4o 
can generate realistic tabular synthetic datasets that replicate key T
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TABLE 3 Number and proportion of patients by sex, ASA physical status classification, operation type, preoperative hypertension status, preoperative diabetes mellitus status, and intraoperative transfusion status 
for VitalDB, Phase 1, and Phase 2 datasets with p-values from associated two sample proportion tests comparing distributions between VitalDB and synthetic datasets for each parameter.

Parameter VitalDB n, (%) Phase 1 n, (%)
VitalDB vs Phase 1 

p-value
Phase 2 n, (%)

VitalDB vs Phase 2 
p-value

Sex

  Male 3133 (50.81%) 3087 (50.06%)
0.407

3195 (51.82%)
0.263

  Female 3033 (49.19%) 3079 (49.94%) 2971 (48.18%)

ASA physical status classification

  1 1774 (28.77%) 1249 (20.26%) <0.001 1810 (29.35%) 0.478

  2 3674 (59.58%) 1254 (20.34%) <0.001 3637 (58.98%) 0.497

  3 671 (10.88%) 1198 (19.43%) <0.001 683 (11.08%) 0.726

  4 35 (0.57%) 1291 (20.94%) <0.001 26 (0.42%) 0.246

  5 0 (0.0%) 1174 (19.04%) <0.001 0 (0.0%) -

  6 12 (0.19%) 0 (0.0%) <0.001 10 (0.16%) 0.667

Operation type

  Biliary/Pancreas 793 (12.86%) 534 (8.66%) <0.001 782 (12.68%) 0.764

  Breast 426 (6.91%) 558 (9.05%) <0.001 419 (6.80%) 0.803

  Colorectal 1318 (21.38%) 556 (9.02%) <0.001 1274 (20.66%) 0.332

  Hepatic 251 (4.07%) 587 (9.52%) <0.001 260 (4.22%) 0.682

  Major resection 572 (9.28%) 569 (9.23%) 0.928 577 (9.36%) 0.881

  Minor resection 538 (8.73%) 563 (9.13%) 0.430 536 (8.69%) 0.952

  Others 754 (12.23%) 585 (9.49%) <0.001 750 (12.16%) 0.912

  Stomach 668 (10.83%) 571 (9.26%) 0.004 710 (11.51%) 0.230

  Thyroid 254 (4.12%) 509 (8.25%) <0.001 265 (4.30%) 0.624

  Transplantation 356 (5.77%) 596 (9.67%) <0.001 332 (5.38%) 0.347

  Vascular 236 (4.15%) 538 (8.73%) <0.001 261 (4.23%) 0.254

Preoperative hypertension

  Yes 1927 (31.25%) 3028 (49.11%)
<0.001

1899 (30.80%)
0.582

  No 4239 (68.75%) 3138 (50.89%) 4267 (69.20%)

Preoperative diabetes mellitus

  Yes 643 (10.43%) 3075 (49.87%)
<0.001

645 (10.46%)
0.952

  No 5523 (89.57%) 3091 (50.13%) 5521 (89.54%)

Intraoperative transfusion

  Yes 326 (5.29%) 3098 (50.24%)
<0.001

314 (5.09%)
0.624

  No 5840 (94.71%) 3068 (49.76%) 5852 (94.91%)
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statistical properties of real perioperative data. By eliminating the 
need for technical expertise, extensive computational resources, and 
pre-training in synthetic data generation, LLMs can offer an 
accessible modality to address critical barriers associated with 
clinical data access. Collectively, these findings highlight the broad 
implications of LLM-generated synthetic data in democratizing data 
access and enhancing educational opportunities. Future research 
should focus on enhancing fidelity and investigating the application 
of LLMs in data amplification and augmentation, replication of 
multivariate relationships, and ML model development.
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