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Background: The rapid advancement of technology has brought numerous 
benefits to public health but has also contributed to a rise in sedentary lifestyles, 
linked to various health issues. As prolonged inactivity becomes a growing 
public health concern, researchers are increasingly utilizing machine learning 
(ML) techniques to examine and understand these patterns. ML offers powerful 
tools for analyzing large datasets and identifying trends in physical activity and 
inactivity, generating insights that can support effective interventions.

Objectives: This review aims to: (i) examine the role of ML in analyzing sedentary 
patterns, (ii) explore how different ML techniques can be optimized to improve 
the accuracy of predicting sedentary behavior, and (iii) assess strategies to 
enhance the effectiveness of ML algorithms.

Methods: A comprehensive search was conducted in PubMed and Scopus, 
targeting peer-reviewed articles published between 2004 and 2024. The search 
included the subject terms “sedentary behavior,” “sedentary lifestyle health,” 
and “machine learning sedentary lifestyle,” combined with the keywords 
“physical inactivity” and “diseases” using Boolean operators (AND, OR). Articles 
were included if they addressed the health impacts of sedentary behavior or 
employed ML techniques for its analysis. Exclusion criteria involved studies older 
than 20 years or lacking direct relevance. After screening 33 core articles and 
identifying 13 more through citation tracking, 46 articles were included in the 
final review.

Results: This narrative review describes the characteristics of sedentary behavior, 
associated health risks, and the applications of ML in this context. Based on 
the reviewed literature, sedentary behavior was consistently associated with 
cardiovascular disease, metabolic disorders, and mental health conditions. The 
review highlights the utility of various ML approaches in classifying activity levels 
and significantly improving the prediction of sedentary behavior, offering a 
promising approach to address this widespread health issue.

Conclusion: ML algorithms, including supervised and unsupervised models, 
show great potential in accurately detecting and predicting sedentary behavior. 
When integrated with wearable sensor data and validated in real-world 
settings, these models can enhance the scalability and precision of AI-driven 
interventions. Such advancements support personalized health strategies 
and could help lower healthcare costs linked to physical inactivity, ultimately 
improving public health outcomes.
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1 Introduction

A sedentary lifestyle, characterized by participation in low-energy 
activities such as watching television, sitting, or using electronic 
devices, with energy expenditures of ≤1.5 METs (metabolic 
equivalents), is recognized as a significant global health concern 
(Teychenne et  al., 2015; Liu et  al., 2016). The physical inactivity 
associated with modern lifestyles has been linked to an increased risk 
of developing cardiovascular diseases, including type 2 diabetes, 
strokes, and heart attacks, as well as cognitive disorders like dementia 
and cancers such as colorectal and breast cancer (WHO, 2024). 
Conversely, regular physical activity has been shown to improve 
functional capacity, reduce the risk of chronic diseases, support weight 
management, and provide psychological benefits, including reduced 
anxiety and depression and improved mood (An et al., 2020). As a 
result, health professionals emphasize the importance of increasing 
physical activity levels and reducing prolonged inactivity behavior 
(Katzmarzyk, 2010). Light physical activity is typically characterized 
by energy expenditures of 1.6–2.9 METs, moderate activity by 3–5.9 
METs, and strenuous activity by 6 METs or greater. These thresholds 
serve as guidelines for promoting healthier, more active lifestyles 
(Newton et al., 2013).

According to the World Health Organization (WHO), 
approximately 31% of adults worldwide (1.8 billion people) did not 
meet the recommended physical activity levels in 2022, and this 
figure is projected to rise to 35% of the global population by 2030 
(WHO, 2024). Several factors contribute to low participation in 
physical activity, including environmental barriers such as air 
pollution, traffic congestion, limited access to sports or recreational 
facilities, and a lack of parks and pedestrian walkways (World 
Health Organization, 2020). Furthermore, excessive screen time, 
including video viewing, television watching, and cell phone usage, 
further exacerbates the issue (Fennell et  al., 2019). The rapid 
advancement of technology over recent years has significantly 
reduced physical activity, contributing to negative health 
outcomes. As a result, the relationship between physical activity 
and health has become a central focus of research (Hamilton 
et al., 2008).

Over the years, the application of machine learning (ML) has 
played an important role in investigating several research problems. 
ML is a data-driven approach designed for problem-solving, 
particularly adept at managing complex and high-dimensional 
datasets (Bellazzi et al., 2011; Rajpurkar et al., 2022; Wiemken and 
Kelley, 2020; Haug and Drazen, 2023). As a subfield of artificial 
intelligence, ML encompasses a diverse set of methodologies aimed at 
recognizing patterns and learning from data (Haug and Drazen, 2023; 
Javaid et al., 2022). It focuses primarily on pattern recognition and 
predictive modeling, enabling the extraction of insights and 
predictions from vast and intricate datasets (Haug and Drazen, 2023; 
Javaid et al., 2022). This makes ML a valuable asset in the study of 
sleep behavior, physical activity, and sedentary lifestyle patterns, 
where it can uncover nuanced relationships and provide evidence-
based insights (Farrahi and Rostami, 2024).

In the context of physical activity, ML techniques have been 
predominantly employed to estimate energy expenditure, quantify 
movement intensity, and classify activity types using data derived 
from wearable devices (Farrahi et  al., 2019; Freedson et  al., 2012; 
Narayanan et al., 2020). For example, accelerometers worn on the 
thigh and hip have demonstrated high accuracy in identifying sit-to-
stand transitions and detecting sitting patterns, providing detailed 
insights into sedentary behavior and postural transitions (Greenwood-
Hickman et al., 2021). These capabilities underscore the utility of ML 
in analyzing complex movement data, offering precise assessments of 
physical activity and related health outcomes. Additionally, several 
studies have utilized decision trees, ML algorithms, and random forest 
techniques to automatically sift through extensive sets of potential 
predictors, identifying the most influential factors related to physical 
activity and sedentary behaviors (Biswas et al., 2023; Cheng et al., 
2020; Buck et al., 2019). This approach enhances the ability to pinpoint 
critical variables, facilitating targeted interventions and advancing our 
understanding of behavioral patterns linked to health.

Since sedentary behavior may lead to different diseases, it is 
important to classify different activities accurately, which requires 
further research as that can aid in assessing and predicting sedentary 
behaviors. Although machine learning has played a pivotal role in the 
research on sedentary lifestyle using approaches based on steps 
counting and analyzing wearable sensors, the algorithms have not 
been often tested in completely free-living conditions. Hence, there is 
a need to test the machine learning algorithms under completely free-
living conditions.

The purpose of this review was (i) to explore the understanding 
of a sedentary lifestyle and its health implications, (ii) to investigate 
the effectiveness of machine learning approaches in studying 
sedentary behaviors, and (iii) to access the measures required to 
further improve the effectiveness of machine learning algorithms.

2 Materials and methods

The search strategy involved a comprehensive database search of 
PubMed and Scopus using the subject terms “sedentary behavior,” 
“sedentary lifestyle health,” and “machine learning sedentary lifestyle.” 
These databases were selected because they primarily include articles 
from peer-reviewed, high-quality journals that adhere to the highest 
academic standards. Only the publications of the last 20 years (from 
2004 to 2024) were included.

To accomplish the goal of researching the impact of sedentary 
lifestyle on health, the subject terms “sedentary behavior” and 
“sedentary lifestyle health” were combined with the keywords 
“physical inactivity” and “diseases” using Boolean operators (AND, 
OR). Then, to explore the role of machine learning in studying 
sedentary lifestyle, the subject term used was “machine learning 
sedentary lifestyle”; it was combined with the keyword “physical 
inactivity” with the Boolean operators (AND, OR). To explore the role 
of machine learning techniques in analyzing sedentary lifestyle, 
emphasis was placed on articles with case studies.
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The exclusion criterion was that the article should not be over 
20 years old. The studies used in the review were based on the 
relevance with regards to the health effects of a sedentary lifestyle and 
the use of different machine learning approaches in studying 
prolonged inactivity lifestyles; ergo, any study not specifically 
constituting that was not included in the review.

From the initial database search, a total of 33 articles were 
initially identified from PubMed and Scopus using defined search 
terms and Boolean logic. After applying inclusion/exclusion 
criteria (peer-reviewed, post-2004, direct relevance to sedentary 
behavior and ML), we  screened abstracts and full texts. An 
additional 13 articles were included through citation tracking, 
bringing the total to 46. Screening was done independently by 
two reviewers.

3 Understanding sedentary lifestyle

A sedentary lifestyle involves behaviors constituting low 
levels of energy expenditure defined by metabolic equivalent task 
(MET) values, defined as a multiple of resting energy expenditure 
(REE) and typically represented as 3.5 mL/kg/min (Farrahi and 
Rostami, 2024; Saint-Maurice et  al., 2016). Typically, physical 
activity is defined based on MET values with 1.5- < 3 METs for 
light exercise, 3- < 6 METs for moderate activity and >6 METs for 
vigorous activity (Saint-Maurice et al., 2016). Sedentary behavior 
can be generally defined as sitting or reclining with the energy-
expenditure range of around 1.0 to 1.5 METs (Owen, 2012). Some 
examples of sedentary behavior include watching television, 
playing video games, using a computer, and sitting at school/
work or while commuting. As societies have modernized and 
technology has advanced, the reliance on technology has 
escalated resulting in high sedentary behavior engagement 
(Waters et  al., 2016). This prevalence of prolonged inactivity 
lifestyle globally poses a big health risk.

4 Health implications of sedentary 
lifestyles

The understanding of inactivity-driven lifestyle in the context of 
disease holds significance in investigating the impact of physical 
activity on health and in designing relevant interventions. Prolonged 
times of sedentary behavior are associated with poor disease 
outcomes, and it can lead to several diseases (Park et al., 2020).

4.1 Cardiovascular diseases

Sedentary lifestyle is associated with cardiovascular diseases and 
premature mortality (Park et al., 2020). Three articles in our review 
highlighted the association between cardiovascular diseases and 
sedentary lifestyle. One study revealed that the risk of all-cause 
mortality increases as the total daily sedentary time and television 
viewing time increase (Katzmarzyk et  al., 2019). The detrimental 
impact of inactivity-driven lifestyle behavior was found to be more 
evident among people involved in little physical activity relative to 
those doing frequent physical activity (Biswas et al., 2015). The relative 

risk for all-cause mortality was 30% higher in individuals with high 
physical activity as compared to individuals with low physical activity 
(Biswas et al., 2015).

4.2 Metabolic disorders

Sedentary lifestyle has been found to significantly link with 
metabolic diseases (Park et al., 2020). Seven articles in our review 
have linked metabolic disorders with sedentary behaviors. The 
prevalence of type 2 diabetes mellitus increases as the sedentary 
time increases (Biswas et al., 2015). In that, the level of physical 
activity does not influence the effect of prolonged sedentary time 
on the risk for diabetes mellitus. With that, the problem of 
hypertension (high blood pressure) rises with increase in sedentary 
time. Prolonged sedentary time reduces the metabolic demands and 
systemic blood flow while increasing oxidative stress and promoting 
low-grade inflammatory cascade (Dempsey et  al., 2018); 
hypertension is a significant risk factor for cardiovascular disease. 
Additionally, sedentary lifestyle increases the risk of metabolic 
dysfunction signified by increases blood triglyceride levels, reduced 
HDL-cholesterol levels, and diminished insulin sensitivity 
(Hamilton et al., 2007). A study found that the risk for dyslipidemia, 
imbalance of lipids like triglycerides and cholesterol, increases in 
both men and women due to sedentary behaviors (Zhou et  al., 
2017). In terms of metabolic diseases, sedentary lifestyle 
significantly affects obesity as well (Park et al., 2020). One study 
revealed that the waist circumference increased by 3.1 cm as the 
sedentary time increased by 10% (Healy et al., 2008). Another study 
found that the cause of weight gain is prolonged sedentary time 
(Ohlsson et al., 2020).

4.3 Cancer risks

Sedentary lifestyle also connects with the prevalence of cancer 
(Park et al., 2020). Six articles in our review have correlated cancer with 
sedentary lifestyle. One study found that the cancer risk in the group 
with the longest sedentary time was 13% higher relative to the group 
with the shortest sedentary time (Biswas et al., 2015). Sitting for longer 
periods of time increases cancer risks, including colorectal, ovarian and 
prostate cancers; it has also been found to increase cancer mortality, 
especially in women (Lynch, 2010). Television viewing time has also 
been reported to increase the risk of colon cancer and endometrial 
cancer (Schmid and Leitzmann, 2014). A plausible explanation of 
sedentary behavior correlating with hormone-related cancers like 
breast and endometrial cancers is that sedentary behavior results in 
metabolic dysfunctions, which includes changes in the circulation 
levels of sex hormones; that alteration might lead to hormone-related 
cancers (Tworoger et al., 2007). Additionally, as mentioned earlier, 
sedentary lifestyle contributes significantly to obesity which, in turn, is 
a risk factor for several cancers (Jochem et al., 2019).

4.4 Osteoporosis

Sedentary behavior is also positively associated with 
osteoporosis, a bone disease that occurs when bone mineral 
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density and bone mass decrease (Park et al., 2020). There are less 
studies investigating the association between osteoporosis and 
sedentary behavior; our review has included two such articles. 
One study found that the bone mineral density of the total femur 
correlated negatively with the sedentary time in adult women 
(Chastin et al., 2014). The duration (and not the frequency) of 
sedentary behavior was shown to impact bone mineral density; 
sedentary behavior did not show significant correlation with bone 
mineral density of the hip and spine in men (Chastin et al., 2014).

4.5 Musculoskeletal issues

Sedentary lifestyle has been linked with musculoskeletal 
diseases too (Park et  al., 2020). Two articles included in this 
review have highlighted the link of musculoskeletal diseases with 
sedentary lifestyle. One study revealed that the incidence of 
chronic knee pain was higher in individuals with longer sedentary 
times (Lee et al., 2019). In cases where sedentary time was greater 
than 10 h a day was significantly correlated with chronic 
knee pain; based on that, the study has recommended individuals 
to keep their sedentary times less than 10 h a day  
(Lee et al., 2019).

4.6 Mental health

Sedentary behavior is also associated with depression (Park 
et al., 2020). Two articles in our review have shown the correlation 
between sedentary behaviors and depression. The articles have 
divided sedentary behaviors into two categories: mentally passive 
and mentally active. The mentally passive sedentary behaviors 
that include television viewing, listening to music, sitting and 
talking while sitting were shown to have a positive correlation 
with depression risks; on the other hand, mentally active sedentary 
behaviors like reading books or newspapers, driving, attending a 
meeting were shown to not have a significant correlation with 
depression risk (Huang et al., 2020). One possible explanation of 
this trend in the correlation is that the sedentary behaviors may 
increase the risk for depression by blocking direct communication 
and reducing social interactions, or by decreasing the time that 
could be  spent in physical activities which aid in preventing 
depression (Huang et al., 2020).

4.7 Overview of health risks of sedentary 
lifestyle

It can be observed that sedentary behaviors can drastically impact 
the health of individuals which calls for more research on this lifestyle 
upon which relevant interventions can be developed to mitigate its 
impact. Over the years, machine learning has played a significant role 
in classifying activities and in accurately predicting sedentary 
behaviors. Sedentary behavior has been linked to numerous health 
risks, including cardiovascular diseases, metabolic disorders, and 
mental health conditions. Table  1 summarizes these health 
implications, highlighting the association between sedentary behavior 
and various disease outcomes.

5 Machine learning methodologies

There are different machine learning techniques that have been 
used for the classification of activities. In this review, we will be briefly 
covering 11 different classification techniques.

5.1 Threshold-based classification

5.1.1 Mechanism
Threshold-based classification uses predefined numerical 

thresholds applied to derived features (e.g., angles, acceleration values) 
to categorize human activity (Preece et al., 2009; Najafi et al., 2003). A 
threshold is set in advance, and sensor-derived values are compared 
against it to classify posture or motion. For example, accelerometer 
data can be  used to distinguish between static postures such as 
standing, sitting, and lying based on the orientation angles of the body 
(Boyle et al., 2006; Coley et al., 2005; Culhane et al., 2004).

5.1.2 Application and limitations
This technique has been widely adopted for sedentary behavior 

analysis. It has shown notable success in fall detection, despite the fact 
that falls represent extreme postural changes (Boyle et al., 2006). One 
commonly used feature is the rapid deceleration point upon ground 
contact, which marks the moment of fall (Chen et al., 2005). Studies 
have reported improved detection accuracy when combining multiple 
threshold rules (Chen et al., 2005; Lindemann et al., 2005; Hwang 
et  al., 2004; Bourke and Lyons, 2008). However, the method has 

TABLE 1 The health implications of sedentary behavior.

Disease Impact of sedentary behavior Studies

Cardiovascular Chances of all-cause mortality increase Katzmarzyk et al. (2019)

Metabolic Risk of type 2 diabetes mellitus, hypertension, dyslipidemia and obesity 

increase

Biswas et al. (2015), Dempsey et al. (2018), Zhou et al. 

(2017), and Healy et al. (2008)

Cancer Cancer risk increases, especially for hormone-related cancers. Since 

obesity is impacted, that also contributes to several cancers

Tworoger et al. (2007) and Jochem et al. (2019)

Osteoporosis Duration of sedentary behavior can impact bone mineral density Chastin et al. (2014)

Musculoskeletal Longer sedentary times can lead to musculoskeletal diseases Lee et al. (2019)

Mental health Mentally passive sedentary behaviors have a positive correlation with 

depression risks

Huang et al. (2020)
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limitations. It is highly sensitive to sensor placement and device 
orientation, which may affect classification reliability. Furthermore, 
the approach often requires manual calibration for each user, making 
it less adaptable to heterogeneous populations. Lastly, threshold-based 
models struggle with recognizing complex transitions or dynamic 
sequences of movement.

5.2 Hierarchical methods

5.2.1 Mechanism
Hierarchical classification structures decisions into a series of 

binary steps arranged in a tree-like architecture, where each node 
makes a specific classification based on selected features (Preece et al., 
2009). These decision nodes are typically handcrafted and reflect 
domain knowledge, often requiring careful tuning through manual 
inspection of training data (Preece et  al., 2009). The hierarchical 
model divides the classification task into simpler subproblems, 
allowing for stepwise refinement of predictions. This approach has 
been used to handle complex activity recognition tasks by structuring 
classifiers first to detect general activity classes, followed by more 
detailed differentiation in subsequent layers.

5.2.2 Application and limitations
This approach has been used to distinguish between eight different 

dynamic activities by applying a threshold-based hierarchical 
classification scheme (Parkka et al., 2006). Karantonis et al. (2006) 
proposed using embedded intelligence in this approach to make it 
computationally efficient and simplified, with a high potential of 
accurately detecting real-time falls. Although this layered structure 
enhances modularity and real-time deployment, it also introduces 
limitations such as error propagation through the tree and high 
reliance on expert-defined rules. These constraints reduce scalability 
and make it difficult to adapt the system to different sensors or 
demographic groups.

5.3 Decision trees

5.3.1 Mechanism
Decision tree algorithms function by recursively splitting a dataset 

into branches based on the discriminative power of selected features, 
ultimately forming a tree-like structure of rules that lead to 
classification outcomes (Webb, 2002; Duda et al., 2000). At each node, 
the algorithm evaluates which feature provides the best separation of 
activity types, continuing the process until terminal nodes (leaves) 
represent a final classification label. This method is intuitive and 
interpretable, allowing researchers to visualize the flow of decision 
logic and understand how the model reaches its conclusions.

5.3.2 Application and limitations
In sedentary behavior research, decision trees have been used to 

distinguish among a wide variety of activities using both time- and 
frequency-domain features. One study achieved 86% classification 
accuracy across 20 different activities using five sensors (Bao and 
Intille, 2004). Another investigation focused on six daily activities and 
demonstrated that using time-domain features alone reduced 
computational complexity while maintaining strong performance 

(Maurer et al., 2006). Although decision trees are efficient and easy to 
implement, they are prone to overfitting, particularly when working 
with noisy or high-dimensional sensor data. Additionally, their 
performance can degrade when the training dataset lacks 
representative variation, limiting generalizability across different users 
and conditions.

5.4 k-nearest neighbor

5.4.1 Mechanism
The k-nearest neighbor (kNN) algorithm classifies data points 

based on their proximity to other labeled instances within a multi-
dimensional feature space (Duda et  al., 2000; Theodoridis and 
Koutroumbas, 2006). Each axis in this space represents a different 
sensor-derived feature, and the training data collectively define the 
landscape (Bussmann et  al., 2001). When a new data point is 
introduced, the algorithm identifies the k most similar points—its 
“neighbors”—and assigns the majority class label among them to the 
unknown point. This method is non-parametric and instance-based, 
meaning it makes no assumptions about the data distribution and 
performs classification only at query time.

5.4.2 Application and limitations
In the context of sedentary behavior, kNN has been applied to 

detect falls by distinguishing them from normal daily movements. 
One study demonstrated the feasibility of using kNN for reliable and 
efficient fall detection, showing its potential utility for monitoring 
elderly populations where timely fall response is critical (Zhang et al., 
2006). However, kNN’s reliance on distance calculations makes it 
computationally expensive with large datasets, and its performance 
can be  sensitive to feature scaling and irrelevant dimensions. 
Moreover, it lacks an internal model, making it less interpretable and 
slower compared to tree-based methods during prediction.

5.5 Artificial neural networks

5.5.1 Mechanism
Artificial neural networks (ANN) represent complicated 

relationships between the inputs and outputs, independent and 
dependent variables, respectively (Preece et al., 2009). Training data is 
employed for the optimization process so that known outputs can 
be predicted for a given set of inputs; an ANN can then be used to 
obtain outputs for any set of inputs (Preece et al., 2009). The inputs are 
the different features, while the outputs are the different classes of 
activities (Aminian et al., 1995; Goulermas et al., 2008; Goulermas 
et al., 2005). There are different classes of ANNs aimed at improving 
the classification accuracy (Preece et al., 2009).

5.5.2 Application and limitations
One study drew a comparison between pulsed neural networks 

(PNN), which uses inputs from tilt switches, and an approach using 
standard accelerometer data and a self-organizing map; the researchers 
concluded that even though tilt switches did not outperform the 
approach using accelerometer data, the accuracy of the approach was 
still good for different daily activities (Laerhoven and Gellersen, 2004). 
Nevertheless, ANNs require large, labeled datasets for training and are 
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computationally intensive, often necessitating the use of external 
servers or cloud processing. Additionally, their black-box nature 
makes them difficult to interpret, which can be a concern in clinical 
settings where transparency and model explainability are critical.

5.6 Support vector machines

5.6.1 Mechanism
Support vector machines (SVMs) are supervised learning models 

that construct optimal decision boundaries—called hyperplanes—
between classes in a feature space, maximizing the margin between 
the closest data points of each class (Cristianini and Shawe-Taylor, 
2001; Vapnik, 1998). The algorithm can project the original feature 
space into a higher-dimensional space using kernel functions, 
allowing for more complex, non-linear separations. This optimization-
based approach enables precise classification even in high-dimensional 
settings, making SVMs particularly powerful for activity recognition 
tasks that involve subtle distinctions in movement.

5.6.2 Application and limitations
Not many studies have employed SVMs, although the few studies 

that have applied have shown great promise. The most comprehensive 
study by Zhang et al. (2006) involved the collection of data from a 
tri-axial accelerometer embedded in a cellphone placed in the pocket 
of clothes or hung on the neck of individuals; the results revealed that 
this method can detect falls effectively with an accuracy of 92.4% for 
activities constituting critical movement and 84.4% for high-intensity 
daily activities (Zhang et al., 2005). However, SVMs require careful 
tuning of hyperparameters and kernel functions, and their 
performance may degrade when working with overlapping classes or 
limited training data, which are common challenges in real-world 
wearable sensor datasets.

5.7 Naive Bayes and Gaussian mixture 
models

5.7.1 Mechanism
The Bayesian approach to classification estimates the posterior 

probability of an activity class given the observed data, based on the 
likelihood of signal patterns and the prior distribution of each class 
(Preece et al., 2009). Naïve Bayes simplifies this process by assuming 
that all input features are conditionally independent, allowing the 
model to compute class probabilities as the product of individual 
feature likelihoods. A more generalized form, such as discriminant 
analysis, accounts for cross-feature correlations, while Gaussian 
mixture models (GMMs) extend this by modeling each activity’s 
feature distribution as a mixture of multiple Gaussian components 
with unknown parameters (Preece et  al., 2009; Duda et  al., 2000; 
Theodoridis and Koutroumbas, 2006).

5.7.2 Application and limitations
In activity classification tasks, GMMs have been used to model 

time-domain features for multiple movements. One study applied 
subject-specific GMM training and selected the model with the 
highest likelihood to classify new data (Allen et al., 2006). This method 
proved efficient when adapted to individual users. Naïve Bayes and 

GMMs are computationally lightweight and easy to implement, 
making them attractive for embedded systems. However, the 
independence assumption in Naïve Bayes often fails in practical 
sensor data, limiting its accuracy, while GMMs require a good 
estimate of the number and shape of the Gaussian components, which 
may vary widely across individuals and behaviors.

5.8 Fuzzy logic

5.8.1 Mechanism
Fuzzy logic, derived from fuzzy set theory, enables reasoning with 

imprecise or uncertain data—ideal for human activity recognition 
where exact thresholds may not always apply (Preece et al., 2009). In 
this system, input features from body-worn sensors are assigned 
degrees of membership to activity classes through membership 
functions that range between 0 and 1. These fuzzy memberships are 
then evaluated through if–then rules to produce a degree of 
confidence, or “fuzzy truth,” for each potential class. The activity with 
the highest fuzzy truth is typically chosen as the final classification.

5.8.2 Application and limitations
Fuzzy logic has shown unique promise in sedentary behavior 

analysis due to its flexibility in handling ambiguous input, such as 
subtle postural shifts or overlapping movement patterns. Its tolerance 
for uncertainty makes it particularly suitable for real-world 
applications, where sensor data is noisy and incomplete (Preece et al., 
2009). However, fuzzy systems rely on hand-crafted rule sets and 
membership functions, which require expert domain knowledge and 
limit scalability. Tuning these rules for diverse populations or varying 
sensor placements remains a challenge.

5.9 Markov chains and hidden Markov 
models

5.9.1 Mechanism
Markov chain holds distinction in the fact that it can be used to 

represent the likelihood of transitions between different activities; each 
activity is represented as a different state (Preece et al., 2009). However, 
in the case of hidden Markov model (HMM), the state of the model at 
a given time is not known and only observable parameters depending 
on the state can determine that; HMM can be used directly for activity 
classification problems (Preece et al., 2009; Pober et al., 2006; Ward 
et al., 2006; Lester et  al., 2006; Lester et  al., 2005). The observable 
parameters constitute features obtained from the body-sensor data, in 
which the states represent different activities (Preece et  al., 2009). 
Another factor distinguishing HMM from Markov chains is that states 
in HMM can correspond to more than one activity (Preece et al., 2009; 
Pober et al., 2006; Ward et al., 2006; Lester et al., 2006; Lester et al., 
2005). The example data is used to train HMM, which can then be used 
to establish the most likely sequence of state transitions that may have 
led from an observed sequence of features (Pober et al., 2006; Ward 
et al., 2006; Lester et al., 2006; Lester et al., 2005).

5.9.2 Application and limitations
HMMs have been employed in sedentary behavior classification 

both as standalone models and within multi-stage classification 
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pipelines. They have been used to recognize sequences of movement 
and transitions between postures, enabling insight into the dynamics 
of inactivity. In contrast, simple Markov chains have been applied in 
cases where only transition probabilities between activities are needed, 
useful in analyzing periods of prolonged sedentary behavior (Preece 
et al., 2009; Krause et al., 2012). Despite their strengths in temporal 
modeling, HMMs have limitations such as the need for large, annotated 
datasets, difficulty in parameter estimation, and high computational 
cost when scaled to complex activities or multi-sensor inputs. While 
traditional probabilistic models like HMMs offer interpretability, 
recent deep learning architectures such as DeepSense have emerged as 
powerful alternatives for processing time-series data from wearable 
sensors. These frameworks combine convolutional and recurrent layers 
to capture both spatial and temporal features, improving classification 
accuracy in human activity recognition tasks (Yao et al., 2017).

5.10 Combining classifiers

5.10.1 Mechanism
Classifier fusion—also known as ensemble learning—combines the 

outputs of multiple base classifiers to improve overall performance 
(Preece et al., 2009). Techniques such as bagging, boosting, and stacking 
can be used to generate meta-level predictions that often outperform 
any single method (Webb, 2002; Theodoridis and Koutroumbas, 2006; 
Ravi et al., 2005). These ensembles can combine classifiers of the same 
type or mix heterogeneous models like decision trees, SVMs, and kNN.

5.10.2 Application and limitations
A pilot study by Ravi et al. (2005) tested a meta-classification 

system on data from two subjects performing eight activities. Five 
base-level classifiers—decision trees, decision tables, kNN, SVM, and 
Naïve Bayes—were compared to boosted and stacked ensemble 
methods (Ravi et  al., 2005). The study found that boosted SVMs 
achieved the highest accuracy across different data partitions (Ravi 
et  al., 2005). While ensemble approaches can enhance predictive 
accuracy and generalizability, they come at the cost of increased 
complexity and computational demand, making real-time 
implementation more challenging on resource-limited devices.

5.11 Unsupervised learning

5.11.1 Mechanism
Unsupervised learning does not involve any activity labels for 

each data window. It is used for the identification of clusters of related 
patterns in the feature space (Duda et  al., 2000; Theodoridis and 
Koutroumbas, 2006).

5.11.2 Application and limitations
The benefit such techniques bring is that exploratory data analysis 

and investigation of the significance of individual features can be done 
(Preece et al., 2009; Duda et al., 2000; Theodoridis and Koutroumbas, 
2006), which makes it much more specific in terms of analyzing 
prolonged physical inactivity. The unsupervised approach can also 
be combined with the supervised approach; consequently, off-the-shelf 
systems can be developed that can be trained by the user with periodic 
input (Preece et  al., 2009). As a result, considerable flexibility and 

acquaintance with new scenarios faced by the real-world user can 
be accomplished (Preece et al., 2009). Moreover, unsupervised learning 
can be used as the initial stage of a system for detecting adverse events 
that are different from typical daily activity patterns (Preece et al., 2009).

In sedentary behavior research, unsupervised learning has been 
used to discover new activity patterns or identify anomalies such as 
unusual postural transitions. It also enables flexible systems that adapt 
to new environments by learning from user-provided feedback over 
time. One study demonstrated that unsupervised methods could serve 
as a first-stage classifier, flagging deviations from normal activity that 
may warrant further analysis (Van Laerhoven and Cakmakci, 2000). 
Although useful for personalization and novelty detection, these 
methods lack direct interpretability and may struggle to assign 
semantic meaning to discovered clusters without some level of 
supervision or contextual knowledge.

6 Summary of machine learning 
techniques

As technology has advanced over the years, machine learning has 
played a pivotal role in issues related to public health. Machine learning 
has been extensively used to study sedentary lifestyle and the health 
issues linked with it. Numerous machine learning algorithms that 
include k nearest neighbor (kNN), artificial neural networks (ANN), 
decision trees, Markov models, fuzzy logic, and support vector machines 
(SVM) have been utilized for the classification of physical activity; after 
comparing the performance characteristics of 11 different machine 
learning approaches mentioned above (Table 2), Preece et al. (2009) 
concluded that no classifier stands out as the best for a given activity 
classification problem. No single algorithm can be deemed the best given 
the fact that different classifiers are best for different problems. With 
many techniques being used on a small number of subjects, the need of 
the time is that future studies include a higher number of subjects 
(Preece et al., 2009).

7 Clinical predictive performance

7.1 Precision of machine learning in 
predicting sedentary behaviors

Machine learning has turned out to be  a powerful tool to 
transform motion signals from wearable devices into different 
variables like postures, sedentary behaviors, and sleep (de Almeida 
et al., 2018). Machine learning techniques have resulted in more 
accurate measurement and classification of more sophisticated 
movements and postures from wearables (Farrahi et al., 2019). A 
systematic review focusing on the accuracy of machine learning 
models for activity prediction stated that these algorithms have 
the capacity to predict activity types accurately, irrespective of the 
site where accelerometer-based activity monitor is placed on the 
body (Farrahi et  al., 2019). Ensemble methods that combine 
several ML algorithms have also shown promise in this field 
(Chowdhury et  al., 2017). Moreover, the evolution of deep 
learning techniques—such as convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs)—has significantly 
advanced time-series classification in human activity recognition 
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(Ismail Fawaz et  al., 2019), highlighting the potential of such 
methods for more refined predictions in sedentary 
behavior analysis.

Machine learning analysis of wearable sensors during daily life 
activities can help recognize sedentary behaviors (Kańtoch, 2018). 
One study worked on recognizing sedentary behavior by using the 
combination of data from smart shirt, individual factors, and 
machine learning algorithms (Kańtoch, 2018). The goal was to 
develop the method of automatic recognition of sedentary 
behavior with respect to cardiovascular risk by quantitative 
measurement of physical activity; for that, the idea was to design 
prototype of a smart shirt equipped with a processor, wearable 
sensors, power supply and telemedical interface (Kańtoch, 2018). 
The results showed that the method proposed could quantitatively 
measure sedentary behavior without restricting daily activities; 
the experimental results also evinced that machine learning 
approach can estimate sedentary behavior with high accuracy 
(Kańtoch, 2018). Reported accuracy rates across studies ranged 
from 84 to 92.4% for ML-based activity classification. For 
instance, Zhang et al. (2006) achieved 92.4% accuracy using an 
SVM model for fall detection. Decision trees in Bao and Intille’s 
(2004) study reached 86% accuracy in classifying 20 physical 
activities. Ensemble models, such as boosted SVM and CNN-based 
approaches, demonstrated superior prediction performance and 
reduced false positives in next-day sedentary behavior forecasting.

In another study, steps counting-based machine learning 
approach was used for the prediction of sedentary behavior 
(Papathomas et al., 2021). The objective was to analyze historical 
data from numerous individuals who used wearable physical 
activity trackers and explore the performance of four machine 
learning algorithms, namely logistic regression, random forest, 
XGBoost, and convolutional neural networks, and a majority vote 
ensemble of the algorithms (Papathomas et al., 2021). The results 

revealed that all models could effectively predict the next-day 
sedentary behavior; however, the ensemble model proved to 
be  the best since it was more effective in predicting sedentary 
behavior and reducing false positives (Papathomas et al., 2021). 
Therefore, in designing appropriate interventions to tackle the 
issue of sedentary behavior, it can play a pivotal role.

With that, the increasing popularity of causal machine 
learning (CML) holds promise in the studies investigating health-
related behaviors as it explores the reason why some people 
engage in healthier behaviors (Farrahi and Rostami, 2024). CML 
has the capability of investigating how a system would react to an 
intervention, meaning that the outcome can be predicted based 
on the treatment. When the effects of interventions can 
be quantified, actionable decisions can be made while maintaining 
robustness when confounders (variables that impact both 
dependent and independent variables) are present (Sanchez et al., 
2022)—this adds to the effectiveness of machine learning in 
exploring health-related behaviors. Furthermore, with the 
widespread availability of open-source languages like Python and 
R, the application of machine learning by coding has become 
more accessible than ever (Raschka et  al., 2020). Moreover, 
explainable artificial intelligence (XAI) is an active field of 
research (Loh et al., 2022). It is a technique which can provide 
confidence in the model’s prediction since it focuses on how the 
prediction is derived, which encourages the use of AI systems in 
healthcare (Loh et  al., 2022). Therefore, machine learning can 
prove to be a useful tool to predict sedentary behavior.

8 Challenges and future direction

Despite the high potential of machine learning approach in 
studying sedentary lifestyle, there are some challenges and limitations 

TABLE 2 Machine learning techniques and their corresponding principles.

Machine learning 
technique

Principle

Threshold-based classification Derived feature compared with the threshold that is determined beforehand in order to classify the activity

Hierarchical methods Binary decision structure based on input features

Decision trees Set of rules formed based on the discriminatory ability of the features one by one

k-nearest neighbor Multi-dimensional feature space formed; k-nearest points of training data identified and majority of k-nearest neighbors 

corresponding to a specific activity determine the classification

Artificial neural networks Different features constitute the input while different classes of activity represent the output

Support vector machines Based on extracting optimal separating decision hyperplanes between classes with the maximum margin between patterns of each 

class

Naïve Bayes and Gaussian mixture 

models

Bayesian approach based on estimated conditional probabilities of signal patterns available from each activity class, and the input 

features considered independent of each other; Gaussian similar except that the likelihood function assumed to be of unknown 

shape and functional form

Fuzzy logic Each input assigned the membership of a fuzzy class; application of rules (if-then statements) then produce a corresponding 

output

Markov chains and hidden Markov 

models

Each activity represented as a different state; can be used to represent the likelihood of transitions between different activities

Combining classifiers Based on combining output using different techniques

Unsupervised learning Involves no activity labels for each data window; used for the identification of clusters of related patterns in the feature space
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that need to be addressed. For the analysis of sedentary behavior, the 
most commonly used wearable devices are activPAL, ActiGraph, and 
Active style Pro; instead of being integrated with clothes, these devices 
attach to the body using elastic belts leading to different outputs 
making it difficult to compare them (Sasai, 2017). Additionally, in most 
cases, when wearable devices are used to analyze sedentary behavior, 
the contextual information cannot be detected, and the computation is 
time-consuming (Sasai, 2017). Specifically, with regards to the use of 
smartwatches, the battery life, cost and optimizing hardware tend to 
be the fetters (Rawassizadeh et al., 2014). With that, while wearing a 
smartwatch, the user has higher motivation for an active lifestyle 
(Rawassizadeh et al., 2014). Furthermore, there is overrepresentation 
of wearable-based studies, and recent evidence suggests that machine 
learning models trained on such data may perpetuate algorithmic bias 
and health disparities, particularly among underrepresented 
populations. With respect to the methods used for sedentary behavior 
analysis, while ensemble methods that combine several ML algorithms 
have shown promise, to further advance the research in this field, 
machine learning algorithms need to be tested under fully free-living 
conditions (Farrahi and Rostami, 2024). With that, the future studies 
should focus on assessing the generalization performance of machine 
learning algorithms on datasets distinct from the ones used for their 
training (Farrahi and Rostami, 2024).

In addition to these technical challenges, several broader 
limitations and potential biases should be  acknowledged. The 
scope of this review was limited to studies indexed in PubMed and 
Scopus, which may have excluded relevant literature from other 
databases or grey literature sources. This selection criterion could 
introduce selection bias. Furthermore, the reliance on published, 
peer-reviewed articles raises the possibility of publication bias, as 
studies with positive or significant findings are more likely to 
be reported. Another limitation stems from the overrepresentation 
of studies using wearable devices, which may not reflect 
populations in resource-limited settings. Many of the machine 
learning models discussed were trained on small datasets or tested 
in controlled environments, reducing their generalizability to 
real-world conditions. Additionally, there is inconsistency in how 
sedentary behavior is defined and measured across studies, 
making synthesis of results more challenging. Furthermore, 
socioeconomic factors play a crucial role in shaping sedentary 
behavior patterns, particularly in low-income populations who 
often face greater environmental and occupational constraints to 
physical activity (Owen et  al., 2011). Lastly, several reviewed 
studies did not fully account for confounding variables, such as 
age or socioeconomic status, which could influence both 
sedentary behavior and health outcomes. Certain populations 
such as children, older adults, and individuals from diverse 
socioeconomic or cultural backgrounds were underrepresented in 
the reviewed studies, which limits the generalizability of the 
findings across age groups and communities. These limitations 
highlight the need for future studies to adopt more comprehensive 
and diverse methodologies.

9 Ethical considerations

ML applications for sedentary behavior monitoring through 
wearable technologies raise important ethical issues that warrant 

careful attention. These include concerns related to data privacy, 
algorithmic bias, and the need for explainable AI in clinical 
decision-making.

First, continuous data collection by wearables generates 
highly granular and sensitive information, such as movement 
patterns, heart rate, and location, which could lead to privacy 
breaches if not properly secured. Studies have found that many 
wearable device users are unaware of how their data is stored or 
shared. To address this, data encryption, anonymization, and 
informed consent protocols should be  standardized. Second, 
algorithmic bias presents a substantial risk. ML models trained 
on non-representative datasets may perform poorly for 
underrepresented populations, such as the elderly, disabled 
individuals, or racial minorities. Lastly, the lack of model 
transparency in many ML systems limits their adoption in clinical 
settings. “Black-box” models may offer high predictive accuracy, 
but without explainability, clinicians may be hesitant to trust or 
act on ML recommendations. Explainable AI tools help demystify 
model predictions and foster accountability.

10 Conclusion

As physical inactivity and sedentary lifestyle have become 
“the disease” of the 21st century, there is an exigent need to tackle 
it. For that, over the years, research studies have focused on 
several sedentary behaviors and how they correlate with different 
health problems including metabolic diseases, cancer, 
musculoskeletal diseases, and depression. While previous 
research has heavily utilized different approaches of machine 
learning to explore physical inactivity and sedentary lifestyle, 
they have also evidenced the effectiveness of distinct machine 
learning algorithms. That signifies how useful machine learning 
has been in studying sedentary behaviors. Considering the 
significant impact of sedentary lifestyles on health, there is an 
urgent need to expand research by including larger, more diverse 
populations and applying various machine learning algorithms 
under real-life conditions. Leveraging big data from wearable 
devices and other digital sources can enhance the precision and 
applicability of these algorithms, enabling deeper insights into 
sedentary behavior patterns. To address this issue on a global 
scale, developed nations should lead by establishing 
comprehensive data-sharing initiatives and integrating big data 
analytics into public health strategies. Such collaborative efforts 
would support the development of effective, evidence-based 
interventions and encourage other countries to adopt similar 
approaches, ultimately reducing the global burden of 
non-communicable diseases linked to inactivity.
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