
Frontiers in Artificial Intelligence 01 frontiersin.org

Tokenization efficiency of current
foundational large language
models for the Ukrainian
language
Daniil Maksymenko 1 and Oleksii Turuta 2*
1 Department of Artificial Intelligence, Kharkiv National University of Radio Electronics, Kharkiv,
Ukraine, 2 Computer Science and Artificial Intelligence Institution, V. N. Karazin Kharkiv National
University, Kharkiv, Ukraine

Foundational large language models (LLMs) are deployed in multilingual environments
across a range of general and narrow task domains. These models generate text
token by token, making them slower and more computationally expensive for
low-resource languages that are underrepresented in the tokenizer vocabulary. It
also makes their usage more costly in such cases, as pricing usually depends on
the number of input and output tokens. This study compares multiple tokenizers
of pretrained LLMs for the Ukrainian language. It also provides tokenization fertility
measurements for current state-of-the-art (SOTA) models, both in terms of general-
purpose language and specific domains, as well as results of experiments with a
transliteration approach to make tokenization more efficient without information
loss. The results provide insights into the current models’ disadvantages and
possible problems in terms of Ukrainian language modeling.

KEYWORDS

tokenization, large language model, corpus, domain, low-resource language

1 Introduction

Tokenizers are an essential part of modern language models, as they both transform text
data into a numerical format and split the text into smaller segments to reduce the
dimensionality of inputs. Due to the inclusion of multilingual samples in pretraining datasets,
recent large language models (LLMs) can execute tasks not only in their primary language (the
dominant language of the training dataset in terms of the quantity of samples to represent this
specific language) but also in others, even if those were not represented in large quantities
during tuning (Erdem et al., 2022). For example, the Llama 3 training report states that 95%
of the training dataset consisted of English and code, while only 5% represented other
languages (Dubey et al., 2024). Nevertheless, this family of models can understand and
generate text in other languages, such as Ukrainian. However, tokenizers for such models are
not designed to process multilingual inputs and outputs equitably across all languages,
especially low-resource ones (Ahia et al., 2023). At the same time, the quality and scope of the
tokenizer vocabulary directly affect the accuracy and efficiency of the model built on top of it
(Padalko et al., 2023).

The most common current approaches are Byte Pair Encoding (BPE) and SentencePiece-
like (Gallé, 2019; Kudo and Richardson, 2018) tokenizers. Unlike older versions, they have
fallback mechanisms in case of unknown tokens, so each word or even symbol would still
receive a token set (whether it is a subword, character, or byte sequence). Thus, tokenizers
should work even for low-resource languages, which do not get many subwords allocated in
the vocabulary. However, it also leads to longer tokenized sequences (Limisiewicz et al., 2023).
It was demonstrated earlier that the efficiency of LLM tokenization differs for each language,

OPEN ACCESS

EDITED BY

Michael Flor,
Educational Testing Service, United States

REVIEWED BY

Emre Emekli,
Eskişehir Osmangazi University, Türkiye
Prasan Yapa,
Kyoto University of Advanced Science (KUAS),
Japan
Oleksii Ignatenko,
Ukrainian Catholic University, Ukraine

*CORRESPONDENCE

Oleksii Turuta
 oleksii.turuta@gmail.com

RECEIVED 05 December 2024
ACCEPTED 29 July 2025
PUBLISHED 13 August 2025

CITATION

Maksymenko D and Turuta O (2025)
Tokenization efficiency of current
foundational large language models for the
Ukrainian language.
Front. Artif. Intell. 8:1538165.
doi: 10.3389/frai.2025.1538165

COPYRIGHT

© 2025 Maksymenko and Turuta. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 13 August 2025
DOI 10.3389/frai.2025.1538165

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1538165&domain=pdf&date_stamp=2025-08-13
https://www.frontiersin.org/articles/10.3389/frai.2025.1538165/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1538165/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1538165/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1538165/full
mailto:oleksii.turuta@gmail.com
https://doi.org/10.3389/frai.2025.1538165
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1538165

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 02 frontiersin.org

so they do not use the same number of tokens for the same information
sample written in different languages (Petrov et al., 2023). Thus, the
cost and speed of 100-character text generation in a primary and
non-primary language of a tokenizer may differ considerably.

The majority of open-source or proprietary language models were
trained primarily for English, so their tokenizers would segment
English text better due to a larger number of tokens dedicated to
English words (the example of Llama 3 was already mentioned earlier
in the introduction). This can give the impression that tokenization is
a solved problem for English, when in fact BPE tokenizers tend to have
more tokens in the most used language of the dataset used to train
them. If the training dataset is skewed toward Ukrainian, Georgian,
or any other language, it would segment them better. The problem has
been partially solved by extending the vocabulary size and training
additional token embeddings.

Even switching between multiple domains in the same language
can deteriorate the performance of the tokenizer as it has to split fewer
common words, which are not covered as well as common ones in the
vocabulary (Sachidananda et al., 2021). For example, the number of
tokens to encode a medical text and an online blog on cinema may
be significantly different, even if they have the same number of
characters. Models and their tokenizers get biased toward the most
frequent expressions they get in training datasets, so the performance
for the same task (question answering, for example) can change due
to the style and topic of the text. This would make the usage of
foundational models even less efficient for domain-specific tasks in
low-resource languages.

Tokenization efficiency can be defined as the number of tokens a
tokenizer uses to represent the input text while preserving the integrity
of the original text. Efficient tokenization reduces the computational
cost of the causal language modeling task by minimizing the length of
the token sequence without information loss or misinterpretation.
Such tokenizers encode text in linguistically meaningful units and
rarely turn to a character or byte fallback mechanism. They should
be resistant to agglutination (addition of affixes should not lead to the
tokenizer falling back to single characters or bytes) and other
morphological transformations such as inflection (expression of tense,
number, and gender), derivation (addition of an affix, which changes
the grammatical category of a word), and others. As storing all
possible word variations in the tokenizer vocabulary would
be impossible due to the size of such a vocabulary and the constant
change of natural spoken language, tokenizers should decompose
forms into reusable morphemes. For example, the word “unhappy”
should be tokenized as “un” and “happy,” which would ease the
generalization of a language model as it learns a representation for
frequent parts of a word instead of fragmented segments without a
semantic meaning.

While SentencePiece and BPE tokenizers are trained to search for
frequent character co-occurrences to determine the token content,
they still encode some morphemes as separate tokens without mixing
them or splitting them into sets of frequent character sequences.
However, they are still morphologically unaware, which leads to token
boundaries that do not correspond to stems or morphemes.

Such encoding makes natural language understanding (NLU) task
learning more difficult and creates even more issues for languages with
high morphological flexibility (Batsuren et al., 2024).

Morphological alignment of tokenizers is still an open area of
research. Some experiments lead to conclusions that models based

on BPE tokenizers achieve the same performance for NLU tasks as
morphologically aligned tokenizers (Arnett et al., 2024), while
others suggest the usage of tokenization schemes such as the
unigram language model (ULM) (Kudo, 2018; Peters and
Martins, 2022).

In the case of multilingual models, a tokenizer also requires
consistency between all supported languages to be called efficient. This
means it has to use a similar number of tokens to encode semantically
identical texts in different languages. Tokenization efficiency directly
influences the cost of inference, as users who request a generation in
a non-primary language of the model would have to wait longer for
the generation to complete due to more feedforward passes. LLMs are
autoregressive decoders, so they generate one token at a time by using
both input tokens and output tokens inferred earlier (Yenduri et al.,
2023). Generating a text in a non-primary language requires more
computational resources if the tokenization efficiency varies across
supported languages, with some languages being segmented more
effectively than others. Moreover, the current LLM price model
requires paying for the number of both input and output tokens,
which would make generation in any non-primary language more
expensive for the end user. Thus, the cost of inference in this paper
refers to the cost of executing the causal language modeling task (text
generation), encompassing speed, context window usage,
computational resources, and API call pricing.

This work proposes a way to benchmark tokenizers for a specific
language, focusing on Ukrainian. We compare and analyze the current
LLMs’ tokenization efficiency by conducting several experiments to
check the efficiency for both general and domain-specific texts.
We investigate the influence of grammatical and spelling errors on
Ukrainian tokenization, explore the use of transliteration to improve
results, and assess the effect of word form changes. Ukrainian
tokenization is compared to the English language to determine the
differences in their performance in terms of possible inference cost
and context window filling. The approach we test for Ukrainian can
be reproduced with a small amount of data for any other language.
Even though the increased ratio of tokens per word is already a known
conclusion for the Ukrainian language, we aim to provide a framework
to benchmark current SOTA LLMs and future models not only in
terms of their task performance but also in terms of their tokenization
efficiency, as it directly affects the computational budget, speed of
generation and API costs. We provide an in-depth check for language
in general and specific domain corpora and examine the effect of
mistakes in the text. The approach can be scaled to more domains,
languages, or even dialects to ease the choice of the model for
downstream tasks in low-resource or tokenizer secondary languages.

2 Related research

Tokenization efficiency was deeply researched for multilingual
environments in general. Some papers focus on specific languages
such as Thai and Hungarian (Csaki et al., 2023), Portuguese (Larcher
et al., 2023), or French (Arnett et al., 2024), or just explore efficient
ways to extend tokenizer vocabularies and embedding layers with new
samples (Marchisio et al., 2023). However, even though the number
of datasets and models skyrockets for the Ukrainian language
(Saichyshyna et al., 2023), there is no in-depth research on the
tokenization efficiency of current state-of-the-art language models for

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 03 frontiersin.org

this language or a framework to benchmark the efficiency of
tokenization in depth.

The difference in tokenization efficiency between different
languages is a well-represented problem at this point (Petrov et al.,
2023). The research presented in the paper “Language Model
Tokenizers Introduce Unfairness Between Languages” provides a
general comparison of multiple models like Llama, GPT-2 (Generative
Pretrained Transformer), and RoBERTa (Robustly optimized
Bidirectional Encoder Representations) in a set of diverse languages
(Latin-based ones, the Germanic group, Cyrillic, Arabic, and multiple
Asian and African groups).

It uses a metric called (Equations 1) to evaluate the performance
of listed models in all those languages. It compares the computation
required for training or inference, highlighting how the choice of
tokenization schema differs from the optimal one.

−
= estimated optimal

optimal

FLOPs FLOPs
tokenizer premiums

FLOPs
(1)

Another way it can be calculated is by comparing target metric
performance for the optimal and estimated (Equations 2), a difference
in validation loss value between multiple models trained with different
tokenization schemas.

 estimated optimal

optimal

performance performance
tokenizer premiums

performance
−

=

(2)

However, this metric would require an optimal baseline and
training of multiple models based on different tokenizers, which can
be time-consuming and computationally intensive. Additionally, some
models and labs do not publish their tokenizers’ vocabularies and
merge rules, making it impossible to reproduce their experiments
(e.g., the Claude series). Such an approach would be efficient to
compare small-scale open-source models, but it would be impossible
to compare and evaluate models with a high parameter count and
large vocabulary sizes due to the amount of data and computing
necessary to run such experiments.

Equations 3 to compare the segmentation quality of tokenizers is
tokenization fertility (Rust et al., 2021; Csaki et al., 2023). This metric
shows the mean number of tokens necessary to encode a single word
in a test dataset. This allows estimation of how many feedforward
passes LLMs require to generate a word in a certain language on
average and how many slots in the context window a word would take.
Both these factors directly influence the speed and cost of inference
and can make training of the model even more difficult. The token
embeddings of LLM would not be meaningful on their own, so it
increases the chance of mistakes during generation or
misunderstandings of inputs.

=

number of tokenstokenizer fertility
number of words

(3)

It does not require training a model with an evaluated tokenizer,
which makes the experiment and comparison faster and cheaper to
conduct. The papers that use this metric only assessed the difference
in segmentation between English and their target language. They do

not research the tokenization efficiency for narrow domains, different
styles, or topics, which affects the text segmentation as well. These
experiments do not refer to the effects of syntax and grammar
mistakes in the text, stylistic changes, or morphological
transformations and their influence on the resulting token count.
Tokenization fertility is used only to compare the bilingual tokenizer
proposed by the authors with the original GPT-2.

A framework for evaluations of multilingual tokenizers was also
proposed earlier, but it covers the influence of the tokenization schema
on the performance of the model for a certain type of natural language
processing task (Limisiewicz et al., 2023). Authors show how
multilingual BPE tokenizers with overlapping parts of vocabularies
can deteriorate the performance of the model on token-level tasks like
part-of-speech tagging, token classification, or named entity
recognition. However, such tokenizers prove to be efficient for
sentence-level tasks such as text classification, semantic search
retrieval, or reranking. Authors present a methodology and a code to
measure tokenizers’ properties like vocabulary allocation average rank
(a measure of distribution of tokens used to encode the target
language), characters per token, and vocabulary overlap (the extent to
which tokens get reused to represent multiple languages).

The idea behind characters per token is that longer tokens should
store more information for a phonetic language. Phonetic language
means that all words get read the same way as they are written, so
there are no silent vowels. It does not need a more granular split into
subwords to model the pronunciation. For example, the words “tough”
and “though” in English, which is not a phonetic language, both use
the subword “ough” (a tetragraph or a four-character sequence). It
does not carry a meaning on its own and gets used as a building
component, so it would be ok to have it as a separate token.

The framework itself proposes a model training approach, as the
authors use multiple tokenizers to train small models to solve both
token-level and sentence-level downstream tasks. Then they measure
the correlation between the metrics of the tokenizer and the obtained
task performance. The framework allows for choosing the most
efficient tokenizer for the target language and domain, as no one
tokenizer would work with the same efficiency for all of them.
However, it focuses specifically on downstream tasks and ignores the
effect of text style and domain.

In this research, we propose a simple framework to measure the
tokenization efficiency of multilingual tokenizers across multiple
domains, so developers can choose the best model and tokenizer for
their target corpus in terms of tokens per word ratio. The presented
methodology should provide quick evaluations on how the tokenizer’s
efficiency in a low-resource language for a specific topic compares to
the same one in the tokenizer’s primary language. The framework does
not require model training and needs only a multilingual corpus and
a general domain corpus. Thus, developers and researchers should
be able to choose the model that uses the least amount of tokens to
encode their data, save the cost of compute or API usage, and
accelerate the generation by reducing the number of tokens per word.

The Ukrainian language is used to demonstrate the proposed
approach, as it is a low-resource, morphologically rich language,
resulting in a higher ratio of tokens per word compared to the Latin
group of languages, and specifically English. This makes current SOTA
LLMs less efficient for these languages, as it would require more
compute for causal language modeling due to a higher level of text
segmentation. So, by using this framework, developers and researchers

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 04 frontiersin.org

can evaluate and choose the most efficient LLM for the Ukrainian
language and their specific domain. The approach can be scaled to
other languages, topics, and styles without training a new model.

3 Materials and methods

3.1 Datasets

The task of tokenization performance measurement requires us to
have both a general language set and some specific domain-centered
ones. We used the Brown corpora for the Ukrainian and English
languages as examples of general texts to determine the baseline
performance of multiple tokenizers in cases that do not require any
uncommon or complex lexicon (Starko and Rysin, 2023). The NLTK
implementation of Brown English corpora was loaded, so texts were
merged by genres for experiments. This approach results in 15 larger
texts for the English version instead of 500 separate ones, without
affecting the calculations and measurements, as the research primarily
focuses on the number of tokens per word in a text. Thus,
concatenation by genres should not change the obtained values.

As for domain-specific texts, we used datasets presented in our
previous research, which contain English and Ukrainian versions of
Ukrainian laws, scientific article abstracts, and technical
documentation (Maksymenko et al., 2023). The laws dataset is a
sample of sentences from laws published on the Ukrainian Parliament
website (both in English and Ukrainian). The scientific texts dataset
contains abstracts from scientific articles mostly about economics and
physics (Maksymenko et al., 2022). The technical documentation
subset refers to the documentation of the VueJS framework, so it
contains both natural language and code samples.

We used Grammarly’s Ukrainian grammatical errors corpus
(GEC) and filtered for sentence pairs in which the incorrect and
correct versions contained the same number of words. This was done
to avoid token count fluctuations caused by differences in wording or
complete rewrites (Syvokon et al., 2023). As a result, the majority of
the retained corrections focused on word forms and spelling rather
than sentence structure. This filtering process left us with 443 texts for
analysis. The number of words in both versions was counted using the
NLTK word tokenizer. If the word counts matched, the text was

included in the benchmark. Otherwise, it was excluded, as such
corrections involved significant rewrites.

For example, the dataset contains some stylistic errors, which are
fixed by a complete rewrite of the sentence. This way, a count of tokens
can differ significantly between versions, but it would not
be representative, as the words and structure are completely different.
We aimed to isolate the effect of common spelling and grammar case-
matching mistakes, rather than comparing how a stylistic rewrite
would affect tokenization.

More details on the dataset are provided in Table 1.

3.2 Model selection and evaluation metrics

The following models were chosen for experiments:

 • GPT-2: a baseline tokenizer to compare how much the efficiency
of tokenization has changed since its release in 2019
(Budzianowski and Vulić, 2019);

 • Ukrainian GPT-2. A GPT-2 with a custom tokenizer trained
from scratch on Wikimedia dumps and the OSCAR dataset
(Malteos/Gpt2-UK Hugging Face, 2024; Suárez et al., 2020). This
model is added to show the primary language bias but reversed
for English and Ukrainian, as this model was specifically created
to encode and generate Ukrainian text without multilingual
capabilities. Moreover, it allows for comparison of multilingual
tokenizers of current SOTA LLMs to this specified model, which
is trained for one low-resource language only.

 • Llama 2 and Llama 3.1. 2 generations of LLMs by Meta, which
use different vocabularies in their respective tokenizers, which
allows for tracking changes in efficiency between multiple
releases by the same research team (Touvron et al., 2023; Dubey
et al., 2024).

 • Mistral 7B/Large/Mixtral. A series of language models by Mistral
Labs. These models have the same tokenizer, so they do not
require separate measurements (Jiang et al., 2023, 2024).

 • Mistral Nemo: a 12B model from the Mistral AI laboratory,
which uses a different tokenizer from previous versions and was
specifically designed for multilingual usage (Mistral AI
Team, 2024).

TABLE 1 Datasets statistics.

Dataset Texts
count

Bytes
count

Characters
count

Bytes per
character

Words
count

Characters
per word

Sentence
count

Words
per text

Ukrainian Brown Corpus 1,420 13,978,170 7,794,197 1.79 1,373,811 5.67 69,018 967.47

English Brown Corpus 15 6,003,981 6,003,981 1.00 1,173,714 5.12 53,266 78,247.60

Ukrainian Laws (Ukrainian) 3,970 1,690,976 912,858 1.85 120,883 7.55 3,971 30.44

Ukrainian Laws (English) 3,970 989,529 989,509 1.00 162,156 6.10 3,971 40.84

Abstracts (Ukrainian) 3,910 3,096,762 1,679,202 1.84 240,761 6.97 7,608 61.56

Abstracts (English) 3,910 1,734,407 1,732,268 1.00 294,355 5.88 8,109 75.26

Code Documentation (Ukrainian) 7 141,577 94,185 1.50 17,688 5.33 450 2,524.00

Code Documentation (English) 7 90,751 90,731 1.00 18,560 4.89 458 2,651.43

GEC (corrected) 443 687,947 383,268 1.79 74,200 5.16 5,036 167.49

GEC (with mistakes) 443 685,471 383,271 1.79 74,200 5.16 5,021 167.49

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 05 frontiersin.org

 • Gemma/Gemma 2/Gemini 1.5: 2 families of models from
Google, which share the same tokenizer. Gemma is an open-
source text-only model, while Gemini is a closed one and
provides multidomain capabilities. These models use the same
vocabulary. (Team et al., 2024; Team et al., 2024; Team
et al., 2023).

 • Qwen 1.5/2 VL: Both versions share the same tokenizer, and
Qwen 2 is one of the few open-source multimodal LLMs, so it is
important to evaluate its effectiveness for the Ukrainian language.
Both versions use the same tokenizer vocabulary (Yang
et al., 2024).

 • Phi 2 and 3.5: open-source models by Microsoft. We chose both
versions to monitor changes in tokenization efficiency across
their generations, as they use different tokenizers (Gunasekar
et al., 2023; Abdin et al., 2024).

 • Mamba: a state-space model that proposes a different approach
to attention for language modeling, which should make inference
cheaper and provide higher stability for processing long context
windows (Gu and Dao, 2023).

 • Claude 3: an approximated version of the Claude tokenizer by
Xenova Labs, as Anthropic does not provide direct access to their
tokenizers (Kevian et al., 2024; Xenova/Claude-Tokenizer
Hugging Face 2024, 2024).

 • GPT-3.5/4: previous versions of OpenAI’s LLMs, which use the
same tokenizer (OpenAI et al., 2023).

 • GPT-4o/4o-mini: models by OpenAI with multimodal
capabilities and a new tokenizer compared to the
GPT-3.5/4 series.

The research specifically measures only the performance of
tokenizers of the listed models, so no hyperparameter setups are
required to replicate results.

For each tokenizer, the vocabulary size and the number of
English tokens were recorded. Vocabulary size can be retrieved from
the tokenizer implementation (for example, the vocab_size attribute
if the tokenizer is loaded with the huggingface tokenizers package).
The count of English tokens was retrieved by using the following rule:
the token would be considered English if it contains only English
(Latin) letters and a punctuation sign or underscores (punctuation
signs and underscores cannot be the only content of the token, so it
also has to contain at least one English character to be considered
English). The methodology involves iterating over every token in the
tokenizer’s vocabulary and checking its content according to the
previously defined rule.

We also aimed to estimate the number of Ukrainian tokens, but
some Cyrillic letter combinations can be present in multiple
languages at the same time (for example, they can occur in both
Ukrainian and Russian or contain valid Ukrainian characters, but the
combination is more common in Russian). So, we measured all
Cyrillic tokens that do not contain any specific symbols that are not
present in the Ukrainian language. This measurement is
approximated, as some subwords might not contain non-existent
Ukrainian alphabet characters, but they are more common in other
languages of the group. Such tokens can be filtered only manually, so
“count of Cyrillic tokens” would be a more appropriate name for the
value we calculated than “number of Ukrainian tokens.” This means
that the real number of Ukrainian-only tokens is probably a bit less
than the provided Cyrillic token count.

The token is considered Cyrillic if it contains only underscores or
characters from the Cyrillic alphabet except for the non-Ukrainian
symbols ё, ы, э, ъ, џ, Њ, љ, ћ, ј, ѕ, ќ, ѓ, and ў. These characters are not
present in the Ukrainian alphabet, so if they appear in the token, this
token would not be of interest for our research, as it gets used to
encode Russian, Belarusian, Cyrillic Serbian, Bulgarian, etc. Current
tokenizers use UTF-8 encoding, so Cyrillic symbols can be expressed
as 2 bytes even if the tokenizer does not contain the symbol in its
vocabulary at all (Tokenizers Encoding, 2025).

We propose to use metrics such as characters per token (CPT) and
bytes per token (BPT) to check how meaningful English and Cyrillic
tokens in the presented vocabularies are (Limisiewicz et al., 2023). The
shorter the subword is, the less meaningful it is for a phonetic
language. The subwords would become more ambiguous as they do
not represent any reusable morpheme. It makes the model training
harder, as it has to learn a more complex token embedding, which
would encode multiple meanings at the same time. This way, CPT
captures the semantic richness of a token for phonetic language and is
a valid metric to evaluate tokenizers for any language of this group.

Tokenization fertility is the primary metric for our experiments
and comparisons. It should be clarified that no preprocessing was used
during the fertility calculation, so no stop words were removed, the
letter case was left as it was, and no lemmatization or stemming
technique was used. Furthermore, words were not tokenized
individually, and tokenization was left as it would have been in a real
case of a language modeling task.

This metric would be used as the main one to define the efficiency
of tokenization for chosen models, as it represents the ratio between
the number of tokens and words, which is easy to explain and
interpret. The best possible value of tokenization fertility would be 1.0,
as it would mean that the model uses one token per 1 word. This value
is a global minimum for this metric. Such tokenization is impossible
to achieve, as it would require including all words with all possible
affix combinations into the tokenizer’s vocabulary. So, there are two
main objectives for the tokenization of fertility:

 • Minimize the value in general and make it as close to 1 as
possible and

 • Maintain consistent values across different languages and text
domains (styles and topics) for a single tokenizer.

Some languages or areas can use long and complex words with
multiple roots or affixes, and it would be normal to tokenize them with
multiple tokens. Even if a simple word gets encoded into numerous
tokens, and this number is consistent across various languages, it
would be an efficient option, as it does not introduce a bias toward one
specific language. Figure 1 illustrates an example of this.

It showed the word “Харків”/“Kharkiv,” the name of a city in
eastern Ukraine, and how GPT-3.5 and GPT-4o tokenizers segment it
in two languages. Tokens are marked by a highlight color, where a
change of tones of gray would mean that highlighted parts correspond
to different tokens, and the red color indicates that a character gets
encoded as a byte sequence (2 bytes in the case of Ukrainian due to
the Unicode specification). Both tokenizers need three tokens in
English to encode this word. GPT-4o requires three tokens to encode
in Ukrainian, consistent with English. At the same time, GPT-3.5 does
not contain the uppercase letter “Х” in its vocabulary at all, so it needs
six tokens to encode the word, where two tokens are used to

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 06 frontiersin.org

encapsulate just a single character. This way, GPT-3.5 would generate
this single word longer than GPT-4o in Ukrainian due to inefficient
tokenization (six feedforward passes vs. three ones).

Common language modeling metrics like perplexity, self-BLEU,
ROUGE, and Distinct-N evaluate the model output and the quality of
text generation. They do not evaluate the performance of the tokenizer
used by the model. Their metrics focus on the alignment of the model’s
outputs with human references. Such metrics do not reflect the
efficiency of the tokenization process. Common language modeling
metrics do not measure the quality of subword segmentation or its
consistency across domains or word form changes. This way,
traditional metrics listed earlier would not highlight the tokenizer
impact specifically.

4 Experiment planning

We used the following approach to measure the efficiency of the
listed tokenizers:

 1 Measure the number of English and Cyrillic tokens in each
tokenizer vocabulary. The same can be done for other languages
too (for example, count the number of tokens, which can
represent Chinese text). We used the methodology described
in the previous section to determine whether a token is English,
Cyrillic, or does not fall into any of these categories.

 2 Measure CPT and BPT of those tokens to check the semantic
richness of the tokens. The higher the metric value, the more
meaningful the tokens are. This would work for phonetic and
phonemic languages but can be replaced with a token per word
for logographic ones.

 3 Check how many tokens are necessary to tokenize a basic
lower-and uppercase alphabet and some special symbols widely
used in the target language. In our case, we added the
apostrophe sign, which is a common element of Ukrainian
words, to the test. This gives 66 characters in total, which
we tokenize individually (33 lowercase letters and 32 uppercase
without “ь” and apostrophes). It provides information on how
many times a tokenizer falls back to a byte representation to
describe a single letter. Such a representation would require
LLM to execute two feedforward passes to generate just one
letter, as each Ukrainian letter is encoded with 2 bytes in
UTF-8. This is even more crucial for Asian or Arabic languages,
which can use up to 4 bytes per character.

 4 Measure the performance of tokenizers on English and
Ukrainian Brown corpus versions to determine the degree of

bias of the tokenizer toward the English language in
comparison to Ukrainian. Brown corpora were designed to
be balanced between multiple genres, styles, and purposes of
text. Brown can be replaced with any general domain text
corpus for the target language. We recorded the total token
count, average number of tokens per text, and tokenization
fertility. The obtained values will be used as baselines for
further experiments.

 5 The next step is to measure the same set of metrics on
specialized corpora (laws, code documentation, and scientific
articles in our case). We compare these values to the results
obtained on the Brown corpus to find out how much the
tokenization fertility drops for a narrower, domain-specific
dataset. The step can be reproduced for any other domains and
does not require a large number of texts. This can even
be extended to measuring the performance on specific
regional dialects.

 6 Then, we compare the efficiency between correct and
incorrect spelling. We measure a total token count and
tokenization fertility for a version of text with mistakes and
a corrected version. As it was stated earlier, the dataset was
filtered specifically to leave only pairs with the same number
of words in both versions, so no style corrections or
significant rewrites should affect the experiment. Word
fusions were not tested in the current experiments.
Common chatbot systems have to deal with incorrect
grammar or spelling constantly, so it is important to
measure whether the tokenization fidelity would change
significantly due to an error in the input. For our
experiment, we used the Grammarly GEC dataset for the
Ukrainian language.

 7 Another aspect we wanted to check is the effect of
transliteration on tokenization efficiency. Models have
significantly more English tokens, so there is a possibility that
those subwords can cover Ukrainian letter combinations too,
which can at least save space in the context window, as
generating a transliterated output would be too unstable and
difficult to decode back into Cyrillic text (LLMs do not follow
transliteration rules strictly during a generation).
Transliteration is fast and does not require an additional model
in the inference pipeline, so if it gives an improvement for
tokenization, it would be worth exploring further. We used a
standard transliteration proposed by the Ukrainian government
and measured fertility on the same Ukrainian Brown corpus.
This approach can be checked for any non-Latin language, as
common tokenizers are heavily skewed toward subwords of
Latin languages. We would like to investigate it further in terms
of LLM performance for question-answering tasks or
pretraining from scratch on transliterated corpora.

 8 Finally, we measure the tokenization fertility for multiple
grammar cases. The Ukrainian language has seven cases.
We fetched 19,000 words to measure how much tokenization
differs between the nominative case and others on average. The
approach is universal and can be reproduced for any other
morphologically rich language.

It is important to note that CPT and BPT would not be as useful for
benchmarking of logographic languages like Chinese (languages where

FIGURE 1

Example of tokenization of words in two languages.

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 07 frontiersin.org

a character can represent an entire concept rather than a sound).
Characters that are already informationally dense and can stand for a
whole word in non-logographic ones. A low CPT value does not
necessarily indicate lower tokenizer efficiency. It would be more useful
to check the number of tokens per word for such languages to determine
how often a tokenizer falls back to a byte representation.

These metrics would still be useful for phonemic languages such
as English, Korean, Turkish, and others (ones where writing and letter
combinations represent distinct sounds instead of a direct
pronunciation). Longer tokens would still capture more meaning, but
it would require a large vocabulary dedicated to this specific language
to capture all variations.

5 Results

5.1 Vocabulary metrics

First, we measured the number of Latin and Cyrillic tokens in the
listed tokenizers, as specified in the experiment planning. All
characteristics of the models’ tokenizers are presented in Table 2
(vocabulary size, the count of Latin (English) and Cyrillic tokens, and
the mean and median CPT and BPT for both groups of tokens).

As can be seen in Table 2, English tokens consist of 4–5 characters
on average, whereas Cyrillic tokens mostly contain 3–4 characters per
token. Tokenization would be even harder for the Ukrainian language
due to its morphological richness (many word forms for the same
root, case markings, and multiple affixes can be added to a word to
completely change its meaning). The best result in terms of the CPT
metric for Ukrainian is obtained with Gemma/Gemini (five characters
per token).

A significant increase in vocabulary sizes for models released in
2024 has to be noted. For example, GPT-3.5/4 has only 435 Cyrillic
tokens and a general vocabulary size of 100,235 tokens. GPT-4o and
4o-mini have increased vocabulary by 2 times (200,000 tokens) and
have 10 times more Cyrillic tokens (4,660). Models like Gemma and
GPT-4o achieve the best results by CPT specifically due to their large
vocabularies, as they can cover more subwords and their combinations.
This allows for more meaningful tokenization of non-Latin texts,
rather than segmenting them into small chunks without rich
semantic value.

The same cannot be said about Llama models. Llama 3 achieved
a vocabulary 4 times larger than Llama 2, but the number of Cyrillic
tokens and CPT decreased for it.

5.2 Alphabet knowledge test

As stated in Section 4 (Experiment planning), the first step is to
measure the tokenization of the basic alphabet. In this experiment,
we measure the number of tokens for each letter of the target language
alphabet (Ukrainian for the current research). This test detects
whether all letters are represented in the tokenizer’s vocabulary and
checks if the use of some rare symbols leads to the byte fallback
(representing a character using byte Unicode encoding). The number
of tokens would be the same as the number of bytes necessary to
represent the character in the Unicode table so that it can take up to 4
tokens per letter in the worst case.

Table 3 shows the result of the alphabet knowledge experiment.
Measurements shown in the table indicate that Phi 2 and vanilla
GPT-2 perform the worst in Ukrainian alphabet tokenization, utilizing
bytes for 74% of Ukrainian characters. Models like GPT-4o and Llama

TABLE 2 Characteristics of the chosen tokenizers.

Model Vocabulary
Size

English Cyrillic

Token
count

Mean
CPT

Median
CPT

Mean
BPT

Median
BPT

Token
count

Mean
CPT

Median
CPT

Mean
BPT

Median
BPT

GPT-2 50,257 14,829 4.81 4 4.81 4 16 1.00 1 2.00 2

Ukrainian GPT-2 50,304 1,720 3.38 3 3.38 3 11,248 4.68 4 9.36 8

Llama 2 32,000 24,084 5.65 5 6.81 7 2,768 4.11 4 8.71 8

Llama 3.1 128,262 28,158 5.49 5 5.49 5 2,558 3.61 3 7.21 6

Mistral 7B/Large/

Mixtral

32,768 25,019 5.76 5 6.92 7 1,625 3.58 3 7.59 7

Mistral Nemo 131,072 22,447 4.92 5 4.92 5 2,735 3.56 3 7.12 6

Gemma/Gemma 2/

Gemini

256,000 168,995 6.64 6 7.79 8 12,009 5.20 5 10.94 10

Qwen 1.5/2 VL 151,657 27,376 5.52 5 5.52 5 1,791 3.48 3 6.96 6

Phi 2 50,295 14,829 4.81 4 4.81 4 16 1.00 1 2.00 2

Phi 3.5 32,011 24,084 5.65 5 6.81 7 2,768 4.11 4 8.71 8

Mamba 50,277 16,431 4.88 4 4.88 4 259 2.23 2 4.46 4

Claude 3

(approximated)

65,000 27,102 5.51 5 5.51 5 293 2.51 2 5.01 4

GPT-3.5/4 100,263 27,329 5.52 5 5.52 5 435 2.87 3 5.73 6

GPT-4o/4o-mini 200,000 37,839 5.11 5 5.11 5 4,660 3.70 3 7.40 6

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 08 frontiersin.org

3.1 contain all Ukrainian symbols in their vocabularies except for the
capital “ґ.” The best results are obtained by the Ukrainian GPT, Qwen,
and the Gemma/Gemini family, as they do not use bytes at all to
tokenize Ukrainian text. So, Gemini gets the best result among closed
models, and Gemma and Qwen are the only open-source large models
(2B+) that cover all symbols.

5.3 Tokenization fertility measurement in
the general domain

The next step is to measure all tokenizers with the English and
Ukrainian Brown corpora to find out how well they segment general
domain texts in both languages (Table 4).

Vanilla GPT-2 and Phi 2 perform the worst in terms of Ukrainian
tokenization, rendering them unfit for Ukrainian language modeling
(with over 6 + tokens per word). This poor performance was
consistently observed across other experiments as well, as reflected in
the measurement tables. Therefore, we will focus on other models in
subsequent sections. As expected, GPT-2, which was specifically
trained for the Ukrainian language, achieves the best fertility score
(just 1.30). However, this model lacks multilingual capabilities, as its
performance drops significantly on the English corpus (1.96 compared
to 1.22—the worst case among other models). Despite not using bytes
during Ukrainian text tokenization, the Qwen tokenizer yields one of
the poorest results among open-source models, with a fertility value
of 2.89. In contrast, Llama 3.1 delivers the highest tokenization quality
for the Ukrainian Brown corpus, with Gemma/Gemini following
closely behind.

Llama 3.1 outperforms 2.0, but as was mentioned earlier, the CPT
and count of Cyrillic tokens are lower for the third version. It may
indicate that the Llama 3 model family tokenizer was trained with
more Ukrainian texts than other languages that use a Cyrillic alphabet.
It is impossible to prove without detailed training dataset research
(which is not published publicly), but we can only suppose that this is
the reason for overperformance in comparison to other models. This

is only a speculative assumption, as the training data of this tokenizer
is not open-sourced, and we can only measure its efficiency and
approximate number of tokens, which can be used to segment
Ukrainian texts.

We can see the same behavior with Ukrainian GPT-2, which has
50,304 tokens in vocabulary but outperforms every other tokenizer by
a fertility value. It was trained specifically with Ukrainian as a primary
language, and the vocabulary contains mostly tokens to segment
Ukrainian text. So, if Llama 3.1 had mainly Ukrainian texts to
represent the Cyrillic group during tokenizer training, it would
explain why it gives better results than other foundational models’
tokenizers.

It is worth noting that closed models like Claude and GPT-3.5/4
look significantly less efficient for the Ukrainian corpus than other
models (even smaller open-source ones), as they tend to use
3 + tokens per word even for general texts. Furthermore, there is a
clear improvement in terms of Ukrainian tokenizer fertility between
model generations, as all of them get much higher tokenization
efficiency with new versions. It is primarily achieved with the
increased vocabulary size (usually around +100,000 tokens in
newer versions), which can be seen in Table 2. However, Phi 3.5 is
the only model that has a smaller vocabulary than its predecessor
but gets better benchmark results. This model is closer to previous
Mistral and Llama versions, both in terms of vocabulary size and
fertility, so we can conclude that while Phi 2 was mostly
monolingual, Phi 3 is trained on a more diverse dataset. Its
tokenizer is on the same level as earlier models by Meta and Mistral
for Ukrainian tasks.

5.4 Tokenization of domain-specific texts
for fertility measurement

The next step is to evaluate these models using domain-specific
texts: laws, scientific articles, abstracts, and code documentation.
We used the Brown corpora measurements as a baseline tokenization

TABLE 3 Ukrainian alphabet knowledge check.

Model Number of known characters Number of unknown characters Tokenizer fertility

GPT-2 17 49 1.74

Ukrainian GPT-2 66 0 1

Llama 2 61 5 1.08

Llama 3.1 65 1 1.02

Mistral 7B/Large/Mixtral 59 7 1.11

Mistral Nemo 62 4 1.07

Gemma/Gemma 2/Gemini 66 0 1

Qwen 1.5/2 VL 66 0 1

Phi 2 17 49 1.74

Phi 3.5 61 5 1.08

Mamba 49 17 1.26

Claude 3 (approximated) 55 11 1.17

GPT-3.5/4 53 13 1.20

GPT-4o/4o-mini 65 1 1.02

Models with the most Ukrainian alphabet in the tokenization marked bold.

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 09 frontiersin.org

fertility value to assess the level of performance degradation (how
much the tokenization fertility would increase) on more narrowly
specialized tasks (Table 5).

Results show that even though there is a performance degradation
for English texts, it is not as significant as for Ukrainian ones. The
biggest fertility score deterioration happens with code documentation
in the English language, which can be explained by the structure and
style of the code inclusions (more line breaks, formatting, and
tabulation). For laws and abstracts, performance changes by 0.14 at
worst (Llama 2 Brown vs. scientific), so domain-specific words and
phrases can be considered less influential for the English language due
to vocabulary size, which covers lots of possible subwords.

However, the domain significantly influences the Ukrainian
language performance, as most models get worse by almost half a
token on average for laws and scientific texts. Closed models such as
GPT-3.5/4 and Claude can reach up to 4.4 tokens per word when they
are tasked with narrow topics. The least performance degradation is
observed for Llama 3.1 with Gemma/Gemini and GPT 4o/4o-mini,
which can be attributed to their significantly larger vocabularies.

The code documentation earns better fertility scores compared to
general texts or other domains because LLMs are pre-trained for
coding tasks and receive numerous code samples during both the
tokenizer tuning and pretraining stages. The results are still
significantly worse than English ones (the difference can be as high as
one token per word). However, large tokenizers outperform a smaller
monolingual tokenizer of Ukrainian GPT-2. It can be explained by the
training set composition and quality of data in terms of diversity and
coverage of different domains and tasks, including programming.
Moreover, this tokenizer is two times smaller than the vocabulary of
Llama 3.1, four times smaller than GPT-4o’s vocabulary, and five times
smaller than Gemini’s. Such a size allows those models to keep a
separate set of tokens for coding tasks specifically (such as tabulations,
space sequences, operator combinations, and other specific sets of

characters). They can use their high number of English tokens to
encode variable, function, class, and method names better than the
monolingual tokenizer for a low-resource language.

The word length increases in specialized corpora for both English
and Ukrainian, as shown in Table 1. However, English vocabulary has
more subwords to cover these words without oversegmentation (splitting
words into letter or byte sequences). A similar behavior can be seen for
models with larger Ukrainian vocabularies. Tokenizers with smaller
vocabularies are significantly more affected as their tokenization fertility
rates increase by one or more tokens on average. This suggests that as
long as BPE-like tokenizers are the standard solution for language
models, the increase of their vocabulary size is the only way to keep them
consistent across multilingual and multidomain tasks. The only other
viable solution for the BPE approach is the creation of a monolingual
tokenizer and model (like Ukrainian GPT-2), which does not have to
share vocabulary between multiple languages. More space would be used
for less frequent subwords, allowing for better coverage of narrow topics,
styles, and language subdomains.

5.5 Influence of mistakes on tokenization
fertility

The next analysis examines how mistakes impact tokenization
quality. Table 6 provides the full results for this experiment (including
token counts for both correct and incorrect text versions and their
tokenization fertility values).

The difference in tokenization is insignificant, and changes in fertility
score become visible only at the third sign after the comma, so the
influence of incorrect spelling or word forms can be considered low for
all listed models. The tokenization process is deterministic, so it is not
influenced by random state or any other factor except for the tokenizer
itself and the input text. However, using correct variants yields slightly

TABLE 4 Brown corpora tokenization fertility measurements.

Model English Ukrainian

Total
number of

tokens

Average
number of

tokens per text

Tokenizer
fertility

Total number
of tokens

Average
number of

tokens per text

Tokenizer
fertility

GPT-2 1,267,946 84,529.73 1.08 8,667,064 6,103.57 6.31

Ukrainian GPT-2 2,294,904 152,993.60 1.96 1,779,807 1253.39 1.30

Llama 2 1,431,009 95,400.60 1.22 3,152,299 2,219.93 2.29

Llama 3.1 1,268,917 84,594.47 1.08 2,578,473 1,815.83 1.88

Mistral 7B/Large/Mixtral 1,382,732 92,182.13 1.18 3,404,781 2,397.73 2.48

Mistral Nemo 1,287,915 85,861.00 1.10 2,808,059 1,977.51 2.04

Gemma/Gemma 2/Gemini 1,256,270 83,751.33 1.07 2,640,770 1,859.70 1.92

Qwen 1.5/2 VL 1,279,865 85,324.33 1.09 3,882,103 2,733.88 2.83

Phi 2 1,267,946 84,529.73 1.08 8,666,816 6,103.39 6.31

Phi 3.5 1,431,009 95,400.60 1.22 3,152,299 2,219.93 2.29

Mamba 1,279,625 85,308.33 1.09 4,606,862 3,244.27 3.35

Claude 3 (approximated) 1,285,667 85,711.13 1.10 4,742,885 3,340.06 3.45

GPT-3.5/4 1,269,116 84,607.73 1.08 4,560,959 3,211.94 3.32

GPT-4o/4o-mini 1,256,484 83,765.60 1.07 2,719,430 1,915.09 1.98

Models with the least amount of tokenization per Ukrainian text marked bold.

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 10 frontiersin.org

better results, but this improvement is too small to affect the cost of
inference or drastically reduce free slots in the context window.

We plan to extend this experiment with more benchmark texts in
our further research (both Ukrainian and other languages) to measure
the effect of grammatical and spelling errors on the tokenization
fertility of current foundation language models. Moreover, at this
stage, we did not take word fusions (lack of space) into account, so this
should also be checked in further experiments. An additional cause
underlying the low influence of mistakes is the low Levenshtein
distance between correct and incorrect versions of texts. Minimal
value is 1, maximum is 107, and median is 9. 90% of versions have a
distance under 27 characters. The dataset needs to be expanded to

include more error types and additional samples in future research to
achieve more accurate results.

5.6 Tokenization fertility measurement with
Latin transliteration

Transliteration preprocessing was measured, and the results are
presented in Table 7. It improves the tokenization fertility only for
those models that previously had fertility scores higher than 2.5.
Newer models like Llama 3.1, GPT-4o, 4o-mini, Gemma, and Gemini
with large vocabularies tend to perform better with raw Ukrainian text

TABLE 5 Narrowly specialized corpora tokenization fertility measurements.

Model English Ukrainian

Brown
corpus
fertility

Laws
fertility

Scientific
fertility

Code
documentation

fertility

Brown
corpus
fertility

Laws
fertility

Scientific
fertility

Code
documentation

fertility

GPT-2 1.08 1.06 1.17 1.54 6.31 8.75 7.99 4.65

Ukrainian GPT-2 1.96 2.07 2.17 2.16 1.30 1.17 1.45 1.79

Llama 2 1.22 1.26 1.36 1.51 2.29 2.76 2.71 2.14

Llama 3.1 1.08 1.10 1.15 1.25 1.88 2.00 2.23 1.69

Mistral 7B/Large/ Mixtral 1.18 1.24 1.31 1.53 2.48 3.00 2.94 2.28

Mistral Nemo 1.10 1.16 1.14 1.28 2.04 2.45 2.45 1.81

Gemma/Gemma 2/Gemini 1.07 1.12 1.12 1.35 1.92 2.28 2.23 1.80

Qwen 1.5/2 VL 1.09 1.14 1.17 1.26 2.83 3.64 3.40 2.29

Phi 2 1.08 1.06 1.17 1.50 6.31 8.74 7.99 4.62

Phi 3.5 1.22 1.26 1.36 1.51 2.29 2.76 2.71 2.14

Mamba 1.09 1.07 1.14 1.44 3.35 4.26 4.07 2.78

Claude 3 (approximated) 1.10 1.07 1.16 1.39 3.45 4.46 4.17 2.74

GPT-3.5/4 1.08 1.10 1.15 1.25 3.32 4.40 4.02 2.56

GPT-4o/4o-mini 1.07 1.10 1.14 1.25 1.98 2.29 2.35 1.74

Model with minimal tokenization fertility marked bold.

TABLE 6 Influence of Ukrainian grammatical errors on tokenization fertility.

Model Token count for
incorrect versions

Fertility for incorrect
versions

Token count for
correct versions

Fertility for correct
versions

GPT-2 430,029 5.796 430,301 5.799

Ukrainian GPT-2 96,108 1.295 95,948 1.293

Llama 2 161,522 2.177 161,441 2.176

Llama 3.1 133,584 1.800 133,485 1.799

Mistral 7B/Large/ Mixtral 172,183 2.321 172,113 2.320

Mistral Nemo 143,577 1.935 143,480 1.934

Gemma/Gemma 2/Gemini 134,580 1.814 134,521 1.813

Qwen 1.5/2 VL 193,002 2.601 193,114 2.603

Phi 2 429,924 5.794 430,223 5.798

Phi 3.5 161,522 2.177 161,441 2.176

Mamba 228,140 3.075 228,295 3.077

Claude 3 (approximated) 236,612 3.189 236,836 3.192

GPT-3.5/4 225,144 3.034 225,317 3.037

GPT-4o/4o-mini 139,026 1.874 138,978 1.873

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 11 frontiersin.org

without any transformation. With a growth in vocabulary size and
improvements in tokenizer training sets (increased quantity and
quality of multilingual samples), the transliteration approach becomes
inefficient and unnecessary.

However, it allows us to decrease the fertility rate of the vanilla
GPT-2 and Phi 2 down to values obtained from models like Llama 2
on raw Ukrainian text. The result is even better than raw Ukrainian
tokenization by models like GPT-3.5/4 and Claude 3. They would still
require significant fine-tuning for transliterated Ukrainian to
understand and use the language, but tokenizers and initial weights of
models can be reused.

We plan to research this approach further in our future studies for
smaller models. Transliteration improved tokenization fertility only in
models that already had large vocabularies (100,000 + tokens), so it
would be more reasonable to apply it for small models trained from
scratch, as it decreases the number of token embeddings to teach.

5.7 Grammar case tokenization

The final experiment was to measure the change in tokenization
fertility as the grammatical case of input words is changed.
Morphologically rich languages like Ukrainian are characterized by
grammar case matching and different forms for quantity, tense, or
gender. Table 8 presents the results of the grammar case tokenization
test, measuring tokenization fertility for each of the 7 cases and the
mean difference from the nominative case (the infinitive of a word
in Ukrainian).

Expectedly, the best result is achieved by a mostly monolingual
Ukrainian GPT-2, as the mean difference between all cases and the
nominative one is just 0.266. Mistral Nemo achieves the best result
among all current multilingual LLMs, with a 0.299 difference. It is
closely followed by both Llama models, Phi 3.5, and GPT-4o/4o-mini.
It is worth noting that all models’ tokenization performance
deteriorates with changing word forms, which again proves a higher
difficulty with adapting subword tokenization for morphologically

rich languages. It is not a problem of a specific tokenizer or model, as
this disadvantage is a property of subword and BPE-like tokenizers
in general.

6 Discussion

In the scope of this study, we presented a detailed and
comprehensive analysis of the current state-of-the-art large language
models’ tokenization performance for the Ukrainian language and
compared it to English.

Results prove that all listed models deteriorate in tokenization
performance on Ukrainian texts compared to their English
counterparts. For the most recent models, this difference can reach up
to 2.5 additional tokens per word. On average, the majority of models
require one additional token per word to encode semantically
equivalent content in Ukrainian. This observation is drawn from
tokenization measurements conducted on both a general-domain
corpus (the Brown corpus) and specialized corpora, including legal
texts, scientific abstracts, and code documentation.

This increase in the number of tokens per word directly affects
the speed of text generation, as the model would need at least an
additional feedforward pass to generate a word on average. It makes
not only the inference during a causal language modeling task (text
generation) longer but also increases the necessary number of
computational resources to create a single text and increases the cost
for model users (in case of API usage). That is why the number of
tokens per word (tokenization fertility) was used as a primary metric
during our research. It enables the assessment of a generative
language model for use in a specific domain or language prior to text
generation and benchmarking on semantic tasks. The model can
be inefficient from the start due to a significantly biased tokenizer,
which makes it slower and more expensive for the user’s
target language.

Gemini models seem to achieve the best tokenization fertility
among all closed ones, likely due to their largest vocabulary size. It is

TABLE 7 Latin transliteration effect on tokenization fertility for the Ukrainian language.

Model English Brown corpus
fertility

Ukrainian Cyrillic Brown
corpus fertility

Ukrainian Latin Brown
corpus fertility

GPT-2 1.08 6.31 2.74

Ukrainian GPT-2 1.96 1.30 3.16

Llama 2 1.22 2.29 2.65

Llama 3.1 1.08 1.88 2.40

Mistral 7B/Large/Mixtral 1.18 2.48 2.72

Mistral Nemo 1.10 2.04 2.36

Gemma/Gemma 2/Gemini 1.07 1.92 2.28

Qwen 1.5/2 VL 1.09 2.83 2.50

Phi 2 1.08 6.31 2.74

Phi 3.5 1.22 2.29 2.65

Mamba 1.09 3.35 2.63

Claude 3 (approximated) 1.10 3.45 2.63

GPT-3.5/4 1.08 3.32 2.49

GPT-4o/4o-mini 1.07 1.98 2.26

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 12 frontiersin.org

closely followed by GPT-4o and 4o-mini, which show drastic
improvements compared to GPT-3.5 and 4. Claude gave the worst
results among all closed models, but we used an approximated version
of its tokenizer, so we would like to remeasure it if Anthropic open-
sources their tokenizer down the line.

Llama 3.1 has the best tokenization efficiency among open-source
models, even though it has fewer Cyrillic tokens in its vocabulary than
Gemma or even Llama 2. It is tied with Gemma/Gemma 2, but Llama
3.1 has higher benchmark scores, so we recommend it as currently the
best open model for Ukrainian NLP tasks.

While Gemma/Gemini has the highest Cyrillic CPT and the
highest number of Cyrillic tokens, it still loses to Llama 3.1 in terms
of tokenization fertility. This can be explained by the large number of
Russian tokens in Gemma’s vocabulary, which makes the Cyrillic
token count higher, but they do not boost performance for the
Ukrainian language. Those tokens do not contain any symbols specific
to the Russian alphabet, but these letter combinations are not common
in the Ukrainian language.

Mamba, the only non-attention model among those tested,
delivers tokenization performance close to GPT-3.5/4, but in theory,
its inference cost should be lower, making such tokenization
potentially less harmful for Ukrainian modeling tasks compared to
attention-based counterparts.

Grammatical errors turned out to be insignificant, even in the
Ukrainian language. Transliteration preprocessing has become
obsolete with the expansion of vocabularies and only worsens
performance in the latest models. All models show noticeable
deterioration when handling word grammatical case change, which
again proves the ineffectiveness of subword tokenization for
morphologically rich languages.

Finally, we have shown that tasks that require the usage or
generation of narrow topic texts would decrease the effectiveness of
tokenization even more for Ukrainian. However, it does not affect

English as much. It can be explained by the fact that English is the
primary language of their vocabulary and contains a large enough
set of tokens to cover those rare words and forms. A smaller
monolingual tokenizer outperforms large multilingual tokenizers
even more for narrow domains and topics. However, it is expected
to perform worse in domains that may use a mix of different
languages, like technical documentation or coding tutorials.

Results show that tokenizers with a large vocabulary size (100,000
or more) tend to be less affected by the domain or language of the task.
Thus, as long as BPE-like subword tokenization stays a standard
solution for language modeling preprocessing, larger vocabularies are
the only way to make the tokenization more consistent across
languages and domains. The model would still have a bias toward the
primary language, but the increase in tokenization fertility would not
be as prominent (like with GPT-3.5, for which the number of tokens
per word would grow 3 times for Ukrainian in comparison to English).

We plan to research embedding decoding approaches further to
explore whether sentence embeddings can replace raw text, providing
additional context to LLMs and eliminating the need for constant,
inefficient tokenization in multilingual environments, particularly for
the Ukrainian language.

Moreover, it was mentioned earlier that a transliteration can be an
interesting way to continue this research for optimization of the
parameter count of the model. Instead of training a large tokenizer and
corresponding token embeddings, it can be more optimal for small
models to be trained with a Latin-transliterated corpus and a small
vocabulary, which would consist only of Latin-like/English subwords.

Another direction for further improvement and development of
this study is to dive deeper into how mistakes influence tokenization
efficiency by researching word fusions and stylistic or structural
errors. The approach can be scaled to compare local dialects, checking
how efficiently a tokenizer segments a dialect version of the language,
rather than the more commonly used one.

TABLE 8 Tokenization fertility by grammatical cases.

Model Nominative Genitive Dative Accusative Instrumental Locative Vocative Mean
difference

from
nominative

GPT-2 12.24 12.63 13.85 13.26 12.41 13.51 12.51 0.787

Ukrainian GPT-2 3.46 3.57 3.85 3.79 3.53 3.86 3.74 0.266

Llama 2 4.68 4.76 5.27 5.13 4.74 5.16 4.83 0.304

Llama 3.1 4.46 4.59 4.98 4.88 4.55 4.90 4.71 0.304

Mistral 7B/Large/Mixtral 4.95 5.01 5.57 5.48 4.99 5.54 5.07 0.327

Mistral Nemo 4.39 4.51 4.95 4.86 4.46 4.82 4.57 0.299

Gemma/Gemma 2/Gemini 4.01 4.12 4.64 4.47 4.11 4.55 4.20 0.339

Qwen 1.5/2 VL 5.39 5.54 6.04 6.05 5.44 6.34 5.55 0.438

Phi 2 12.24 12.63 13.85 13.26 12.41 13.51 12.51 0.787

Phi 3.5 4.68 4.76 5.27 5.13 4.74 5.16 4.83 0.304

Mamba 6.53 6.64 7.30 7.20 6.51 7.39 6.71 0.433

Claude 3 (approximated) 6.64 6.65 7.25 7.27 6.54 7.36 6.81 0.373

GPT-3.5/4 6.51 6.65 7.35 7.24 6.48 7.47 6.80 0.495

GPT-4o/4o-mini 4.34 4.43 4.91 4.82 4.37 4.80 4.57 0.310

The best models for Ukrainian text marked bold.

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 13 frontiersin.org

The proposed framework can be reused for other languages,
domains, or dialects and allows for comparing the efficiency of
tokenization for the target language and topic to the primary language
of the model and its tokenizer. This methodology should facilitate the
selection of models for tasks, enabling evaluation not only by their
performance on this specific task but also by the number of tokens per
word. A high token-to-word ratio can result in longer and more
expensive text generation in causal language modeling tasks and make
generalization more difficult in natural language understanding due
to poor segmentation quality.

7 Limitations

The main limitation of our approach is that it evaluates only the
efficiency of word segmentation into tokens; it does not assess how
well a model understands or uses language or certain domain-specific
information in terms of grammar, knowledge, and style. Therefore,
this method should be used only as one component in benchmarking
a model for a specific language or domain. It can also be applied to
evaluate the quality of a tokenizer’s vocabulary before training a model
for multilingual use cases.

Another limitation applies to proprietary models developed
by AI laboratories that do not open-source their tokenizers.
Although tokenization fertility can still be measured using
APIs—by passing test text as an input prompt and observing the
number of input tokens—this approach increases testing costs
and requires customizing the benchmarking pipeline for
such models.

Data availability statement

The raw data supporting the conclusions of this article will
be made available by the authors, without undue reservation.

Author contributions

DM: Data curation, Funding acquisition, Software, Visualization,
Writing – original draft, Writing – review & editing. OT:
Conceptualization, Methodology, Project administration, Writing –
review & editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Gen AI was used in the creation of
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References
Abdin, M., Aneja, J., Awadalla, H., Awadallah, A., Awan, A. A., Bach, N., et al. (2024).

Phi-3 technical report: a highly capable language model locally on your phone. arXiv
2024:14219. doi: 10.48550/ARXIV.2404.14219

Ahia, O., Kumar, S., Gonen, H., Kasai, J., Mortensen, D., Smith, N., et al. (2023). “Do
all languages cost the same? Tokenization in the era of commercial language models.” In
Proceedings of the 2023 conference on empirical methods in natural language
processing, 9904–23. Singapore: Association for Computational Linguistics.

Arnett, C., Chang, T., and Trott, S. (2024). “Different tokenization schemes Lead to
comparable performance in Spanish number agreement.” In Proceedings of the 21st
SIGMORPHON workshop on computational research in phonetics, phonology, and
morphology, pp. 32–38. Mexico City, Mexico: Association for Computational Linguistics.

Batsuren, K., Vylomova, E., Dankers, V., Delgerbaatar, T., Uzan, O., Pinter, Y., et al.
(2024). Evaluating subword tokenization: alien subword composition and OOV
generalization challenge. arXiv 1:13292. doi: 10.48550/ARXIV.2404.13292

Budzianowski, P., and Vulić, I. (2019). “Hello, it’s GPT-2- how can I help you? Towards
the use of pretrained language models for task-oriented dialogue systems.” In Proceedings
of the 3rd workshop on neural generation and translation, 15–22. Hong Kong:
Association for Computational Linguistics.

Csaki, Z., Pawakapan, P., Thakker, U., and Qiantong, X. (2023). Efficiently adapting
pretrained language models to new languages. arXiv 2023:5741. doi:
10.48550/ARXIV.2311.05741

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., et al. (2024).
The llama 3 herd of models. arXiv 2024:21783. doi: 10.48550/ARXIV.2407.21783

Erdem, E., Kuyu, M., Yagcioglu, S., Frank, A., Parcalabescu, L., Plank, B., et al. (2022).
Neural natural language generation: a survey on Multilinguality, multimodality,
controllability and learning. J. Artif. Intell. Res. 73, 1131–1207. doi: 10.1613/jair.1.12918

Gallé, M. (2019). “Investigating the effectiveness of BPE: the power of shorter sequences.” In
Proceedings of the 2019 conference on empirical methods in natural language processing
and the 9th international joint conference on natural language processing (EMNLP-
IJCNLP), 1375–81. Hong Kong, China: Association for Computational Linguistics.

Gu, A., and Dao, T. (2023). Mamba: linear-time sequence modeling with selective state
spaces. arXiv 2023:752. doi: 10.48550/ARXIV.2312.00752

Gunasekar, S., Zhang, Y., Aneja, J., Mendes, C. C. T., Del Giorno, A., Gopi, S., et al.
(2023). Textbooks are all you need. arXiv 2023:11644. doi: 10.48550/ARXIV.2306.11644

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., de las Casas, D.,
et al. (2023). Mistral 7B. arXiv 2023:825. doi: 10.48550/ARXIV.2310.06825

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C., et al.
(2024). Mixtral of experts. arXiv 2024:4088. doi: 10.48550/ARXIV.2401.04088

Kevian, D., Syed, U., Guo, X., Havens, A., Dullerud, G., Seiler, P., et al. (2024). Capabilities
of large language models in control engineering: a benchmark study on GPT-4, Claude 3
opus, and Gemini 1.0 ultra. arXiv 2024:647. doi: 10.48550/ARXIV.2404.03647

Kudo, T. (2018). “Subword regularization: improving neural network translation models
with multiple subword candidates.” Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics, No. 1: Long Papers, pp. 66–75.

Kudo, T., and Richardson, J. (2018). “Sentence piece: a simple and language
independent subword tokenizer and Detokenizer for neural text processing.” In
Proceedings of the 2018 conference on empirical methods in natural language
processing: System demonstrations, 66–71. Brussels, Belgium: Association for
Computational Linguistics.

Larcher, C., Piau, M., Finardi, P., Gengo, P., Esposito, P., and Caridá, V. (2023).
Cabrita: closing the gap for foreign languages. arXiv 2023:11878. doi:
10.48550/ARXIV.2308.11878

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.48550/ARXIV.2404.14219
https://doi.org/10.48550/ARXIV.2404.13292
https://doi.org/10.48550/ARXIV.2311.05741
https://doi.org/10.48550/ARXIV.2407.21783
https://doi.org/10.1613/jair.1.12918
https://doi.org/10.48550/ARXIV.2312.00752
https://doi.org/10.48550/ARXIV.2306.11644
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2404.03647
https://doi.org/10.48550/ARXIV.2308.11878

Maksymenko and Turuta 10.3389/frai.2025.1538165

Frontiers in Artificial Intelligence 14 frontiersin.org

Limisiewicz, T., Balhar, J., and Mareček, D. (2023). “Tokenization impacts multilingual
language modeling: assessing vocabulary allocation and overlap across languages.” In
Findings of the Association for Computational Linguistics: ACL 2023, 5661–81. Toronto,
Canada: Association for Computational Linguistics.

Maksymenko, D., Saichyshyna, N., Paprzycki, M., Ganzha, M., Turuta, O., and
Alhasani, M. (2023). Controllability for English-Ukrainian Machine Translation by Using
Style Transfer Techniques, 1059–1068.

Maksymenko, D., Saichyshyna, N., Turuta, O., Turuta, O., Yerokhin, A., and Babii, A.
(2022). “Improving the machine translation model in specific domains for the Ukrainian
language.” In 2022 IEEE 17th international conference on computer sciences and
information technologies (CSIT), pp. 123–129. Lviv, Ukraine: IEEE.

Malteos/Gpt2-UK Hugging Face. (2024). Available online at: https://huggingface.co/
malteos/gpt2-uk.

Marchisio, K., Lewis, P., Chen, Y., and Artetxe, M. (2023). “Mini-model adaptation:
efficiently extending pretrained models to new languages via aligned shallow training.” In
Findings of the Association for Computational Linguistics: ACL 2023, 5474–90. Toronto,
Canada: Association for Computational Linguistics.

Mistral AI Team. (2024). Mistral NeMo. https://mistral.ai/news/mistral-nemo/
(Accessed July 18, 2024).

OpenAIAchiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., et al. (2023). GPT-4
technical report. arXiv 2023:774. doi: 10.48550/ARXIV.2303.08774

Padalko, H., Chomko, V., Yakovlev, S., and Chumachenko, D. (2023). Ensemble
machine learning approaches for fake news classification. Radioelectron. Comput. Syst.
4, 5–19. doi: 10.32620/reks.2023.4.01

Peters, B., and Martins, A. F. T. (2022). “Beyond characters: subword-level morpheme
segmentation.” Proceedings of the 19th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology, pp. 131–138.

Petrov, A., La Malfa, E., Torr, P. H. S., and Bibi, A. (2023). Language model tokenizers
introduce unfairness between languages. arXiv 2023:15425. doi:
10.48550/ARXIV.2305.15425

Rust, P., Pfeiffer, J., Vulić, I., Ruder, S., and Gurevych, I. (2021). “How good is your
tokenizer? On the monolingual performance of multilingual language models.” Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, No. 1: Long
Papers, pp. 3118–3135.

Sachidananda, V., Kessler, J., and Lai, Y. A. (2021). “Efficient domain adaptation of
language models via adaptive tokenization.” In: Proceedings of the second workshop on
simple and efficient natural language processing, 155–65. Virtual: Association for
Computational Linguistics.

Saichyshyna, N., Maksymenko, D., Turuta, O., Yerokhin, A., Babii, A., and Turuta, O.
(2023). “Extension Multi30K: multimodal dataset for integrated vision and language
research in Ukrainian.” In Proceedings of the second Ukrainian natural language
processing workshop (UNLP), 54–61. Dubrovnik, Croatia: Association for
Computational Linguistics.

Starko, V., and Rysin, A. (2023). “Creating a POS gold standard Corpus of modern
Ukrainian.” In Proceedings of the second Ukrainian natural language processing
workshop (UNLP), 91–95. Dubrovnik, Croatia: Association for Computational
Linguistics.

Suárez, O., Javier, P., Romary, L., and Sagot, B. (2020). “A monolingual approach to
contextualized word embeddings for mid-resource languages.” In Proceedings of the
58th annual meeting of the Association for Computational Linguistics,
pp. 1703–1714.

Syvokon, O., Nahorna, O., Kuchmiichuk, P., and Osidach, N. (2023). “UA-GEC:
grammatical error correction and fluency Corpus for the Ukrainian language.” In:
Proceedings of the second Ukrainian natural language processing workshop (UNLP),
96–102. Dubrovnik, Croatia: Association for Computational Linguistics.

Team, G., Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Soricut, R., et al. (2023). Gemini:
a family of highly capable multimodal models. arXiv 2023:11805. doi:
10.48550/ARXIV.2312.11805

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S., Pathak, S., et al.
(2024). Gemma: open models based on Gemini research and technology. arXiv
2024:295. doi: 10.48550/ARXIV.2403.08295

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin, C., Bhupatiraju, S., et al. (2024).
Gemma 2: improving open language models at a practical size. arXiv 2024:118. doi:
10.48550/ARXIV.2408.00118

Tokenizers Encoding. (2025). Available online at: https://hexdocs.pm/tokenizers/
Tokenizers.Encoding.html. (Accessed February 20, 2025).

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., et al. (2023).
Llama 2: open foundation and fine-tuned chat models. arXiv 2023:9288. doi:
10.48550/ARXIV.2307.09288

Xenova/Claude-Tokenizer Hugging Face 2024. (2024). Available onine at: https://
huggingface.co/Xenova/claude-tokenizer.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C., et al. (2024). Qwen2 Technical
Report. arXiv 2024:671. doi: 10.48550/ARXIV.2407.10671

Yenduri, G., Ramalingam, M., Chemmalar Selvi, G., Supriya, Y., Srivastava, G.,
Maddikunta, P. K. R., et al. (2023). “Generative Pre-Trained Transformer: A
Comprehensive Review on Enabling Technologies, Potential Applications, Emerging
Challenges, and Future Directions.” Version 2. Preprint.

https://doi.org/10.3389/frai.2025.1538165
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://huggingface.co/malteos/gpt2-uk
https://huggingface.co/malteos/gpt2-uk
https://mistral.ai/news/mistral-nemo/
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.32620/reks.2023.4.01
https://doi.org/10.48550/ARXIV.2305.15425
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2403.08295
https://doi.org/10.48550/ARXIV.2408.00118
https://hexdocs.pm/tokenizers/Tokenizers.Encoding.html
https://hexdocs.pm/tokenizers/Tokenizers.Encoding.html
https://doi.org/10.48550/ARXIV.2307.09288
https://huggingface.co/Xenova/claude-tokenizer
https://huggingface.co/Xenova/claude-tokenizer
https://doi.org/10.48550/ARXIV.2407.10671

	Tokenization efficiency of current foundational large language models for the Ukrainian language
	1 Introduction
	2 Related research
	3 Materials and methods
	3.1 Datasets
	3.2 Model selection and evaluation metrics

	4 Experiment planning
	5 Results
	5.1 Vocabulary metrics
	5.2 Alphabet knowledge test
	5.3 Tokenization fertility measurement in the general domain
	5.4 Tokenization of domain-specific texts for fertility measurement
	5.5 Influence of mistakes on tokenization fertility
	5.6 Tokenization fertility measurement with Latin transliteration
	5.7 Grammar case tokenization

	6 Discussion
	7 Limitations

	References

