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Foundational large language models (LLMs) are deployed in multilingual environments 
across a range of general and narrow task domains. These models generate text 
token by token, making them slower and more computationally expensive for 
low-resource languages that are underrepresented in the tokenizer vocabulary. It 
also makes their usage more costly in such cases, as pricing usually depends on 
the number of input and output tokens. This study compares multiple tokenizers 
of pretrained LLMs for the Ukrainian language. It also provides tokenization fertility 
measurements for current state-of-the-art (SOTA) models, both in terms of general-
purpose language and specific domains, as well as results of experiments with a 
transliteration approach to make tokenization more efficient without information 
loss. The results provide insights into the current models’ disadvantages and 
possible problems in terms of Ukrainian language modeling.

KEYWORDS

tokenization, large language model, corpus, domain, low-resource language

1 Introduction

Tokenizers are an essential part of modern language models, as they both transform text 
data into a numerical format and split the text into smaller segments to reduce the 
dimensionality of inputs. Due to the inclusion of multilingual samples in pretraining datasets, 
recent large language models (LLMs) can execute tasks not only in their primary language (the 
dominant language of the training dataset in terms of the quantity of samples to represent this 
specific language) but also in others, even if those were not represented in large quantities 
during tuning (Erdem et al., 2022). For example, the Llama 3 training report states that 95% 
of the training dataset consisted of English and code, while only 5% represented other 
languages (Dubey et  al., 2024). Nevertheless, this family of models can understand and 
generate text in other languages, such as Ukrainian. However, tokenizers for such models are 
not designed to process multilingual inputs and outputs equitably across all languages, 
especially low-resource ones (Ahia et al., 2023). At the same time, the quality and scope of the 
tokenizer vocabulary directly affect the accuracy and efficiency of the model built on top of it 
(Padalko et al., 2023).

The most common current approaches are Byte Pair Encoding (BPE) and SentencePiece-
like (Gallé, 2019; Kudo and Richardson, 2018) tokenizers. Unlike older versions, they have 
fallback mechanisms in case of unknown tokens, so each word or even symbol would still 
receive a token set (whether it is a subword, character, or byte sequence). Thus, tokenizers 
should work even for low-resource languages, which do not get many subwords allocated in 
the vocabulary. However, it also leads to longer tokenized sequences (Limisiewicz et al., 2023). 
It was demonstrated earlier that the efficiency of LLM tokenization differs for each language, 
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so they do not use the same number of tokens for the same information 
sample written in different languages (Petrov et al., 2023). Thus, the 
cost and speed of 100-character text generation in a primary and 
non-primary language of a tokenizer may differ considerably.

The majority of open-source or proprietary language models were 
trained primarily for English, so their tokenizers would segment 
English text better due to a larger number of tokens dedicated to 
English words (the example of Llama 3 was already mentioned earlier 
in the introduction). This can give the impression that tokenization is 
a solved problem for English, when in fact BPE tokenizers tend to have 
more tokens in the most used language of the dataset used to train 
them. If the training dataset is skewed toward Ukrainian, Georgian, 
or any other language, it would segment them better. The problem has 
been partially solved by extending the vocabulary size and training 
additional token embeddings.

Even switching between multiple domains in the same language 
can deteriorate the performance of the tokenizer as it has to split fewer 
common words, which are not covered as well as common ones in the 
vocabulary (Sachidananda et al., 2021). For example, the number of 
tokens to encode a medical text and an online blog on cinema may 
be  significantly different, even if they have the same number of 
characters. Models and their tokenizers get biased toward the most 
frequent expressions they get in training datasets, so the performance 
for the same task (question answering, for example) can change due 
to the style and topic of the text. This would make the usage of 
foundational models even less efficient for domain-specific tasks in 
low-resource languages.

Tokenization efficiency can be defined as the number of tokens a 
tokenizer uses to represent the input text while preserving the integrity 
of the original text. Efficient tokenization reduces the computational 
cost of the causal language modeling task by minimizing the length of 
the token sequence without information loss or misinterpretation. 
Such tokenizers encode text in linguistically meaningful units and 
rarely turn to a character or byte fallback mechanism. They should 
be resistant to agglutination (addition of affixes should not lead to the 
tokenizer falling back to single characters or bytes) and other 
morphological transformations such as inflection (expression of tense, 
number, and gender), derivation (addition of an affix, which changes 
the grammatical category of a word), and others. As storing all 
possible word variations in the tokenizer vocabulary would 
be impossible due to the size of such a vocabulary and the constant 
change of natural spoken language, tokenizers should decompose 
forms into reusable morphemes. For example, the word “unhappy” 
should be  tokenized as “un” and “happy,” which would ease the 
generalization of a language model as it learns a representation for 
frequent parts of a word instead of fragmented segments without a 
semantic meaning.

While SentencePiece and BPE tokenizers are trained to search for 
frequent character co-occurrences to determine the token content, 
they still encode some morphemes as separate tokens without mixing 
them or splitting them into sets of frequent character sequences. 
However, they are still morphologically unaware, which leads to token 
boundaries that do not correspond to stems or morphemes.

Such encoding makes natural language understanding (NLU) task 
learning more difficult and creates even more issues for languages with 
high morphological flexibility (Batsuren et al., 2024).

Morphological alignment of tokenizers is still an open area of 
research. Some experiments lead to conclusions that models based 

on BPE tokenizers achieve the same performance for NLU tasks as 
morphologically aligned tokenizers (Arnett et  al., 2024), while 
others suggest the usage of tokenization schemes such as the 
unigram language model (ULM) (Kudo, 2018; Peters and 
Martins, 2022).

In the case of multilingual models, a tokenizer also requires 
consistency between all supported languages to be called efficient. This 
means it has to use a similar number of tokens to encode semantically 
identical texts in different languages. Tokenization efficiency directly 
influences the cost of inference, as users who request a generation in 
a non-primary language of the model would have to wait longer for 
the generation to complete due to more feedforward passes. LLMs are 
autoregressive decoders, so they generate one token at a time by using 
both input tokens and output tokens inferred earlier (Yenduri et al., 
2023). Generating a text in a non-primary language requires more 
computational resources if the tokenization efficiency varies across 
supported languages, with some languages being segmented more 
effectively than others. Moreover, the current LLM price model 
requires paying for the number of both input and output tokens, 
which would make generation in any non-primary language more 
expensive for the end user. Thus, the cost of inference in this paper 
refers to the cost of executing the causal language modeling task (text 
generation), encompassing speed, context window usage, 
computational resources, and API call pricing.

This work proposes a way to benchmark tokenizers for a specific 
language, focusing on Ukrainian. We compare and analyze the current 
LLMs’ tokenization efficiency by conducting several experiments to 
check the efficiency for both general and domain-specific texts. 
We investigate the influence of grammatical and spelling errors on 
Ukrainian tokenization, explore the use of transliteration to improve 
results, and assess the effect of word form changes. Ukrainian 
tokenization is compared to the English language to determine the 
differences in their performance in terms of possible inference cost 
and context window filling. The approach we test for Ukrainian can 
be reproduced with a small amount of data for any other language. 
Even though the increased ratio of tokens per word is already a known 
conclusion for the Ukrainian language, we aim to provide a framework 
to benchmark current SOTA LLMs and future models not only in 
terms of their task performance but also in terms of their tokenization 
efficiency, as it directly affects the computational budget, speed of 
generation and API costs. We provide an in-depth check for language 
in general and specific domain corpora and examine the effect of 
mistakes in the text. The approach can be scaled to more domains, 
languages, or even dialects to ease the choice of the model for 
downstream tasks in low-resource or tokenizer secondary languages.

2 Related research

Tokenization efficiency was deeply researched for multilingual 
environments in general. Some papers focus on specific languages 
such as Thai and Hungarian (Csaki et al., 2023), Portuguese (Larcher 
et al., 2023), or French (Arnett et al., 2024), or just explore efficient 
ways to extend tokenizer vocabularies and embedding layers with new 
samples (Marchisio et al., 2023). However, even though the number 
of datasets and models skyrockets for the Ukrainian language 
(Saichyshyna et  al., 2023), there is no in-depth research on the 
tokenization efficiency of current state-of-the-art language models for 
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this language or a framework to benchmark the efficiency of 
tokenization in depth.

The difference in tokenization efficiency between different 
languages is a well-represented problem at this point (Petrov et al., 
2023). The research presented in the paper “Language Model 
Tokenizers Introduce Unfairness Between Languages” provides a 
general comparison of multiple models like Llama, GPT-2 (Generative 
Pretrained Transformer), and RoBERTa (Robustly optimized 
Bidirectional Encoder Representations) in a set of diverse languages 
(Latin-based ones, the Germanic group, Cyrillic, Arabic, and multiple 
Asian and African groups).

It uses a metric called (Equations 1) to evaluate the performance 
of listed models in all those languages. It compares the computation 
required for training or inference, highlighting how the choice of 
tokenization schema differs from the optimal one.

 

−
= estimated optimal

optimal

FLOPs FLOPs
tokenizer premiums

FLOPs  
(1)

Another way it can be calculated is by comparing target metric 
performance for the optimal and estimated (Equations 2), a difference 
in validation loss value between multiple models trained with different 
tokenization schemas.

 
 estimated optimal

optimal

performance performance
tokenizer premiums

performance
−

=
 
(2)

However, this metric would require an optimal baseline and 
training of multiple models based on different tokenizers, which can 
be time-consuming and computationally intensive. Additionally, some 
models and labs do not publish their tokenizers’ vocabularies and 
merge rules, making it impossible to reproduce their experiments 
(e.g., the Claude series). Such an approach would be  efficient to 
compare small-scale open-source models, but it would be impossible 
to compare and evaluate models with a high parameter count and 
large vocabulary sizes due to the amount of data and computing 
necessary to run such experiments.

Equations 3 to compare the segmentation quality of tokenizers is 
tokenization fertility (Rust et al., 2021; Csaki et al., 2023). This metric 
shows the mean number of tokens necessary to encode a single word 
in a test dataset. This allows estimation of how many feedforward 
passes LLMs require to generate a word in a certain language on 
average and how many slots in the context window a word would take. 
Both these factors directly influence the speed and cost of inference 
and can make training of the model even more difficult. The token 
embeddings of LLM would not be meaningful on their own, so it 
increases the chance of mistakes during generation or 
misunderstandings of inputs.

 
=

   
  

number of tokenstokenizer fertility
number of words  

(3)

It does not require training a model with an evaluated tokenizer, 
which makes the experiment and comparison faster and cheaper to 
conduct. The papers that use this metric only assessed the difference 
in segmentation between English and their target language. They do 

not research the tokenization efficiency for narrow domains, different 
styles, or topics, which affects the text segmentation as well. These 
experiments do not refer to the effects of syntax and grammar 
mistakes in the text, stylistic changes, or morphological 
transformations and their influence on the resulting token count. 
Tokenization fertility is used only to compare the bilingual tokenizer 
proposed by the authors with the original GPT-2.

A framework for evaluations of multilingual tokenizers was also 
proposed earlier, but it covers the influence of the tokenization schema 
on the performance of the model for a certain type of natural language 
processing task (Limisiewicz et  al., 2023). Authors show how 
multilingual BPE tokenizers with overlapping parts of vocabularies 
can deteriorate the performance of the model on token-level tasks like 
part-of-speech tagging, token classification, or named entity 
recognition. However, such tokenizers prove to be  efficient for 
sentence-level tasks such as text classification, semantic search 
retrieval, or reranking. Authors present a methodology and a code to 
measure tokenizers’ properties like vocabulary allocation average rank 
(a measure of distribution of tokens used to encode the target 
language), characters per token, and vocabulary overlap (the extent to 
which tokens get reused to represent multiple languages).

The idea behind characters per token is that longer tokens should 
store more information for a phonetic language. Phonetic language 
means that all words get read the same way as they are written, so 
there are no silent vowels. It does not need a more granular split into 
subwords to model the pronunciation. For example, the words “tough” 
and “though” in English, which is not a phonetic language, both use 
the subword “ough” (a tetragraph or a four-character sequence). It 
does not carry a meaning on its own and gets used as a building 
component, so it would be ok to have it as a separate token.

The framework itself proposes a model training approach, as the 
authors use multiple tokenizers to train small models to solve both 
token-level and sentence-level downstream tasks. Then they measure 
the correlation between the metrics of the tokenizer and the obtained 
task performance. The framework allows for choosing the most 
efficient tokenizer for the target language and domain, as no one 
tokenizer would work with the same efficiency for all of them. 
However, it focuses specifically on downstream tasks and ignores the 
effect of text style and domain.

In this research, we propose a simple framework to measure the 
tokenization efficiency of multilingual tokenizers across multiple 
domains, so developers can choose the best model and tokenizer for 
their target corpus in terms of tokens per word ratio. The presented 
methodology should provide quick evaluations on how the tokenizer’s 
efficiency in a low-resource language for a specific topic compares to 
the same one in the tokenizer’s primary language. The framework does 
not require model training and needs only a multilingual corpus and 
a general domain corpus. Thus, developers and researchers should 
be able to choose the model that uses the least amount of tokens to 
encode their data, save the cost of compute or API usage, and 
accelerate the generation by reducing the number of tokens per word.

The Ukrainian language is used to demonstrate the proposed 
approach, as it is a low-resource, morphologically rich language, 
resulting in a higher ratio of tokens per word compared to the Latin 
group of languages, and specifically English. This makes current SOTA 
LLMs less efficient for these languages, as it would require more 
compute for causal language modeling due to a higher level of text 
segmentation. So, by using this framework, developers and researchers 
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can evaluate and choose the most efficient LLM for the Ukrainian 
language and their specific domain. The approach can be scaled to 
other languages, topics, and styles without training a new model.

3 Materials and methods

3.1 Datasets

The task of tokenization performance measurement requires us to 
have both a general language set and some specific domain-centered 
ones. We  used the Brown corpora for the Ukrainian and English 
languages as examples of general texts to determine the baseline 
performance of multiple tokenizers in cases that do not require any 
uncommon or complex lexicon (Starko and Rysin, 2023). The NLTK 
implementation of Brown English corpora was loaded, so texts were 
merged by genres for experiments. This approach results in 15 larger 
texts for the English version instead of 500 separate ones, without 
affecting the calculations and measurements, as the research primarily 
focuses on the number of tokens per word in a text. Thus, 
concatenation by genres should not change the obtained values.

As for domain-specific texts, we used datasets presented in our 
previous research, which contain English and Ukrainian versions of 
Ukrainian laws, scientific article abstracts, and technical 
documentation (Maksymenko et  al., 2023). The laws dataset is a 
sample of sentences from laws published on the Ukrainian Parliament 
website (both in English and Ukrainian). The scientific texts dataset 
contains abstracts from scientific articles mostly about economics and 
physics (Maksymenko et  al., 2022). The technical documentation 
subset refers to the documentation of the VueJS framework, so it 
contains both natural language and code samples.

We used Grammarly’s Ukrainian grammatical errors corpus 
(GEC) and filtered for sentence pairs in which the incorrect and 
correct versions contained the same number of words. This was done 
to avoid token count fluctuations caused by differences in wording or 
complete rewrites (Syvokon et al., 2023). As a result, the majority of 
the retained corrections focused on word forms and spelling rather 
than sentence structure. This filtering process left us with 443 texts for 
analysis. The number of words in both versions was counted using the 
NLTK word tokenizer. If the word counts matched, the text was 

included in the benchmark. Otherwise, it was excluded, as such 
corrections involved significant rewrites.

For example, the dataset contains some stylistic errors, which are 
fixed by a complete rewrite of the sentence. This way, a count of tokens 
can differ significantly between versions, but it would not 
be representative, as the words and structure are completely different. 
We aimed to isolate the effect of common spelling and grammar case-
matching mistakes, rather than comparing how a stylistic rewrite 
would affect tokenization.

More details on the dataset are provided in Table 1.

3.2 Model selection and evaluation metrics

The following models were chosen for experiments:

 • GPT-2: a baseline tokenizer to compare how much the efficiency 
of tokenization has changed since its release in 2019 
(Budzianowski and Vulić, 2019);

 • Ukrainian GPT-2. A GPT-2 with a custom tokenizer trained 
from scratch on Wikimedia dumps and the OSCAR dataset 
(Malteos/Gpt2-UK Hugging Face, 2024; Suárez et al., 2020). This 
model is added to show the primary language bias but reversed 
for English and Ukrainian, as this model was specifically created 
to encode and generate Ukrainian text without multilingual 
capabilities. Moreover, it allows for comparison of multilingual 
tokenizers of current SOTA LLMs to this specified model, which 
is trained for one low-resource language only.

 • Llama 2 and Llama 3.1. 2 generations of LLMs by Meta, which 
use different vocabularies in their respective tokenizers, which 
allows for tracking changes in efficiency between multiple 
releases by the same research team (Touvron et al., 2023; Dubey 
et al., 2024).

 • Mistral 7B/Large/Mixtral. A series of language models by Mistral 
Labs. These models have the same tokenizer, so they do not 
require separate measurements (Jiang et al., 2023, 2024).

 • Mistral Nemo: a 12B model from the Mistral AI laboratory, 
which uses a different tokenizer from previous versions and was 
specifically designed for multilingual usage (Mistral AI 
Team, 2024).

TABLE 1 Datasets statistics.

Dataset Texts 
count

Bytes 
count

Characters 
count

Bytes per 
character

Words 
count

Characters 
per word

Sentence 
count

Words 
per text

Ukrainian Brown Corpus 1,420 13,978,170 7,794,197 1.79 1,373,811 5.67 69,018 967.47

English Brown Corpus 15 6,003,981 6,003,981 1.00 1,173,714 5.12 53,266 78,247.60

Ukrainian Laws (Ukrainian) 3,970 1,690,976 912,858 1.85 120,883 7.55 3,971 30.44

Ukrainian Laws (English) 3,970 989,529 989,509 1.00 162,156 6.10 3,971 40.84

Abstracts (Ukrainian) 3,910 3,096,762 1,679,202 1.84 240,761 6.97 7,608 61.56

Abstracts (English) 3,910 1,734,407 1,732,268 1.00 294,355 5.88 8,109 75.26

Code Documentation (Ukrainian) 7 141,577 94,185 1.50 17,688 5.33 450 2,524.00

Code Documentation (English) 7 90,751 90,731 1.00 18,560 4.89 458 2,651.43

GEC (corrected) 443 687,947 383,268 1.79 74,200 5.16 5,036 167.49

GEC (with mistakes) 443 685,471 383,271 1.79 74,200 5.16 5,021 167.49
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 • Gemma/Gemma 2/Gemini 1.5: 2 families of models from 
Google, which share the same tokenizer. Gemma is an open-
source text-only model, while Gemini is a closed one and 
provides multidomain capabilities. These models use the same 
vocabulary. (Team et  al., 2024; Team et  al., 2024; Team 
et al., 2023).

 • Qwen 1.5/2 VL: Both versions share the same tokenizer, and 
Qwen 2 is one of the few open-source multimodal LLMs, so it is 
important to evaluate its effectiveness for the Ukrainian language. 
Both versions use the same tokenizer vocabulary (Yang 
et al., 2024).

 • Phi 2 and 3.5: open-source models by Microsoft. We chose both 
versions to monitor changes in tokenization efficiency across 
their generations, as they use different tokenizers (Gunasekar 
et al., 2023; Abdin et al., 2024).

 • Mamba: a state-space model that proposes a different approach 
to attention for language modeling, which should make inference 
cheaper and provide higher stability for processing long context 
windows (Gu and Dao, 2023).

 • Claude 3: an approximated version of the Claude tokenizer by 
Xenova Labs, as Anthropic does not provide direct access to their 
tokenizers (Kevian et  al., 2024; Xenova/Claude-Tokenizer 
Hugging Face 2024, 2024).

 • GPT-3.5/4: previous versions of OpenAI’s LLMs, which use the 
same tokenizer (OpenAI et al., 2023).

 • GPT-4o/4o-mini: models by OpenAI with multimodal 
capabilities and a new tokenizer compared to the 
GPT-3.5/4 series.

The research specifically measures only the performance of 
tokenizers of the listed models, so no hyperparameter setups are 
required to replicate results.

For each tokenizer, the vocabulary size and the number of 
English tokens were recorded. Vocabulary size can be retrieved from 
the tokenizer implementation (for example, the vocab_size attribute 
if the tokenizer is loaded with the huggingface tokenizers package). 
The count of English tokens was retrieved by using the following rule: 
the token would be considered English if it contains only English 
(Latin) letters and a punctuation sign or underscores (punctuation 
signs and underscores cannot be the only content of the token, so it 
also has to contain at least one English character to be considered 
English). The methodology involves iterating over every token in the 
tokenizer’s vocabulary and checking its content according to the 
previously defined rule.

We also aimed to estimate the number of Ukrainian tokens, but 
some Cyrillic letter combinations can be  present in multiple 
languages at the same time (for example, they can occur in both 
Ukrainian and Russian or contain valid Ukrainian characters, but the 
combination is more common in Russian). So, we  measured all 
Cyrillic tokens that do not contain any specific symbols that are not 
present in the Ukrainian language. This measurement is 
approximated, as some subwords might not contain non-existent 
Ukrainian alphabet characters, but they are more common in other 
languages of the group. Such tokens can be filtered only manually, so 
“count of Cyrillic tokens” would be a more appropriate name for the 
value we calculated than “number of Ukrainian tokens.” This means 
that the real number of Ukrainian-only tokens is probably a bit less 
than the provided Cyrillic token count.

The token is considered Cyrillic if it contains only underscores or 
characters from the Cyrillic alphabet except for the non-Ukrainian 
symbols ё, ы, э, ъ, џ, Њ, љ, ћ, ј, ѕ, ќ, ѓ, and ў. These characters are not 
present in the Ukrainian alphabet, so if they appear in the token, this 
token would not be of interest for our research, as it gets used to 
encode Russian, Belarusian, Cyrillic Serbian, Bulgarian, etc. Current 
tokenizers use UTF-8 encoding, so Cyrillic symbols can be expressed 
as 2 bytes even if the tokenizer does not contain the symbol in its 
vocabulary at all (Tokenizers Encoding, 2025).

We propose to use metrics such as characters per token (CPT) and 
bytes per token (BPT) to check how meaningful English and Cyrillic 
tokens in the presented vocabularies are (Limisiewicz et al., 2023). The 
shorter the subword is, the less meaningful it is for a phonetic 
language. The subwords would become more ambiguous as they do 
not represent any reusable morpheme. It makes the model training 
harder, as it has to learn a more complex token embedding, which 
would encode multiple meanings at the same time. This way, CPT 
captures the semantic richness of a token for phonetic language and is 
a valid metric to evaluate tokenizers for any language of this group.

Tokenization fertility is the primary metric for our experiments 
and comparisons. It should be clarified that no preprocessing was used 
during the fertility calculation, so no stop words were removed, the 
letter case was left as it was, and no lemmatization or stemming 
technique was used. Furthermore, words were not tokenized 
individually, and tokenization was left as it would have been in a real 
case of a language modeling task.

This metric would be used as the main one to define the efficiency 
of tokenization for chosen models, as it represents the ratio between 
the number of tokens and words, which is easy to explain and 
interpret. The best possible value of tokenization fertility would be 1.0, 
as it would mean that the model uses one token per 1 word. This value 
is a global minimum for this metric. Such tokenization is impossible 
to achieve, as it would require including all words with all possible 
affix combinations into the tokenizer’s vocabulary. So, there are two 
main objectives for the tokenization of fertility:

 • Minimize the value in general and make it as close to 1 as 
possible and

 • Maintain consistent values across different languages and text 
domains (styles and topics) for a single tokenizer.

Some languages or areas can use long and complex words with 
multiple roots or affixes, and it would be normal to tokenize them with 
multiple tokens. Even if a simple word gets encoded into numerous 
tokens, and this number is consistent across various languages, it 
would be an efficient option, as it does not introduce a bias toward one 
specific language. Figure 1 illustrates an example of this.

It showed the word “Харків”/“Kharkiv,” the name of a city in 
eastern Ukraine, and how GPT-3.5 and GPT-4o tokenizers segment it 
in two languages. Tokens are marked by a highlight color, where a 
change of tones of gray would mean that highlighted parts correspond 
to different tokens, and the red color indicates that a character gets 
encoded as a byte sequence (2 bytes in the case of Ukrainian due to 
the Unicode specification). Both tokenizers need three tokens in 
English to encode this word. GPT-4o requires three tokens to encode 
in Ukrainian, consistent with English. At the same time, GPT-3.5 does 
not contain the uppercase letter “Х” in its vocabulary at all, so it needs 
six tokens to encode the word, where two tokens are used to 
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encapsulate just a single character. This way, GPT-3.5 would generate 
this single word longer than GPT-4o in Ukrainian due to inefficient 
tokenization (six feedforward passes vs. three ones).

Common language modeling metrics like perplexity, self-BLEU, 
ROUGE, and Distinct-N evaluate the model output and the quality of 
text generation. They do not evaluate the performance of the tokenizer 
used by the model. Their metrics focus on the alignment of the model’s 
outputs with human references. Such metrics do not reflect the 
efficiency of the tokenization process. Common language modeling 
metrics do not measure the quality of subword segmentation or its 
consistency across domains or word form changes. This way, 
traditional metrics listed earlier would not highlight the tokenizer 
impact specifically.

4 Experiment planning

We used the following approach to measure the efficiency of the 
listed tokenizers:

 1 Measure the number of English and Cyrillic tokens in each 
tokenizer vocabulary. The same can be done for other languages 
too (for example, count the number of tokens, which can 
represent Chinese text). We used the methodology described 
in the previous section to determine whether a token is English, 
Cyrillic, or does not fall into any of these categories.

 2 Measure CPT and BPT of those tokens to check the semantic 
richness of the tokens. The higher the metric value, the more 
meaningful the tokens are. This would work for phonetic and 
phonemic languages but can be replaced with a token per word 
for logographic ones.

 3 Check how many tokens are necessary to tokenize a basic 
lower-and uppercase alphabet and some special symbols widely 
used in the target language. In our case, we  added the 
apostrophe sign, which is a common element of Ukrainian 
words, to the test. This gives 66 characters in total, which 
we tokenize individually (33 lowercase letters and 32 uppercase 
without “ь” and apostrophes). It provides information on how 
many times a tokenizer falls back to a byte representation to 
describe a single letter. Such a representation would require 
LLM to execute two feedforward passes to generate just one 
letter, as each Ukrainian letter is encoded with 2 bytes in 
UTF-8. This is even more crucial for Asian or Arabic languages, 
which can use up to 4 bytes per character.

 4 Measure the performance of tokenizers on English and 
Ukrainian Brown corpus versions to determine the degree of 

bias of the tokenizer toward the English language in 
comparison to Ukrainian. Brown corpora were designed to 
be balanced between multiple genres, styles, and purposes of 
text. Brown can be  replaced with any general domain text 
corpus for the target language. We recorded the total token 
count, average number of tokens per text, and tokenization 
fertility. The obtained values will be  used as baselines for 
further experiments.

 5 The next step is to measure the same set of metrics on 
specialized corpora (laws, code documentation, and scientific 
articles in our case). We compare these values to the results 
obtained on the Brown corpus to find out how much the 
tokenization fertility drops for a narrower, domain-specific 
dataset. The step can be reproduced for any other domains and 
does not require a large number of texts. This can even 
be  extended to measuring the performance on specific 
regional dialects.

 6 Then, we  compare the efficiency between correct and 
incorrect spelling. We  measure a total token count and 
tokenization fertility for a version of text with mistakes and 
a corrected version. As it was stated earlier, the dataset was 
filtered specifically to leave only pairs with the same number 
of words in both versions, so no style corrections or 
significant rewrites should affect the experiment. Word 
fusions were not tested in the current experiments. 
Common chatbot systems have to deal with incorrect 
grammar or spelling constantly, so it is important to 
measure whether the tokenization fidelity would change 
significantly due to an error in the input. For our 
experiment, we used the Grammarly GEC dataset for the 
Ukrainian language.

 7 Another aspect we  wanted to check is the effect of 
transliteration on tokenization efficiency. Models have 
significantly more English tokens, so there is a possibility that 
those subwords can cover Ukrainian letter combinations too, 
which can at least save space in the context window, as 
generating a transliterated output would be too unstable and 
difficult to decode back into Cyrillic text (LLMs do not follow 
transliteration rules strictly during a generation). 
Transliteration is fast and does not require an additional model 
in the inference pipeline, so if it gives an improvement for 
tokenization, it would be worth exploring further. We used a 
standard transliteration proposed by the Ukrainian government 
and measured fertility on the same Ukrainian Brown corpus. 
This approach can be checked for any non-Latin language, as 
common tokenizers are heavily skewed toward subwords of 
Latin languages. We would like to investigate it further in terms 
of LLM performance for question-answering tasks or 
pretraining from scratch on transliterated corpora.

 8 Finally, we  measure the tokenization fertility for multiple 
grammar cases. The Ukrainian language has seven cases. 
We fetched 19,000 words to measure how much tokenization 
differs between the nominative case and others on average. The 
approach is universal and can be reproduced for any other 
morphologically rich language.

It is important to note that CPT and BPT would not be as useful for 
benchmarking of logographic languages like Chinese (languages where 

FIGURE 1

Example of tokenization of words in two languages.
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a character can represent an entire concept rather than a sound). 
Characters that are already informationally dense and can stand for a 
whole word in non-logographic ones. A low CPT value does not 
necessarily indicate lower tokenizer efficiency. It would be more useful 
to check the number of tokens per word for such languages to determine 
how often a tokenizer falls back to a byte representation.

These metrics would still be useful for phonemic languages such 
as English, Korean, Turkish, and others (ones where writing and letter 
combinations represent distinct sounds instead of a direct 
pronunciation). Longer tokens would still capture more meaning, but 
it would require a large vocabulary dedicated to this specific language 
to capture all variations.

5 Results

5.1 Vocabulary metrics

First, we measured the number of Latin and Cyrillic tokens in the 
listed tokenizers, as specified in the experiment planning. All 
characteristics of the models’ tokenizers are presented in Table  2 
(vocabulary size, the count of Latin (English) and Cyrillic tokens, and 
the mean and median CPT and BPT for both groups of tokens).

As can be seen in Table 2, English tokens consist of 4–5 characters 
on average, whereas Cyrillic tokens mostly contain 3–4 characters per 
token. Tokenization would be even harder for the Ukrainian language 
due to its morphological richness (many word forms for the same 
root, case markings, and multiple affixes can be added to a word to 
completely change its meaning). The best result in terms of the CPT 
metric for Ukrainian is obtained with Gemma/Gemini (five characters 
per token).

A significant increase in vocabulary sizes for models released in 
2024 has to be noted. For example, GPT-3.5/4 has only 435 Cyrillic 
tokens and a general vocabulary size of 100,235 tokens. GPT-4o and 
4o-mini have increased vocabulary by 2 times (200,000 tokens) and 
have 10 times more Cyrillic tokens (4,660). Models like Gemma and 
GPT-4o achieve the best results by CPT specifically due to their large 
vocabularies, as they can cover more subwords and their combinations. 
This allows for more meaningful tokenization of non-Latin texts, 
rather than segmenting them into small chunks without rich 
semantic value.

The same cannot be said about Llama models. Llama 3 achieved 
a vocabulary 4 times larger than Llama 2, but the number of Cyrillic 
tokens and CPT decreased for it.

5.2 Alphabet knowledge test

As stated in Section 4 (Experiment planning), the first step is to 
measure the tokenization of the basic alphabet. In this experiment, 
we measure the number of tokens for each letter of the target language 
alphabet (Ukrainian for the current research). This test detects 
whether all letters are represented in the tokenizer’s vocabulary and 
checks if the use of some rare symbols leads to the byte fallback 
(representing a character using byte Unicode encoding). The number 
of tokens would be  the same as the number of bytes necessary to 
represent the character in the Unicode table so that it can take up to 4 
tokens per letter in the worst case.

Table 3 shows the result of the alphabet knowledge experiment. 
Measurements shown in the table indicate that Phi 2 and vanilla 
GPT-2 perform the worst in Ukrainian alphabet tokenization, utilizing 
bytes for 74% of Ukrainian characters. Models like GPT-4o and Llama 

TABLE 2 Characteristics of the chosen tokenizers.

Model Vocabulary 
Size

English Cyrillic

Token 
count

Mean 
CPT

Median 
CPT

Mean 
BPT

Median 
BPT

Token 
count

Mean 
CPT

Median 
CPT

Mean 
BPT

Median 
BPT

GPT-2 50,257 14,829 4.81 4 4.81 4 16 1.00 1 2.00 2

Ukrainian GPT-2 50,304 1,720 3.38 3 3.38 3 11,248 4.68 4 9.36 8

Llama 2 32,000 24,084 5.65 5 6.81 7 2,768 4.11 4 8.71 8

Llama 3.1 128,262 28,158 5.49 5 5.49 5 2,558 3.61 3 7.21 6

Mistral 7B/Large/ 

Mixtral

32,768 25,019 5.76 5 6.92 7 1,625 3.58 3 7.59 7

Mistral Nemo 131,072 22,447 4.92 5 4.92 5 2,735 3.56 3 7.12 6

Gemma/Gemma 2/

Gemini

256,000 168,995 6.64 6 7.79 8 12,009 5.20 5 10.94 10

Qwen 1.5/2 VL 151,657 27,376 5.52 5 5.52 5 1,791 3.48 3 6.96 6

Phi 2 50,295 14,829 4.81 4 4.81 4 16 1.00 1 2.00 2

Phi 3.5 32,011 24,084 5.65 5 6.81 7 2,768 4.11 4 8.71 8

Mamba 50,277 16,431 4.88 4 4.88 4 259 2.23 2 4.46 4

Claude 3 

(approximated)

65,000 27,102 5.51 5 5.51 5 293 2.51 2 5.01 4

GPT-3.5/4 100,263 27,329 5.52 5 5.52 5 435 2.87 3 5.73 6

GPT-4o/4o-mini 200,000 37,839 5.11 5 5.11 5 4,660 3.70 3 7.40 6
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3.1 contain all Ukrainian symbols in their vocabularies except for the 
capital “ґ.” The best results are obtained by the Ukrainian GPT, Qwen, 
and the Gemma/Gemini family, as they do not use bytes at all to 
tokenize Ukrainian text. So, Gemini gets the best result among closed 
models, and Gemma and Qwen are the only open-source large models 
(2B+) that cover all symbols.

5.3 Tokenization fertility measurement in 
the general domain

The next step is to measure all tokenizers with the English and 
Ukrainian Brown corpora to find out how well they segment general 
domain texts in both languages (Table 4).

Vanilla GPT-2 and Phi 2 perform the worst in terms of Ukrainian 
tokenization, rendering them unfit for Ukrainian language modeling 
(with over 6 + tokens per word). This poor performance was 
consistently observed across other experiments as well, as reflected in 
the measurement tables. Therefore, we will focus on other models in 
subsequent sections. As expected, GPT-2, which was specifically 
trained for the Ukrainian language, achieves the best fertility score 
(just 1.30). However, this model lacks multilingual capabilities, as its 
performance drops significantly on the English corpus (1.96 compared 
to 1.22—the worst case among other models). Despite not using bytes 
during Ukrainian text tokenization, the Qwen tokenizer yields one of 
the poorest results among open-source models, with a fertility value 
of 2.89. In contrast, Llama 3.1 delivers the highest tokenization quality 
for the Ukrainian Brown corpus, with Gemma/Gemini following 
closely behind.

Llama 3.1 outperforms 2.0, but as was mentioned earlier, the CPT 
and count of Cyrillic tokens are lower for the third version. It may 
indicate that the Llama 3 model family tokenizer was trained with 
more Ukrainian texts than other languages that use a Cyrillic alphabet. 
It is impossible to prove without detailed training dataset research 
(which is not published publicly), but we can only suppose that this is 
the reason for overperformance in comparison to other models. This 

is only a speculative assumption, as the training data of this tokenizer 
is not open-sourced, and we  can only measure its efficiency and 
approximate number of tokens, which can be  used to segment 
Ukrainian texts.

We can see the same behavior with Ukrainian GPT-2, which has 
50,304 tokens in vocabulary but outperforms every other tokenizer by 
a fertility value. It was trained specifically with Ukrainian as a primary 
language, and the vocabulary contains mostly tokens to segment 
Ukrainian text. So, if Llama 3.1 had mainly Ukrainian texts to 
represent the Cyrillic group during tokenizer training, it would 
explain why it gives better results than other foundational models’ 
tokenizers.

It is worth noting that closed models like Claude and GPT-3.5/4 
look significantly less efficient for the Ukrainian corpus than other 
models (even smaller open-source ones), as they tend to use 
3 + tokens per word even for general texts. Furthermore, there is a 
clear improvement in terms of Ukrainian tokenizer fertility between 
model generations, as all of them get much higher tokenization 
efficiency with new versions. It is primarily achieved with the 
increased vocabulary size (usually around +100,000 tokens in 
newer versions), which can be seen in Table 2. However, Phi 3.5 is 
the only model that has a smaller vocabulary than its predecessor 
but gets better benchmark results. This model is closer to previous 
Mistral and Llama versions, both in terms of vocabulary size and 
fertility, so we  can conclude that while Phi 2 was mostly 
monolingual, Phi 3 is trained on a more diverse dataset. Its 
tokenizer is on the same level as earlier models by Meta and Mistral 
for Ukrainian tasks.

5.4 Tokenization of domain-specific texts 
for fertility measurement

The next step is to evaluate these models using domain-specific 
texts: laws, scientific articles, abstracts, and code documentation. 
We used the Brown corpora measurements as a baseline tokenization 

TABLE 3 Ukrainian alphabet knowledge check.

Model Number of known characters Number of unknown characters Tokenizer fertility

GPT-2 17 49 1.74

Ukrainian GPT-2 66 0 1

Llama 2 61 5 1.08

Llama 3.1 65 1 1.02

Mistral 7B/Large/Mixtral 59 7 1.11

Mistral Nemo 62 4 1.07

Gemma/Gemma 2/Gemini 66 0 1

Qwen 1.5/2 VL 66 0 1

Phi 2 17 49 1.74

Phi 3.5 61 5 1.08

Mamba 49 17 1.26

Claude 3 (approximated) 55 11 1.17

GPT-3.5/4 53 13 1.20

GPT-4o/4o-mini 65 1 1.02

Models with the most Ukrainian alphabet in the tokenization marked bold.
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fertility value to assess the level of performance degradation (how 
much the tokenization fertility would increase) on more narrowly 
specialized tasks (Table 5).

Results show that even though there is a performance degradation 
for English texts, it is not as significant as for Ukrainian ones. The 
biggest fertility score deterioration happens with code documentation 
in the English language, which can be explained by the structure and 
style of the code inclusions (more line breaks, formatting, and 
tabulation). For laws and abstracts, performance changes by 0.14 at 
worst (Llama 2 Brown vs. scientific), so domain-specific words and 
phrases can be considered less influential for the English language due 
to vocabulary size, which covers lots of possible subwords.

However, the domain significantly influences the Ukrainian 
language performance, as most models get worse by almost half a 
token on average for laws and scientific texts. Closed models such as 
GPT-3.5/4 and Claude can reach up to 4.4 tokens per word when they 
are tasked with narrow topics. The least performance degradation is 
observed for Llama 3.1 with Gemma/Gemini and GPT 4o/4o-mini, 
which can be attributed to their significantly larger vocabularies.

The code documentation earns better fertility scores compared to 
general texts or other domains because LLMs are pre-trained for 
coding tasks and receive numerous code samples during both the 
tokenizer tuning and pretraining stages. The results are still 
significantly worse than English ones (the difference can be as high as 
one token per word). However, large tokenizers outperform a smaller 
monolingual tokenizer of Ukrainian GPT-2. It can be explained by the 
training set composition and quality of data in terms of diversity and 
coverage of different domains and tasks, including programming. 
Moreover, this tokenizer is two times smaller than the vocabulary of 
Llama 3.1, four times smaller than GPT-4o’s vocabulary, and five times 
smaller than Gemini’s. Such a size allows those models to keep a 
separate set of tokens for coding tasks specifically (such as tabulations, 
space sequences, operator combinations, and other specific sets of 

characters). They can use their high number of English tokens to 
encode variable, function, class, and method names better than the 
monolingual tokenizer for a low-resource language.

The word length increases in specialized corpora for both English 
and Ukrainian, as shown in Table 1. However, English vocabulary has 
more subwords to cover these words without oversegmentation (splitting 
words into letter or byte sequences). A similar behavior can be seen for 
models with larger Ukrainian vocabularies. Tokenizers with smaller 
vocabularies are significantly more affected as their tokenization fertility 
rates increase by one or more tokens on average. This suggests that as 
long as BPE-like tokenizers are the standard solution for language 
models, the increase of their vocabulary size is the only way to keep them 
consistent across multilingual and multidomain tasks. The only other 
viable solution for the BPE approach is the creation of a monolingual 
tokenizer and model (like Ukrainian GPT-2), which does not have to 
share vocabulary between multiple languages. More space would be used 
for less frequent subwords, allowing for better coverage of narrow topics, 
styles, and language subdomains.

5.5 Influence of mistakes on tokenization 
fertility

The next analysis examines how mistakes impact tokenization 
quality. Table 6 provides the full results for this experiment (including 
token counts for both correct and incorrect text versions and their 
tokenization fertility values).

The difference in tokenization is insignificant, and changes in fertility 
score become visible only at the third sign after the comma, so the 
influence of incorrect spelling or word forms can be considered low for 
all listed models. The tokenization process is deterministic, so it is not 
influenced by random state or any other factor except for the tokenizer 
itself and the input text. However, using correct variants yields slightly 

TABLE 4 Brown corpora tokenization fertility measurements.

Model English Ukrainian

Total 
number of 

tokens

Average 
number of 

tokens per text

Tokenizer 
fertility

Total number 
of tokens

Average 
number of 

tokens per text

Tokenizer 
fertility

GPT-2 1,267,946 84,529.73 1.08 8,667,064 6,103.57 6.31

Ukrainian GPT-2 2,294,904 152,993.60 1.96 1,779,807 1253.39 1.30

Llama 2 1,431,009 95,400.60 1.22 3,152,299 2,219.93 2.29

Llama 3.1 1,268,917 84,594.47 1.08 2,578,473 1,815.83 1.88

Mistral 7B/Large/Mixtral 1,382,732 92,182.13 1.18 3,404,781 2,397.73 2.48

Mistral Nemo 1,287,915 85,861.00 1.10 2,808,059 1,977.51 2.04

Gemma/Gemma 2/Gemini 1,256,270 83,751.33 1.07 2,640,770 1,859.70 1.92

Qwen 1.5/2 VL 1,279,865 85,324.33 1.09 3,882,103 2,733.88 2.83

Phi 2 1,267,946 84,529.73 1.08 8,666,816 6,103.39 6.31

Phi 3.5 1,431,009 95,400.60 1.22 3,152,299 2,219.93 2.29

Mamba 1,279,625 85,308.33 1.09 4,606,862 3,244.27 3.35

Claude 3 (approximated) 1,285,667 85,711.13 1.10 4,742,885 3,340.06 3.45

GPT-3.5/4 1,269,116 84,607.73 1.08 4,560,959 3,211.94 3.32

GPT-4o/4o-mini 1,256,484 83,765.60 1.07 2,719,430 1,915.09 1.98

Models with the least amount of tokenization per Ukrainian text marked bold.
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better results, but this improvement is too small to affect the cost of 
inference or drastically reduce free slots in the context window.

We plan to extend this experiment with more benchmark texts in 
our further research (both Ukrainian and other languages) to measure 
the effect of grammatical and spelling errors on the tokenization 
fertility of current foundation language models. Moreover, at this 
stage, we did not take word fusions (lack of space) into account, so this 
should also be checked in further experiments. An additional cause 
underlying the low influence of mistakes is the low Levenshtein 
distance between correct and incorrect versions of texts. Minimal 
value is 1, maximum is 107, and median is 9. 90% of versions have a 
distance under 27 characters. The dataset needs to be expanded to 

include more error types and additional samples in future research to 
achieve more accurate results.

5.6 Tokenization fertility measurement with 
Latin transliteration

Transliteration preprocessing was measured, and the results are 
presented in Table 7. It improves the tokenization fertility only for 
those models that previously had fertility scores higher than 2.5. 
Newer models like Llama 3.1, GPT-4o, 4o-mini, Gemma, and Gemini 
with large vocabularies tend to perform better with raw Ukrainian text 

TABLE 5 Narrowly specialized corpora tokenization fertility measurements.

Model English Ukrainian

Brown 
corpus 
fertility

Laws 
fertility

Scientific 
fertility

Code 
documentation 

fertility

Brown 
corpus 
fertility

Laws 
fertility

Scientific 
fertility

Code 
documentation 

fertility

GPT-2 1.08 1.06 1.17 1.54 6.31 8.75 7.99 4.65

Ukrainian GPT-2 1.96 2.07 2.17 2.16 1.30 1.17 1.45 1.79

Llama 2 1.22 1.26 1.36 1.51 2.29 2.76 2.71 2.14

Llama 3.1 1.08 1.10 1.15 1.25 1.88 2.00 2.23 1.69

Mistral 7B/Large/ Mixtral 1.18 1.24 1.31 1.53 2.48 3.00 2.94 2.28

Mistral Nemo 1.10 1.16 1.14 1.28 2.04 2.45 2.45 1.81

Gemma/Gemma 2/Gemini 1.07 1.12 1.12 1.35 1.92 2.28 2.23 1.80

Qwen 1.5/2 VL 1.09 1.14 1.17 1.26 2.83 3.64 3.40 2.29

Phi 2 1.08 1.06 1.17 1.50 6.31 8.74 7.99 4.62

Phi 3.5 1.22 1.26 1.36 1.51 2.29 2.76 2.71 2.14

Mamba 1.09 1.07 1.14 1.44 3.35 4.26 4.07 2.78

Claude 3 (approximated) 1.10 1.07 1.16 1.39 3.45 4.46 4.17 2.74

GPT-3.5/4 1.08 1.10 1.15 1.25 3.32 4.40 4.02 2.56

GPT-4o/4o-mini 1.07 1.10 1.14 1.25 1.98 2.29 2.35 1.74

Model with minimal tokenization fertility marked bold.

TABLE 6 Influence of Ukrainian grammatical errors on tokenization fertility.

Model Token count for 
incorrect versions

Fertility for incorrect 
versions

Token count for 
correct versions

Fertility for correct 
versions

GPT-2 430,029 5.796 430,301 5.799

Ukrainian GPT-2 96,108 1.295 95,948 1.293

Llama 2 161,522 2.177 161,441 2.176

Llama 3.1 133,584 1.800 133,485 1.799

Mistral 7B/Large/ Mixtral 172,183 2.321 172,113 2.320

Mistral Nemo 143,577 1.935 143,480 1.934

Gemma/Gemma 2/Gemini 134,580 1.814 134,521 1.813

Qwen 1.5/2 VL 193,002 2.601 193,114 2.603

Phi 2 429,924 5.794 430,223 5.798

Phi 3.5 161,522 2.177 161,441 2.176

Mamba 228,140 3.075 228,295 3.077

Claude 3 (approximated) 236,612 3.189 236,836 3.192

GPT-3.5/4 225,144 3.034 225,317 3.037

GPT-4o/4o-mini 139,026 1.874 138,978 1.873
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without any transformation. With a growth in vocabulary size and 
improvements in tokenizer training sets (increased quantity and 
quality of multilingual samples), the transliteration approach becomes 
inefficient and unnecessary.

However, it allows us to decrease the fertility rate of the vanilla 
GPT-2 and Phi 2 down to values obtained from models like Llama 2 
on raw Ukrainian text. The result is even better than raw Ukrainian 
tokenization by models like GPT-3.5/4 and Claude 3. They would still 
require significant fine-tuning for transliterated Ukrainian to 
understand and use the language, but tokenizers and initial weights of 
models can be reused.

We plan to research this approach further in our future studies for 
smaller models. Transliteration improved tokenization fertility only in 
models that already had large vocabularies (100,000 + tokens), so it 
would be more reasonable to apply it for small models trained from 
scratch, as it decreases the number of token embeddings to teach.

5.7 Grammar case tokenization

The final experiment was to measure the change in tokenization 
fertility as the grammatical case of input words is changed. 
Morphologically rich languages like Ukrainian are characterized by 
grammar case matching and different forms for quantity, tense, or 
gender. Table 8 presents the results of the grammar case tokenization 
test, measuring tokenization fertility for each of the 7 cases and the 
mean difference from the nominative case (the infinitive of a word 
in Ukrainian).

Expectedly, the best result is achieved by a mostly monolingual 
Ukrainian GPT-2, as the mean difference between all cases and the 
nominative one is just 0.266. Mistral Nemo achieves the best result 
among all current multilingual LLMs, with a 0.299 difference. It is 
closely followed by both Llama models, Phi 3.5, and GPT-4o/4o-mini. 
It is worth noting that all models’ tokenization performance 
deteriorates with changing word forms, which again proves a higher 
difficulty with adapting subword tokenization for morphologically 

rich languages. It is not a problem of a specific tokenizer or model, as 
this disadvantage is a property of subword and BPE-like tokenizers 
in general.

6 Discussion

In the scope of this study, we  presented a detailed and 
comprehensive analysis of the current state-of-the-art large language 
models’ tokenization performance for the Ukrainian language and 
compared it to English.

Results prove that all listed models deteriorate in tokenization 
performance on Ukrainian texts compared to their English 
counterparts. For the most recent models, this difference can reach up 
to 2.5 additional tokens per word. On average, the majority of models 
require one additional token per word to encode semantically 
equivalent content in Ukrainian. This observation is drawn from 
tokenization measurements conducted on both a general-domain 
corpus (the Brown corpus) and specialized corpora, including legal 
texts, scientific abstracts, and code documentation.

This increase in the number of tokens per word directly affects 
the speed of text generation, as the model would need at least an 
additional feedforward pass to generate a word on average. It makes 
not only the inference during a causal language modeling task (text 
generation) longer but also increases the necessary number of 
computational resources to create a single text and increases the cost 
for model users (in case of API usage). That is why the number of 
tokens per word (tokenization fertility) was used as a primary metric 
during our research. It enables the assessment of a generative 
language model for use in a specific domain or language prior to text 
generation and benchmarking on semantic tasks. The model can 
be inefficient from the start due to a significantly biased tokenizer, 
which makes it slower and more expensive for the user’s 
target language.

Gemini models seem to achieve the best tokenization fertility 
among all closed ones, likely due to their largest vocabulary size. It is 

TABLE 7 Latin transliteration effect on tokenization fertility for the Ukrainian language.

Model English Brown corpus 
fertility

Ukrainian Cyrillic Brown 
corpus fertility

Ukrainian Latin Brown 
corpus fertility

GPT-2 1.08 6.31 2.74

Ukrainian GPT-2 1.96 1.30 3.16

Llama 2 1.22 2.29 2.65

Llama 3.1 1.08 1.88 2.40

Mistral 7B/Large/Mixtral 1.18 2.48 2.72

Mistral Nemo 1.10 2.04 2.36

Gemma/Gemma 2/Gemini 1.07 1.92 2.28

Qwen 1.5/2 VL 1.09 2.83 2.50

Phi 2 1.08 6.31 2.74

Phi 3.5 1.22 2.29 2.65

Mamba 1.09 3.35 2.63

Claude 3 (approximated) 1.10 3.45 2.63

GPT-3.5/4 1.08 3.32 2.49

GPT-4o/4o-mini 1.07 1.98 2.26
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closely followed by GPT-4o and 4o-mini, which show drastic 
improvements compared to GPT-3.5 and 4. Claude gave the worst 
results among all closed models, but we used an approximated version 
of its tokenizer, so we would like to remeasure it if Anthropic open-
sources their tokenizer down the line.

Llama 3.1 has the best tokenization efficiency among open-source 
models, even though it has fewer Cyrillic tokens in its vocabulary than 
Gemma or even Llama 2. It is tied with Gemma/Gemma 2, but Llama 
3.1 has higher benchmark scores, so we recommend it as currently the 
best open model for Ukrainian NLP tasks.

While Gemma/Gemini has the highest Cyrillic CPT and the 
highest number of Cyrillic tokens, it still loses to Llama 3.1 in terms 
of tokenization fertility. This can be explained by the large number of 
Russian tokens in Gemma’s vocabulary, which makes the Cyrillic 
token count higher, but they do not boost performance for the 
Ukrainian language. Those tokens do not contain any symbols specific 
to the Russian alphabet, but these letter combinations are not common 
in the Ukrainian language.

Mamba, the only non-attention model among those tested, 
delivers tokenization performance close to GPT-3.5/4, but in theory, 
its inference cost should be  lower, making such tokenization 
potentially less harmful for Ukrainian modeling tasks compared to 
attention-based counterparts.

Grammatical errors turned out to be insignificant, even in the 
Ukrainian language. Transliteration preprocessing has become 
obsolete with the expansion of vocabularies and only worsens 
performance in the latest models. All models show noticeable 
deterioration when handling word grammatical case change, which 
again proves the ineffectiveness of subword tokenization for 
morphologically rich languages.

Finally, we  have shown that tasks that require the usage or 
generation of narrow topic texts would decrease the effectiveness of 
tokenization even more for Ukrainian. However, it does not affect 

English as much. It can be explained by the fact that English is the 
primary language of their vocabulary and contains a large enough 
set of tokens to cover those rare words and forms. A smaller 
monolingual tokenizer outperforms large multilingual tokenizers 
even more for narrow domains and topics. However, it is expected 
to perform worse in domains that may use a mix of different 
languages, like technical documentation or coding tutorials.

Results show that tokenizers with a large vocabulary size (100,000 
or more) tend to be less affected by the domain or language of the task. 
Thus, as long as BPE-like subword tokenization stays a standard 
solution for language modeling preprocessing, larger vocabularies are 
the only way to make the tokenization more consistent across 
languages and domains. The model would still have a bias toward the 
primary language, but the increase in tokenization fertility would not 
be as prominent (like with GPT-3.5, for which the number of tokens 
per word would grow 3 times for Ukrainian in comparison to English).

We plan to research embedding decoding approaches further to 
explore whether sentence embeddings can replace raw text, providing 
additional context to LLMs and eliminating the need for constant, 
inefficient tokenization in multilingual environments, particularly for 
the Ukrainian language.

Moreover, it was mentioned earlier that a transliteration can be an 
interesting way to continue this research for optimization of the 
parameter count of the model. Instead of training a large tokenizer and 
corresponding token embeddings, it can be more optimal for small 
models to be trained with a Latin-transliterated corpus and a small 
vocabulary, which would consist only of Latin-like/English subwords.

Another direction for further improvement and development of 
this study is to dive deeper into how mistakes influence tokenization 
efficiency by researching word fusions and stylistic or structural 
errors. The approach can be scaled to compare local dialects, checking 
how efficiently a tokenizer segments a dialect version of the language, 
rather than the more commonly used one.

TABLE 8 Tokenization fertility by grammatical cases.

Model Nominative Genitive Dative Accusative Instrumental Locative Vocative Mean 
difference 

from 
nominative

GPT-2 12.24 12.63 13.85 13.26 12.41 13.51 12.51 0.787

Ukrainian GPT-2 3.46 3.57 3.85 3.79 3.53 3.86 3.74 0.266

Llama 2 4.68 4.76 5.27 5.13 4.74 5.16 4.83 0.304

Llama 3.1 4.46 4.59 4.98 4.88 4.55 4.90 4.71 0.304

Mistral 7B/Large/Mixtral 4.95 5.01 5.57 5.48 4.99 5.54 5.07 0.327

Mistral Nemo 4.39 4.51 4.95 4.86 4.46 4.82 4.57 0.299

Gemma/Gemma 2/Gemini 4.01 4.12 4.64 4.47 4.11 4.55 4.20 0.339

Qwen 1.5/2 VL 5.39 5.54 6.04 6.05 5.44 6.34 5.55 0.438

Phi 2 12.24 12.63 13.85 13.26 12.41 13.51 12.51 0.787

Phi 3.5 4.68 4.76 5.27 5.13 4.74 5.16 4.83 0.304

Mamba 6.53 6.64 7.30 7.20 6.51 7.39 6.71 0.433

Claude 3 (approximated) 6.64 6.65 7.25 7.27 6.54 7.36 6.81 0.373

GPT-3.5/4 6.51 6.65 7.35 7.24 6.48 7.47 6.80 0.495

GPT-4o/4o-mini 4.34 4.43 4.91 4.82 4.37 4.80 4.57 0.310

The best models for Ukrainian text marked bold.
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The proposed framework can be  reused for other languages, 
domains, or dialects and allows for comparing the efficiency of 
tokenization for the target language and topic to the primary language 
of the model and its tokenizer. This methodology should facilitate the 
selection of models for tasks, enabling evaluation not only by their 
performance on this specific task but also by the number of tokens per 
word. A high token-to-word ratio can result in longer and more 
expensive text generation in causal language modeling tasks and make 
generalization more difficult in natural language understanding due 
to poor segmentation quality.

7 Limitations

The main limitation of our approach is that it evaluates only the 
efficiency of word segmentation into tokens; it does not assess how 
well a model understands or uses language or certain domain-specific 
information in terms of grammar, knowledge, and style. Therefore, 
this method should be used only as one component in benchmarking 
a model for a specific language or domain. It can also be applied to 
evaluate the quality of a tokenizer’s vocabulary before training a model 
for multilingual use cases.

Another limitation applies to proprietary models developed 
by AI laboratories that do not open-source their tokenizers. 
Although tokenization fertility can still be  measured using 
APIs—by passing test text as an input prompt and observing the 
number of input tokens—this approach increases testing costs 
and requires customizing the benchmarking pipeline for 
such models.
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