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do Norte, Natal, Brazil, 3School of Computing and Digital Technologies, She�eld Hallam University,

She�eld, United Kingdom

Introduction: Despite the end of the SARS-CoV-2 pandemic, the medical field

continues to address several lasting e�ects, the most notable being long COVID.

However, COVID-19 presents another specific challenge that complicates

diagnosis: the similarity of its symptoms with those of other viral diseases,

particularly among various SARS strains. This overlap makes it di�cult to identify

distinct and meaningful symptom patterns as they develop. This study proposes

a dimensionality reduction approach combined with a clustering technique to

visually analyse structural similarities among SARS-infected individuals, aiming

to determine whether aspects such as case progression and diagnosis impact

these patterns.

Methods: This analysis utilised the t-Distributed Stochastic Neighbour

Embedding (t-SNE) algorithm for dimensionality reduction, combined with

Gower’s distance to handle categorical data, and k-means clustering. The study

focused on symptoms, case progression, and diagnoses of SARS-CoV-2 and

unspecified SARS cases using data from the Brazilian SARS dataset for São Paulo

State during 2020 and 2021. The process began with a visual analysis aimed

at identifying structural patterns in the symptom data, highlighting potential

similarities between COVID-19 patients and those diagnosed with unspecified

SARS. Following this, an intra-cluster analysis was performed to investigate

the common features that defined each cluster, providing insights into shared

characteristics among grouped individuals.

Results: The analysis revealed that both diagnoses share substantial similarities,

particularly in the presence or absence of COVID-19-related symptoms, even

when the majority of individuals were diagnosed with unspecified SARS.

Discussion: The analysis is crucial, as Brazil was one of the countries most

severely a�ected by the pandemic, experiencing profound impacts across

multiple dimensions.
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1 Introduction

The COVID-19 pandemic, beginning in December 2019, had

a lasting impact with multiple waves, setting it apart from earlier

pandemics. Health systems were often overwhelmed as cases

surged beyond diagnostic capacities. Research has advanced our

understanding of the virus and its variants, revealing how symptom

patterns key to public recognition of the disease–differ across

strains. These symptoms became crucial for timely diagnosis,

especially during critical phases of the pandemic. COVID-19 shares

symptoms with other respiratory viruses, complicating diagnosis.

This highlights the need for techniques that uncover intrinsic

patterns in data, with Machine Learning (ML) approaches playing

a key role in disease recognition.

In the medical field, large and complex datasets require

dimensionality reduction methods to extract relevant information.

Additionally, exploring data structure is crucial, often using

clustering techniques like t-SNE and k-means. t-SNE preserves

local structure while mapping high-dimensional data to lower

dimensions, aiding in pattern visualisation. Meanwhile, k-means

groups similar data points, helping identify clusters of patients with

common symptoms.

Several studies have employed t-SNE to identify symptom

patterns in COVID-19 data. Shi et al. (2021) applied it to classify

asymptomatic, presymptomatic, and symptomatic cases among

2,980 hospitalised patients in Wuhan between February and April

2020. Their results revealed 13 cell clusters among 17 patients and

showed that t-SNE effectively plotted CD+8 T cells, linking their

exhaustion to COVID-19 progression. Another study Eskandarian

et al. (2023) analysed clinical features associated with mortality in

3,008 COVID-19 patients hospitalised in Iran between March and

November 2020. Using t-SNE and other dimensionality reduction

techniques, the study investigated symptoms such as fever, myalgia,

dizziness, seizure, and abdominal pain, ultimately finding no

significant correlation between mortality and gender or symptoms.

Ta et al. (2023) aimed to identify clinical subgroups among

11,313 hospitalised COVID-19 patients between March 2020 and

December 2021. The study identified 20 patient subgroups of

varying severity, with t-SNE effectively visualising distinct clusters.

One notable subgroup (SG8) exhibited higher rates of dyspnea

(56.4%), cough (37.3%), and asthenia (23.3%), but lower rates of

sepsis (5.5%).

K-means has been applied to cluster COVID-19 symptoms and

related data. Utomo (2021) compared K-means and K-medoids for

clustering COVID-19 spread in Indonesia using data from 175,095

confirmed cases. K-means outperformed K-medoids based on the

Davies-Bouldin Index, formingmore cohesive clusters. Chimbunde

et al. (2023) used K-means to identify risk factor clusters in 392

COVID-19 patients in South Africa. Four main groups emerged,

with Clusters 3 and 4 showing high case fatality rates (62.8% and

75.6%), while Cluster 2 had the lowest (44%). Wahyuddin and

Pradana (2021) applied K-means to cluster COVID-19 symptoms

in Indonesia using 14 key symptoms from August 2021. Three

clusters were identified: one with mild symptoms (e.g., fever and

cough), another with moderate to severe cases, and a third with

gastrointestinal symptoms, which were less frequent.

Most studies on COVID-19 focus on diagnostics, often

analysing genetic material or additional patient data, while fewer

have examined symptom patterns, particularly in comparison

to other SARS strains. Understanding these patterns is crucial

for distinguishing COVID-19 from similar infections, especially

in ambiguous cases. In previous work Marques et al. (2024),

we analysed symptom patterns in SARS-CoV-2 and unspecified

SARS cases using the Apriori algorithm to identify potential

undetected COVID-19 cases. Here, we propose using t-SNE with

Gower’s distance for categorical data and k-means clustering to

explore structural similarities among SARS-infected individuals. In

addition to symptoms, we examine case progression and diagnosis.

Experiments were conducted using SARS data from São Paulo

State’s Brazilian SARS database (2020–2021), covering periods of

both high and low infection rates.

2 Materials and methods

2.1 Data acquisition

For the experiments, COVID-19 and unspecified SARS cases

from 2020 (1,007,052 individuals) and 2021 (976,633 individuals)

were obtained from the SARS database available at SUS (2020b), a

publicly accessible database related to the Brazilian health situation.

These periods were chosen because the first 2 years of the pandemic

registered the highest number of infections and deaths worldwide,

especially in Brazil. In addition to symptom variables, the datasets

contained social demographics, risk factors, comorbidities, and

laboratory findings for all states. Most of the feature values are

categorical, including symptom features, which are represented by

“y” (yes) and ‘n’ (no) to indicate the presence or absence of the

symptom, respectively. A description of all database variables can

be found in SUS (2020a). However, in it is important to point

the inability to distinguish COVID-19-negative samples from other

types. It is due to limited access to testing, as testing was available

to individuals with moderate and severe cases. For this reason, we

decided to compare SARS-CoV-2 cases with the unspecified SARS

category, which is proportionally significant in both periods.

In Figure 1 it is show all final case classification in 2020

(Figure 1A) and 2021 (Figure 1B). Brazilian health system classify

the cases into five categories: SARS caused by influenza, SARS

caused by another respiratory virus (SARS ARV), SARS caused

by another aetiological agent (SARS AEA), SARS caused by

COVID-19, and unspecified SARS that refers to cases in which

no alternative aetiological agent is identified, making it impossible

to collect or process clinical samples for laboratory diagnosis or

confirm through clinical–epidemiological criteria, clinical imaging,

or clinical diagnosis.

2.2 Feature selection

Thus, given Brazil’s vast geographic size, COVID-19 exhibited

varying behaviours across different regions of the country.

Therefore, it was decided to use data from the state of São Paulo.

Due to its large population and influx of tourists, São Paulo is

believed to represent the most dynamic COVID-19 scenario in

the country, making its data a valuable source of information

for the experiments. The peak periods of infection in 2020 and
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FIGURE 1

(A) Final Case Classification (diagnostic) of all SARS database in 2020. (B) Final Case Classification (diagnostic) of all SARS database in 2021.

2021 years were analysed. In 2020, the highest number of cases

was recorded in July (25,975 cases) and October (10,157) had

the lowest number of cases, while in 2021, the highest number

of cases occurred in March (72,824) and the lowest number

of cases happened in November (2,754) (Lorenz et al., 2021).

The 12 symptoms used in the experiments are described in

Marques et al. (2024).

2.3 Categorical data

Categorical data refers to variables that represent distinct

categories or groups, often non-numeric. Examples include gender

and answer yes or no, for example. These variables are typically

classified into nominal (unordered categories, like colours) or

ordinal (ordered categories, like rankings) types. Categorical data is

found in various fields, such as social sciences, public health, where

responses or features are naturally grouped into categories rather

than continuous numerical values (Agresti, 2012).

The information labelled into distinct classes is useful for

tasks like demographic analysis or classification but lacks inherent

numerical meaning, necessitating specific handling techniques in

machine learning, where algorithms typically expect numerical

inputs (Hancock and Khoshgoftaar, 2020). Common approaches

to represent categorical data include direct usage or transformation

into numerical form through methods such as one-hot encoding,

label encoding, and embedding techniques (Cerda and Varoquaux,

2020; Rodríguez et al., 2018; Shah et al., 2022; Yang, 2005).

For unsupervised learning techniques, such as dimensionality

reduction and clustering, distance measures are essential to

evaluate similarity or dissimilarity between categorical values

(Alamuri et al., 2014; Santos and Zárate, 2015; Ben Ali and

Massmoudi, 2013; D’Orazio, 2021). In the experiments, Gower’s

distance was chosen (Gower, 1971) due to its ability to

handle mixed data types (categorical and numerical) effectively,

ensuring an accurate representation of the complex feature space

in the dataset.

2.4 Gower’s distance

The Gower distance is a versatile dissimilarity measure

designed to handle mixed data types, including numerical,

categorical, and even ordinal variables. Proposed by J.C. Gower in

1971 (Gower, 1971), it calculates the distance between data points

by normalising individual attribute differences. For categorical

attributes, it assigns a value of 0 for a match and 1 for a

mismatch, while for continuous data, it scales differences relative

to their range. This makes Gower’s distance particularly useful in

clustering and dimensionality reduction techniques when working

with heterogeneous datasets. Its flexibility allows it to accommodate

diverse types of variables within a single unified measure.

Thus, xik represents the value of attribute k for instance i. The

similarity between two instances is compared for each attribute k

assigning an index sijk, where sijk = 0 if the two instances are

completely different, or a positive real number if they share some

level of similarity. δijk = 1 if instances i and j can be compared for

attribute k (xik, xjk) and 0 otherwise. wk represents the weight for

attribute k. The similarity can be calculated as follows (Ben Ali and

Massmoudi, 2013):

Sij =

N∑

k=1

sijkδijkwk/

N∑

k=1

δijkwk (1)

For binary and categorical attributes, sijk = 0 if xik = xjk,

and sijk = 1, otherwise, while for continuous attributes, sijk =
|xik−xjk|

maxlxlk−minlxlk
where l runs for all non-missing values for the

attribute k.

2.5 t-distributed stochastic neighbour
embedding

The t-Distributed Stochastic Neighbour Embedding (t-SNE)

is a non-linear, unsupervised, manifold-based Feature Extraction
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(FE) technique that maps high-dimensional data into a lower-

dimensional space (2 or 3 dimensions), while preserving the

important structures of the original dataset. Its formulation is given

as follows Balamurali and Melkumyan (2016):

Given a set of of N high-dimensional objects X1, ...,Xn,

t-SNE first computes probabilities pij that are proportional to the

similarity between objects Xi and Xj, as follows:

pj|i =
exp(−||xi − xj||

2/2σi
2)

∑
k6=i

exp(−||xi − xk||2/2σi2)
, (2)

pi,j =
pj|i + pi|j

2N
. (3)

The bandwidth of the Gaussian kernels, denoted as σ , is

adjusted so that the perplexity of the conditional distribution

matches a specified perplexity through a binary search.

Consequently, the bandwidth is adapted based on the data

density: smaller σi values are applied in regions where the

data is denser.

The objective of the t-SNE is to learn a d-dimensional map

Y1, ...,Yn (with Yi ∈ R
d) that reflects the similarities pij. To achieve

this, it calculates the similarities qij between two points on the map,

yi and yj, using a similar method. Specifically, qij is defined as:

qi,j =
(1+ ||yi − yj||

2)−1

∑
k6=i

(1+ ||yk − yj||2)−1
(4)

Here, a heavy-tailed Student t-distribution is used to measure

similarities between low-dimensional points, allowing dissimilar

objects to be positioned far apart on the map. The locations of

the points yi in the map are determined by minimising the (non-

symmetric) Kullback-Leibler divergence between the distribution

Q and the distribution P, which is expressed as:

KL = (P||Q) =
∑

i6=j

pi,j log
pi,j

qi,j
(5)

The minimisation of the Kullback-Leibler (KL) divergence with

respect to the points yi is carried out using gradient descent. This

optimisation process produces a map that accurately captures the

similarities between the high-dimensional inputs.

The t-SNE algorithm was implemented in Python, using

Scikitlearn (2007) library. The parameters were kept at their default

settings, except for the perplexity parameter, which was adjusted

based on the divergence. A range of divergence values was defined,

and t-SNE was executed across this range. The final perplexity =

100 was chosen based on a curve plotting the divergence values,

identifying the point where divergence stabilises.

Following the visualisation provided by t-SNE, an intra-cluster

analysis is performed. The number of clusters visually identified in

the t-SNE plot is used to determine the parameter k for the k-means

algorithm, which is then applied using the embedding generated

by t-SNE.

2.6 k-means

k-means clustering is a widely used unsupervised machine

learning technique that partitions a dataset into k clusters, where

each data point is assigned to the cluster with the nearest

centroid. This method is particularly popular in both scientific and

industrial applications, such as gene expression clustering and text

classification. Its simplicity and effectiveness have contributed to

its broad usage in various fields. Following a description a brief

description of its functioning (Dubey and Choubey, 2017; Jain,

2010):

Given a dataset X = {x1, x2, ..., xn}, where each data point

xi is a vector in R
d, the goal of k-means is to partition these n

points into k clustersC1,C2, ...,CK . The algorithm aims tominimise

the following objective function, known as the Sum of Squared

Errors (SSE) orWithin-cluster Sum of Squares (WCSS) (Bishop and

Nasrabadi, 2006).

J =

K∑

k=1

∑

xi∈Ck

‖xi − µk‖
2 (6)

where: µk is the centroid (mean) of cluster Ck, xi represents

a data point in cluster Ck, ||xi − µk||
2 is the squared Euclidean

distance between xi and µk.

The k-means algorithm consists of the following steps:

1. Initialisation: Choose k initial centroids (either randomly or

using methods like k-means++ to improve convergence).

2. Assignment: Assign each data point to the nearest centroid based

on the Euclidean distance.

3. Update: Recalculate the centroids of each cluster by computing

the mean of all points assigned to it.

4. Convergence: Repeat the assignment and update steps until the

centroids no longer change or the algorithm converges to a

predefined tolerance.

The k-means algorithm was implemented in Python, using

Scikitlearn (2007) library. The parameters were kept at their default

settings, except for the k parameter, that was adjusted based on the

number of cluster identified visually through t-SNE visualisation.

3 Results

In this section, the results obtained using the t-SNE and k-

means algorithms are presented. Periods of both high and low

infection peaks were selected from the first two years of the

pandemic. In 2020, the selected periods were July and October,

while in 2021, we selected March and November. Initially, a

preliminary analysis of individuals visual arrangement will be

conducted to explore the most evident similarities between

confirmed COVID-19 diagnoses and unspecified diagnoses.

Subsequently, an intra-cluster analysis will be performed, focusing

on aspects such as the most prevalent diagnoses, patient outcomes

(recovery, death, or death from other causes), and the most

common symptoms.

Although definitive conclusions about the shapes of

the structures cannot be drawn, the formation of distinct
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FIGURE 2

(A) Clusters formed by COVID-19 and Unspecified SARS symptoms in July 2020. (B) The clusters formed by COVID-19 and Unspecified SARS

symptoms in July 2020 after applying a zoom to the figure.

agglomerations resembling clusters is evident. Therefore, for

educational purposes, we will refer to these agglomerations as

clusters, as their arrangement aligns with the concept.

Figure 2A illustrates the clusters formed from COVID-19 and

unspecified SARS symptoms in July 2020. As t-SNE preserves the

proximity relationships and distances between similar data points,

it does not allow for direct interpretation of clusters as in traditional

clustering analysis. However, the closer the data points, the more

similar they are. A closer inspection of the clusters in Figure 2B

reveals significant overlap between both diagnoses at the centre

and surrounding areas of the clusters. The two diagnoses are so

similar that it is nearly impossible to visually distinguish them. In

some instances, unspecified SARS individuals are more noticeable,

while in others, COVID-19 individuals stand out, but overall, both

diagnoses overlap within the clusters and other agglomerations on

the plot.

In November, a period of lower peak infection cases in 2020,

Figure 3A shows that the clusters are arranged differently, with

more poorly formed agglomerations compared to the previous

period, suggesting that they appear more dispersed at first glance.

However, upon zooming in (Figure 3B), the same pattern observed

earlier re-emerges. COVID-19 and unspecified SARS individuals

are so closely positioned that, depending on the cluster, it is nearly

impossible to distinguish the overlapping points. This indicates that

even during a period of fewer reported cases, the symptomatology

of these diagnoses remains highly similar.

Figure 4 illustrates March 2021. Analysing side Figure 4A, it is

evident that more clusters have formed compared to the previous

year, along with visible overlapping points. Upon zooming in

Figure 4B, the same pattern appears, but with a greater number

of COVID-19 individuals compared to those diagnosed with

unspecified SARS. This visual impression aligns with the period of

higher case reporting between the first two years of the pandemic.

Despite less overlap between points, even during this period of

more reported SARS-CoV-2 cases than other SARS strains, the

individuals still exhibit very similar symptomatology.

In Figure 5A, which represents the period of a low peak of

cases in 2021, a similar visual pattern to March is observed, but, in

contrast to previous periods, there appear to be more unspecified

SARS individuals than COVID-19 cases. Upon zooming in

(Figure 5B), this observation is confirmed in the majority of

agglomerations. During this period, the introduction of a new

SARS-CoV-2 variant, alongside vaccination efforts, may have

contributed to a decrease in SARS-CoV-2-like cases. However, even

in this scenario, it remains clear across all clusters that there is

significant overlap between the diagnoses.

By examining all periods, it becomes evident that the

symptomatology of both SARS-CoV-2 and unspecified SARS

is strikingly similar. Regardless of the presence or absence of

specific symptoms, individuals from both groups share similar

characteristics. To uncover these shared features, an intra-cluster

analysis was conducted, focusing on significant cluster sizes by

examining both the largest and smallest clusters.

3.1 Intra-cluster analysis

To identify similarities between COVID-19 and unspecified

SARS patients, the analysis considers not only symptoms but

also diagnoses and case outcomes. Figures 6, 7, 8, 9 illustrate the

prevalence of each symptom using Donut Charts. In these charts,

the blue segment represents the presence of a symptom (“yes”),

the pink segment indicates its absence “no”), the green segment

denotes symptoms with no recorded value (“wv”), and the grey

segment corresponds to symptoms ignored (“ign”) either by the

patient or healthcare professionals. Each symptom line is colour-

coded to visually reflect the proportion of these categories. The

data presented in the charts remains unaltered. Specifically, side

A of each figure represents the largest cluster for months with a

high number of SARS cases, indicating the group with the highest

number of individuals. In contrast, side B corresponds to the
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FIGURE 3

(A) Clusters formed by COVID-19 and Unspecified SARS symptoms in October 2020. (B) The clusters formed by COVID-19 and Unspecified SARS

symptoms in October 2020 after applying a zoom to the figure.

FIGURE 4

(A) Clusters formed by COVID-19 and Unspecified SARS symptoms in March 2021. (B) The clusters formed by COVID-19 and Unspecified SARS

symptoms in March 2021 after applying a zoom to the figure.

smallest cluster for months with fewer SARS cases, reflecting the

group with the lowest number of individuals.

Figure 6 shows the symptoms presented by individuals in both

the largest cluster (Figure 6A) and the smallest cluster (Figure 6B)

in July 2020. Analysing the largest cluster (Figure 6A), the majority

of individuals from both diagnostic groups displayed symptoms

such as fever, cough, dyspnea, respiratory discomfort, and blood

oxygen saturation issues, along with other flu-like and respiratory

symptoms typically associated with mild to moderate COVID-19

cases. However, symptoms like sore throat and gastrointestinal

issues (such as vomiting and abdominal pain) were either absent

or unreported by the patients. Additionally, there was no recorded

information on loss of smell and taste, symptoms strongly

associated with SARS-CoV-2 infection. In the smaller cluster

(Figure 6B), a similar pattern was observed. Most individuals

exhibited fever and cough, along with other respiratory symptoms,

although blood oxygen saturation was not affected in this group.

Likewise, gastrointestinal symptoms, fatigue, and loss of smell

and taste were either absent or not documented by the patients.

Although symptoms are not the only factor in diagnosis, they are

often the most visible indicators for both healthcare professionals

and the general population. Additionally, as previously noted

(Figure 1), there was no significant circulation of other viruses

causing SARS during the periods analysed.

Given this context, focusing solely on symptomatology and

examining each cluster individually, both clusters display similar

percentages of COVID-19-related deaths, with 11% in Cluster A

and 14% in Cluster B. Recovery rates were also comparable, at

80.5% in Cluster A and 81% in Cluster B. However, a marked

difference emerged in the proportion of patients with unspecified

SARS cases: in the larger Cluster A, these cases represented

17% of patients, while in the smaller Cluster B, they accounted

for nearly half, at 41%. This suggests that, despite differing

diagnoses, nearly half of the patients in Cluster B exhibited

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2025.1536486
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Marques et al. 10.3389/frai.2025.1536486

FIGURE 5

(A) Clusters formed by COVID-19 and Unspecified SARS symptoms in November 2021. (B) The clusters formed by COVID-19 and Unspecified SARS

symptoms in November 2021 after applying a zoom to the figure.

FIGURE 6

(A) Symptoms exhibited by individuals in the cluster with the highest and (B) the lowest COVID-19 and unspecified SARS infections reported in July

2020.

similar symptoms, death rates, and recovery outcomes to those

in Cluster A.

In October, 29 clusters were identified. Cluster 1 contained

the highest number of individuals, totalling 1,210, while Cluster

6 had the fewest, with 289 individuals. In the largest cluster,

676 individuals were diagnosed with COVID-19, and 534 had

an unspecified SARS diagnosis. Among these, 833 individuals

recovered, 225 died from COVID-19, and for 7, the cause of

death was unrecorded. In the smallest cluster, 106 individuals were

diagnosed with COVID-19, and 183 had an unspecified SARS

diagnosis. Of these, 199 recovered, 50 died from COVID-19, and

35 died from other causes.

Figure 7 illustrates the symptoms reported by individuals

in both the largest cluster (Figure 7A) and the smallest cluster

(Figure 7B) in October 2020. Upon analysing the largest cluster

(Figure 7A), a different pattern emerges. For the most frequently

reported symptoms fever, cough, dyspnoea, respiratory discomfort,

and oxygen saturation a substantial portion of individuals did

not present these symptoms, particularly in cases of fever and

respiratory symptoms. Additionally, a significant number of

individuals in this cluster reported not experiencing sore throat or

gastrointestinal symptoms such as diarrhoea, as well as loss of smell

and taste, with a smaller portion affirming these symptoms were

present. In the smaller cluster (Figure 7B), a completely different

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2025.1536486
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Marques et al. 10.3389/frai.2025.1536486

FIGURE 7

(A) Symptoms exhibited by individuals in the cluster with the highest and (B) the lowest COVID-19 and unspecified SARS infections reported in

October 2020.

pattern emerges. Nearly all individuals reported not experiencing

symptoms such as fever, cough, gastrointestinal issues, fatigue, and

loss of smell and taste. However, almost all individuals did report

dyspnoea and respiratory discomfort symptoms strongly associated

with moderate to severe cases of COVID-19.

When analysing the clusters individually, both clusters show

similar percentages of COVID-19 related deaths, with 18% in

Cluster A and 17% in Cluster B. Recovery rates were identical,

at 68%. However, in the smaller cluster, 63% of individuals

were diagnosed with unspecified SARS and 36% with COVID-

19, indicating that individuals without a confirmed COVID-19

diagnosis exhibited symptoms similar to those infected by SARS-

CoV-2. In the largest cluster, a similar trend was observed: 44%

of individuals were diagnosed with unspecified SARS, while 55%

were diagnosed with COVID-19, suggesting that nearly half of the

patients with unspecified SARS presented symptoms resembling

those of confirmed COVID-19 cases.

In March, 45 clusters were identified. Cluster 7 contained

the highest number of individuals, totalling 3,451, while Cluster

45 had the fewest, with 702 individuals. In the largest cluster,

3,293 individuals were diagnosed with COVID-19, and 158 had

an unspecified SARS diagnosis. Among these, 2,425 individuals

recovered, 934 died from COVID-19, for 84 the cause of death was

unrecorded and 7 died for other causes. In the smallest cluster,

610 individuals were diagnosed with COVID-19, and 92 had an

unspecified SARS diagnosis. Of these, 461 recovered, 208 died from

COVID-19, for 26 the cause of death was unrecorded and 7 died

from other causes.

Figure 8 illustrates the symptoms reported by individuals

in both the largest cluster (Figure 8A) and the smallest cluster

(Figure 8B) in March 2021. Analysing the data for March, a

significant portion of individuals exhibited fever and cough;

however, unlike during previous peak infection periods, fewer

patients presented these symptoms linked to mild COVID-19

cases, as well as sore throat. Respiratory symptoms were also less

frequently reported, with nearly the same percentage of individuals

affected. Gastrointestinal symptoms were the least reported group

overall. March was known as the most severe month for COVID-

19 cases and deaths, at least within the first two years, due to

specific conditions during that period. In this month, the newly

identified Gamma variant spread across the country, becoming the

variant most associated with infection cases and fatalities. Unlike

other variants and lineages, symptoms such as fatigue, and loss

of smell and taste were strongly reported among those infected,

prompting more individuals, even those with mild symptoms, to

seek other forms of testing, such as rapid tests, thus increasing the

number of cases recorded in public health statistics. In the smallest

cluster, a completely different scenario emerges. With the absence

of almost all symptoms except for fever and cough symptoms

widely observed among individuals infected and diagnosed with

unspecified SARS (Marques et al., 2024) and the presence of

dyspnoea, a symptom strongly associated with moderate to severe

COVID-19 cases, it appears that a minority of individuals in this

period exhibited a symptomatology indicative of significant health

impairment due to the disease. This contrasts with the largest

cluster, where it seems that the majority of individuals presented

a range of cases, from mild to moderate and severe.

However, when analysing the clusters individually, both

clusters show similar percentages of COVID-19-related deaths,

with 27% in Cluster A and 28% in Cluster B. Recovery rates

were also comparable, at 70% in the largest cluster and 65% in

the smallest. Unlike previous periods, the majority of individuals
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FIGURE 8

(A) Symptoms exhibited by individuals in the cluster with the highest and (B) the lowest COVID-19 and unspecified SARS infections reported in March

2021.

in both clusters were diagnosed with COVID-19, accounting for

95% in the largest cluster and 86% in the smallest. Despite the

higher proportion of infected individuals in both clusters compared

to earlier periods, relatively fewer individuals died from SARS-

CoV-2, with 27% in the largest cluster and 29% in the smallest.

Regarding diagnoses of unspecified SARS, fewer patients received

this diagnosis—4.5% in Cluster A and 13% in the smallest—

suggesting that, due to the specific characteristics of the disease

during the analysed period, the mislabelling observed in earlier

periods did not occur.

In November, 17 clusters were identified. Cluster 3 contained

the largest number of individuals, totalling 1,096, while Cluster

2 had the fewest, with 288 individuals. In the largest cluster,

285 individuals were diagnosed with COVID-19, and 73 had

an unspecified SARS diagnosis. Among these, 858 individuals

recovered, 73 died from COVID-19, and 17 died from other causes.

In the smallest cluster, 53 individuals were diagnosed with COVID-

19, and 235 had an unspecified SARS diagnosis. Of these, 249

recovered, 20 died from COVID-19, and 4 died from other causes.

Figure 9 illustrates the symptoms reported by individuals

in both the largest cluster (Figure 9A) and the smallest cluster

(Figure 9B) in November 2021. An analysis of the largest cluster

reveals that only fever and cough were reported by the majority

of the population; however, the presence or absence of these

symptoms was not recorded. Among the remaining symptoms,

only oxygen saturation and respiratory discomfort showed a

notable proportion of individuals reporting them. As observed

previously, gastrointestinal symptoms, along with loss of smell and

taste, were not prevalent. In contrast, the smallest cluster presents

a different scenario. Nearly half of the population had fever, while

the other half did not. For cough, the presence of the symptom

was disregarded for only a few patients. Sore throat and dyspnoea

were not reported by almost any individuals, whereas respiratory

discomfort was noted by nearly all patients, and the proportion

of individuals with altered oxygen saturation was even higher.

Gastrointestinal symptoms, as well as fatigue, loss of smell, and

taste, were absent among these individuals.

When analysing the clusters individually, both clusters exhibit

similar percentages of COVID-19-related deaths, with 6% in

Cluster A and 7% in Cluster B. Recovery rates were also

comparable, at 78% in Cluster A and 86% in Cluster B. However,

unlike previous periods, a significant majority of individuals

in both the largest and smallest clusters were diagnosed with

unspecified SARS, at 73% and 81%, respectively. In Cluster B, where

the majority of individuals did not have COVID-19, over 70%

recovered from COVID-19, with both diagnoses exhibiting similar

symptoms. The situation in Cluster B is particularly noteworthy, as

nearly all patients presented symptoms associated with moderate

to severe cases, despite not being diagnosed with COVID-19. In

Cluster A, while the percentage was lower, more than half of

individuals initially diagnosed with unspecified SARS also exhibited

respiratory discomfort and low blood saturation factors strongly

linked to respiratory complications caused by COVID-19.

4 Discussion

4.1 Limitations

A main limitation of this work is that the analysis relies solely

on symptoms, which represent just one aspect of disease diagnosis,
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FIGURE 9

(A) Symptoms exhibited by individuals in the cluster with the highest and (B) the lowest COVID-19 and unspecified SARS infections reported in

November 2021.

especially for COVID-19 due to its similarities with other SARS-

related diseases.

While symptoms are the most visible indicators, diagnostic

overlaps between SARS-CoV-2 and SARS complicate accuracy.

Additionally, the dimensionality reduction technique used

is sensitive to changes in hyperparameters, which is another

limitation. The perplexity parameter in t-SNE plays a crucial

role in balancing global and local structure preservation. If

the perplexity is too low or too high, it can distort clusters

or emphasise one structure type over the other. To address

this, an optimal perplexity value should be calculated from the

data, and a range of values should be tested and compared.

The results presented here are based on a specific perplexity

value within this range. Another limitation is the number

of clusters (k) in k-means clustering, as the algorithm’s

performance depends on this choice. Results are conditioned

on the selected k for each period, and varying k values can lead

to different insights and interpretations based on how individuals

are grouped.

In health policies, visually analysing symptoms can help

identify patterns and key indicators of diseases, especially during

pandemics. This approach can also reveal underreporting, as gaps

in disease spread understanding affect public health. Additionally,

isolation guidelines could be recommended even without lab tests

by alerting patients if their symptoms closely resemble those

associated with COVID-19.

4.2 Improvement suggestions

Based on the analysis and known similarities between COVID-

19 and other SARS and viral diseases, it is not possible to rely only

on symptoms to provide a diagnosis. It is essential to combine

symptomatology with other information to improve the accuracy

of diagnosis. Various types of patient information can be used to

enhance the diagnosis.

Among the accessible information that could be added are

serological tests such as IgG, IgM, and IgA, as well as antigen tests

not only for COVID-19 but also for other diseases. Additionally,

molecular tests such as RT-PCR could be incorporated, extending

beyond COVID-19 to other diseases with similar symptoms.

Besides laboratory test data, information on the patient’s general

health status could be included, such as pre-existing conditions,

comorbidities, and vaccination history, including the number of

doses and timing of administration.

In addition to the enhancement provided by the information

increment, it is important to address the fact that COVID-19 and

unidentified SARS cases are often confused. It remains crucial to

continue examining the overlapping symptoms that cause patients

in both groups to appear so similar. To advance this type of

research, it is essential to eliminate the potential mislabeling issue.

A promising direction for future work would be the application

of generative AI methods, i.e., Generative Adversarial Networks

(GANs) or Variational Autoencoders (VAEs), which can generate

more data, especially for less common diagnoses. Such methods

might be able to separate those cases with unspecified SARS that

have very close symptoms to COVID-19. By creating synthetic

data that replicates the more subtle symptom patterns of under-

represented illnesses, generative AI has the potential to provide

diagnostic insight and model performance. Complications can

range from overfitting to synthetic data, balancing real vs.

generated data, and whether the generated data captures the

subtleties of the less prevalent diseases. Additionally, ethical

considerations around the utilisation of synthetic data and its
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impact on the explainability and trustworthiness of diagnostic

models will have to be thoroughly considered.

5 Conclusion

The research sets out a machine learning method for visual

analysis of how COVID-19 symptoms changed between various

stages of the pandemics and how they were important in

the characterisation of the disease during the initial two years

of its outbreak in Brazil. The research sought to determine

emerging trends based on comparisons with COVID-19 and other

unspecified SARS patients.

From the dimensionality reduction analysis, the most

important observation was the great overlap found between the

two groups, wherein both subject sets created visually identical

clusters in different time periods. When examined more closely,

such subjects were found to be holding central positions in

the clusters, which indicates that common symptoms played a

significant role in the way other individuals arranged themselves

around them.

Within-cluster analysis validated increased recovery and

reduced mortality from COVID-19 and other disease in both

cohorts. Besides symptom similarity, recovery andmortality results

were strikingly similar in both cohorts. Notably, in 2020 and

2021, there was no circulation of other viruses that are the typical

causes of SARS, indicating potential misclassification of cases. One

troubling trend was the rising proportion of unspecified SARS.

Around 50% of patients had unspecified SARS in July, and in

October and November, over 70% of patients had unspecified

SARS. Most had the classic COVID-19 symptoms of dyspnea,

respiratory distress, hypoxemia, and cough, typical of moderate

to severe COVID-19. March, which recorded the most cases

and deaths, had a clear diagnostic differentiation. During off-

peak seasons, however, the differentiation between COVID-19 and

unspecified SARS diagnoses became progressively blurred.

This behaviour suggests that some SARS-CoV-2 infections

were incorrectly classified as unspecified SARS, a suspicion

corroborated not only by the symptom data but also by the other

information used.
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