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Augmented intelligence puts together human and artificial agents to create a 
socio-technological system, so that they co-evolve by learning and optimizing 
decisions through intuitive interfaces, such as conversational, voice-enabled 
interfaces. However, existing research works on voice assistants relies on knowledge 
management and simulation methods instead of data-driven algorithms. In addition, 
practical application and evaluation in real-life scenarios are scarce and limited in 
scope. In this paper, we propose the integration of voice assistance technology 
with Automated Machine Learning (AutoML) in order to enable the realization of 
the augmented intelligence paradigm in the context of Industry 5.0. In this way, 
the user is able to interact with the assistant through Speech-To-Text (STT) and 
Text-To-Speech (TTS) technologies, and consequently with the Machine Learning 
(ML) pipelines that are automatically created with AutoML, through voice in order 
to receive immediate insights while performing their task. The proposed approach 
was evaluated in a real manufacturing environment. We followed a structured 
evaluation methodology, and we analyzed the results, which demonstrates the 
effectiveness of our proposed approach.
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1 Introduction

Industry 5.0 relies on placing human well-being at the center of manufacturing systems 
(Leng et al., 2022) and has recently been attracting the attention of researchers and practitioners 
in terms of both social and technological aspects (Leng et  al., 2022). Human-centric 
manufacturing is a prerequisite for factories aiming at achieving flexibility, agility, and 
robustness against disruptions (Nguyen Ngoc et al., 2022; Wang et al., 2022; Bousdekis et al., 
2020). From the technological perspective, enabling technologies, such as human-machine 
interaction, that combine the strengths of humans and machines as well as big data analytics 
for providing data-driven insights for advanced manufacturing systems, leading to actionable 
intelligence, are of outmost importance (Xu et al., 2021; Maddikunta et al., 2022).

As far as human-machine interaction is concerned, voice-enabled assistants have the 
potential to provide intuitive access to information and knowledge, minimize operators’ 
cognitive workload, and support on-the-job training (de Assis Dornelles et al., 2022; Zheng 
et  al., 2024). Voice assistants are intent-oriented support systems that make use of an 
infrastructure of digital services, i.e., they target the fulfillment of user intents expressed in 
natural language aiming at reducing the number of interaction steps of the user (Gärtler and 
Schmidt, 2021). As far as data analytics is concerned, in today’s manufacturing environment, 

OPEN ACCESS

EDITED BY

Amir Zadeh,  
Wright State University, United States

REVIEWED BY

Evren Şadi Şeker,  
Istanbul University, Türkiye
Dimitris Apostolou,  
University of Piraeus, Greece

*CORRESPONDENCE

Alexandros Bousdekis  
 albous@mail.ntua.gr

RECEIVED 03 December 2024
ACCEPTED 07 February 2025
PUBLISHED 04 March 2025

CITATION

Bousdekis A, Foosherian M, Fikardos M, 
Wellsandt S, Lepenioti K, Bosani E, 
Mentzas G and Thoben K-D (2025) 
Augmented intelligence with voice assistance 
and automated machine learning in Industry 
5.0.
Front. Artif. Intell. 8:1538840.
doi: 10.3389/frai.2025.1538840

COPYRIGHT

© 2025 Bousdekis, Foosherian, Fikardos, 
Wellsandt, Lepenioti, Bosani, Mentzas and 
Thoben. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 04 March 2025
DOI 10.3389/frai.2025.1538840

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1538840&domain=pdf&date_stamp=2025-03-04
https://www.frontiersin.org/articles/10.3389/frai.2025.1538840/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1538840/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1538840/full
mailto:albous@mail.ntua.gr
https://doi.org/10.3389/frai.2025.1538840
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1538840


Bousdekis et al. 10.3389/frai.2025.1538840

Frontiers in Artificial Intelligence 02 frontiersin.org

data-driven decision-making is enabled by Machine Learning (ML) 
algorithms, which aim to process large amounts of data in order to 
provide insights (Lepenioti et al., 2020). However, building an accurate 
ML model requires data science knowledge, which does not exist in 
the manufacturing workforce (Bangaru et  al., 2019; Chaabi et  al., 
2022). Automated Machine Learning (AutoML) can overcome this 
challenge. AutoML aims at making ML accessible for non-ML experts 
(domain experts), by automating the configuration and execution of 
ML pipelines and models (Karmaker et al., 2021; Barbudo et al., 2023).

In the context of Industry 5.0, the integration of voice assistance 
and AutoML technologies can contribute to the achievement of 
augmented intelligence. Augmented intelligence puts together human 
and artificial agents to create a socio-technological system, so that they 
co-evolve by learning and optimizing decisions through intuitive 
interfaces, such as conversational, voice-enabled interfaces (Wellsandt 
et al., 2022). However, existing research works on voice assistants rely 
on knowledge management and simulation methods instead of data-
driven algorithms that could take advantage of the large amounts of 
data existing in manufacturing enterprise systems (Bousdekis et al., 
2021; Saka et al., 2023; Zheng et al., 2024; Gärtler and Schmidt, 2021). 
Even for these existing works, their adoption faces several barriers, thus 
leading to limited and unrealistic practical applications (Longo and 
Padovano, 2020). There is limited acceptance by operators (de Assis 
Dornelles et  al., 2022), while such technologies require long setup 
periods and extensive training (Freire et  al., 2022). Therefore, the 
practical application and evaluation in real-life scenarios are scarce and 
limited in scope (Longo and Padovano, 2020; Mirbabaie et al., 2021; 
Zheng et al., 2024), while there is a research gap on how to evaluate such 
solutions (Bernard and Arnold, 2019; Colabianchi et al., 2024). Only if 
the advantages of voice control for an efficient and secure production 
are sufficiently quantified, manufactures and users will consider 
applying such novel approaches as viable solutions (Norda et al., 2023).

The objective of this paper is to design and develop an integrated 
solution incorporating voice assistance technology and AutoML in 
order to enable the realization of the augmented intelligence paradigm 
in the context of Industry 5.0. AutoML automates the building and 
deployment of ML pipelines without requiring ML knowledge, while 
the voice interface exposes to the user the data analytics outcomes in 
an intuitive way in the context of dialogues. On the other hand, the 
user is able to interact with the assistant, and consequently with the 
ML models, through natural language in order to receive immediate 
insights while performing their task. The proposed approach is 
evaluated in a real manufacturing environment and follows a 
structured evaluation methodology to analyze the results.

The rest of the paper is organized as follows. Section 2 outlines the 
literature review on voice interfaces and AutoML approaches in 
manufacturing. Section 3 presents the proposed approach for 
augmented intelligence with voice assistance and AutoML in the 
frame of Industry 5.0. Section 4 implements the proposed approach 
in a manufacturing environment and Section 5 presents the evaluation 
results. Section 6 concludes the paper  and presents our plans for 
future work.

2 Literature review

Voice-enabled assistants have the potential to provide intuitive 
access to information and knowledge, thus maximizing users’ 

cognitive efficiency (de Assis Dornelles et  al., 2022). Despite the 
emergence of voice assistants in everyday life or in the service sector, 
and the availability of technical frameworks to create custom human-
centric applications, their exploitation in the manufacturing sector is 
still underexplored (Ludwig et al., 2023; Mukherjee et al., 2024; Norda 
et al., 2023; Afanasev et al., 2019). Among others, this is due to the fact 
that user acceptance of voice assistants is lower than GUI-based 
systems, while there is the need for more effort on the development 
side to have a robust system (Gärtler and Schmidt, 2021). However, 
voice assistance technology in manufacturing has the potential to 
tackle with the high cognitive load in the workspace and the shortage 
of highly skilled workforce (Linares-Garcia et al., 2022; Ionescu and 
Schlund, 2021), but at the same time, it faces some distinct challenges 
(Ghofrani and Reichelt, 2019). For example, manufacturing operations 
are complex, investments in equipment are expensive, the 
manufacturing environment can become dangerous, the shopfloor is 
noisy, and the users are experts (Norda et al., 2023). These challenges, 
together with negative experience with voice control in the service 
sector prevent manufacturers from adopting voice assistance 
technology, also given the fact that there are not detailed quantitative 
evaluation approaches and results in manufacturing environments 
(Norda et al., 2023). During the last years, there has been an increasing 
research interest in assistants for manufacturing. In the literature, they 
are mentioned as ‘virtual assistants’, ‘Digital Intelligent Assistants’ 
(DIA), ‘voice assistants’, or ‘softbots’.

Jwo et al. (2021) proposed an assistant in order to facilitate the 
interaction between the user and the dashboard through natural 
language. Longo and Padovano (2020) developed a web application 
integrated to an ontology which adopts a flexible tree structure and a 
keyword labeling mechanism. Afanasev et  al. (2019) presented a 
method and a prototype for the implementation of a voice assistant in 
manufacturing processes automation proposed a voice assistant as 
part of a Cyber-Physical System (CPS)in order to support data access 
automation. Li et al. (2023) presented an assistant for human-robot 
interaction aiming at managing several types of robots on the shop 
floor be embedding a pre-trained model to support the prediction of 
the intents. Li and Yang (2021) proposed an assistant for various 
manufacturing operations, such as order processing and production 
execution. Ruiz et al. (2023) proposed a question-answering system 
for supporting operators in getting access to relevant information.

Rabelo et al. (2018) presented a proof-of-concept for softbots for 
facilitating human-machine collaboration, sustainability of the 
manufacturing workforce, operational excellence, inclusiveness, 
satisfaction and motivation, safety, and continuous learning. Abner 
et al. (2020) proposed a softbot that uses data analytics and maturity 
models in order to support the decision-making of managers. 
Zambiasi et al. (2022) presented the concept of the resilient Operator 
5.0, which aims at providing intuitive, human-centered, and cognitive 
working environments., by combining softbots and augmented reality 
for predictive maintenance.

Mukherjee et al. (2024) proposed a concept for voice assistants 
addressing the machine tools sector aiming at increasing the efficiency 
and safety of workers. To do this, they propose the use of speech-to-
text pipelines. Norda et al. (2023) explored the use of voice interfaces 
in various scenarios in the CNC milling machines domain, either 
replacing or complementing existing touch control interactions. They 
found out that voice interfaces have the potential to contribute to time 
efficiency, especially for complex commands.
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Wellsandt et al. (2020) examined a concept for a voice-enabled 
DIA for predictive maintenance. The authors identified the key 
functional modules for such an assistant as well as the requirements 
and constraints for its development. Wellsandt et al. (2022) proposed 
the adoption of a DIA for maintenance experts in order to enable the 
collection of feedback about the success of maintenance interventions. 
Colabianchi et al. (2024) proposed a DIA for manufacturing which 
utilizes Large Language Models (LLMs) targeted to assembly 
processes, and they assessed the technical robustness, the effect on 
operators’ cognitive workload, and the user experience of their 
approach in a laboratory experiment.

The aforementioned research works are either conceptual or are 
based upon knowledge-based methods for structuring the acquired 
knowledge; the use of advanced data analytics algorithms and ML 
models has not been investigated (Abner et al., 2020; Karmaker et al., 
2021). There are several challenges on providing ML-generated 
insights through a voice assistant in the context of dialogues, instead 
of visualization-based GUIs. Moreover, the configuration of ML 
pipelines is a laborious and costly activity, and it becomes even more 
difficult when integrating a voice-enabled interface. To this end, 
Bousdekis et al. (2021) proposed an augmented analytics framework 
for implementing quality analytics integrated into a voice interface for 
exposing the results to the user. However, their approach is still 
conceptual, and it does not dive into the specificities of ML models 
and algorithms.

On the other hand, AutoML has been gathering increasing 
research attention due to its capability of making ML accessible for 
non-ML experts by automating all the ML stages (Barbudo et al., 
2023), and of usually outperforming conventional ML algorithms 
(Liang and Xue, 2023). The AutoML paradigm aims to automate the 
ML aspect of real-world applications through an end-to-end process 
(Karmaker et al., 2021). Karmaker et al. (2021) proposed six levels of 
automation for the different AutoML systems, each with varying 
automated tasks and accessibility to domain experts. Furthermore in 
the literature, there is a plethora of pipelines and methodologies that 
compromise AutoML. He et  al. (2021) provide a pipeline that 
incorporates four main steps: (i) Data Preparation, (ii) Feature 
Engineering, (iii) Model Generation and (iv) Model Evaluation, where 
each one has multiple sub-tasks. The Model Generation step can 
be split into two sub-steps: the Search Space and the Optimization 
Methods. The former defines the design of the ML models (traditional 
or neural networks), while the latter handles hyperparameter 
optimization and architecture optimization (AO). These two sub-steps 
are the first to be automated from the aforementioned automation 
levels and are of great interest due to their increased computational 
and resource intensity. Researchers experimented with different 
methodologies to find optimal ML models and counterbalance the 
computational needs. For the hyperparameter optimization these 
methods adopt approaches such as Grid Search, Random Search, 
Bayesian Optimization, Early-stopping and Multi-fidelity 
Optimization (Yu and Zhu, 2020, Hutter et al., 2019). In addition, 
Nikitin et al. (2022) proposed FEDOT, which designs composite ML 
pipelines, through model and data operations that create a directed 
acyclic graph and automate them through an evolutionary approach 
and hyperparameter optimization. Despite the merits of automating 
the ML aspects, AutoML also has limitations regarding real-
world applications, specifically with the available budget of 
time and computation. The hyperparameter optimization can 

be computationally expensive (He et al., 2021), and the whole AutoML 
framework adopted can result in a long waiting time to find solutions 
(Elshawi et al., 2019). The trade-off between time and computational 
resources creates strategic decision-making needs to balance the 
respective constraints (Azevedo et  al., 2024). Nevertheless, the 
advantages of AutoML have made available several approaches and 
applications in the manufacturing realm. It is noteworthy that most of 
the existing research on AutoML in manufacturing deals with 
maintenance and quality operations. This is due to the fact that both 
operations include many non-value-adding activities that contribute 
significantly to the manufacturing firms’ costs. However, although 
maintenance has largely adopted sensory technology in order to 
automate decision-making, quality procedures remain, to a large 
extent, manual in nature.

Schuh et al. (2022) provided a list of requirements and use cases 
that manufacturing companies should take into account when 
selecting an AutoML solution. Gerling et  al. (2022) proposed an 
AutoML-based system that generates predictions about production 
faults and indications about the related root causes. Chaabi et  al. 
(2022) applied AutoML methods in various manufacturing 
applications, such as quality control and predictive maintenance. 
Mallouk et al. (2023) presented an AutoML-based approach that aims 
at providing decision support to manufacturing experts. Krauß et al. 
(2020) performed a comparative analysis of AutoML frameworks in 
manufacturing, by also comparing it to manual processes for quality 
control. Zhai et  al. (2023) proposed a domain-specific AutoML 
approach for anomaly detection and defect diagnosis in the 
semiconductor industry. Jayasurya et al. (2024) proposed a framework 
based on AutoML, employing tools such as AutoKeras, Sweetviz, 
NumPy, pandas, Streamlit, and PyCaret, in the context of predictive 
maintenance. Conrad et  al. (2024) developed a workflow in the 
production engineering domain with the use of AutoML and 
compared it with the manual data mining process. Rooney et  al. 
(2024) used AutoML for failure detection in additive manufacturing. 
Denkena et al. (2020) demonstrated the improvements achieved by 
AutoML to predict shape errors during milling for cold rolling 
procedures. Sousa et al. (2022) used the CRISP-DM methodology and 
AutoML to address production time prediction for metal containers 
production. They compared four open-source modern AutoML 
technologies: AutoGluon, H2O AutoML, rminer, and TPOT. Fikardos 
et al. (2022) proposed a framework architecture that utilizes AutoML 
in predictive quality.

AutoML has been proved to achieve a competitive performance; 
however, apart from technical challenges, related to, e.g., features 
selection and class imbalance (Zhai et al., 2024; Salehin et al., 2024), 
recent studies have shown that the lack of transparency and 
explainability of AutoML make the users reluctant to trust them 
(Crisan and Fiore-Gartland, 2021; Drozdal et al., 2020; Wang et al., 
2021). Existing transparency and explainability approaches 
incorporate interactive visualization techniques (Zöller et al., 2023; 
Garouani et al., 2022; Amirian et al., 2021) and post-hoc explanation 
methods (Zhai et al., 2024). Although such approaches have been 
proved promising for GUI-based systems, they are not suitable when 
integrating AutoML to voice interfaces.

In the context of Industry 5.0, the integration of voice assistance 
and AutoML technologies can contribute to the achievement of 
augmented intelligence. However, such an approach has not been 
investigated, although it has the potential to enable and augment 
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operators with data-driven insights in an intuitive, human-like, and 
‘hands-free’ way, without requiring ML expertise, thus increasing the 
efficiency of their work.

3 The proposed solution for 
augmented intelligence with voice 
assistance and automated machine 
learning

The high-level architecture for augmented intelligence with voice 
assistance technology and AutoML is depicted in Figure 1. It embeds 
three main modules: Voice Assistant, Analytics Service, and Use Case 
Infrastructure. The Voice Assistant module corresponds to the DIA 
core and manages user interactions. This module first captures the 
user’s message via the Android app and passes the message to the 
Conversational Agent Team (CAT), which is the technical integration 
of a Mycroft skill and a Rasa chatbot to minimize the disadvantages of 
the individual agents. We use Mycroft as the leading agent because 
users begin all their dialogues through it. The second agent is a Rasa 
chatbot—both exchange text messages, but only Mycroft responds to 
users directly. Both Mycroft and Rasa are open-source chatbot 
frameworks. However, Rasa facilitates sophisticated support in 
developing Natural Language Understanding (NLU) and Dialog 
Management (DM). Rasa uses a pipeline for NLU that can integrate 
various open NLU components, such as Spacy or Duckling. It applies 
a hybrid approach for DM, combining rules (reliable) with 
probabilistic models (flexible). Developers can train the latter based 
on real conversations and thus continuously improve the assistant. In 
our solution, Mycroft passes user requests to Rasa, where the request 
is mapped to one of the defined intents of the assistant, and a query is 
formulated. Rasa’s responsibilities are to interpret the user input and 
generate the requests as queries for the Analytics Service, which 
responds with the insights needed. The Analytics Service 
communicates directly with the use case infrastructure, retrieving all 

the necessary data and information required to make the analyses and 
produce the outcomes. It also processes the received query, and the 
results of the requested analytics are encapsulated into a response sent 
back to the DIA. These modules are further detailed in the following 
sub-sections.

3.1 Voice assistant

The interface with which the user interacts, as well as the link 
between the analytics component and the user, is the DIA core, which 
covers the Android App, the message bus manager, Mycroft, the “Talk 
to Rasa” skill (in Mycroft), the Rasa chatbot, and the data exchange. 
The information flow among the various components of the DIA core 
is depicted in Figure 2.

Users interact with Mycroft through the Android app, where 
Google Speech-To-Text (STT) transcribes audio to text. The Mycroft 
core is accessible via a reverse proxy supporting secure connections 
managed by security mechanisms. Integration with Keycloak ensures 
that only authorized users can access Mycroft, with the app exchanging 
valid tokens with Keycloak for authentication. HiveMind, running as 
a separate Docker container, adds a security and management layer, 
enabling multi-user interactions and extending Mycroft core to 
various devices, including those not running Mycroft natively.

Mycroft’s Natural Language Understanding (NLU) identifies user 
intents and entities from transcribed utterances and tries to match the 
intent with a suitable skill. Here we have a customized “Talk to Rasa” 
skill that facilitates message exchange between Mycroft and Rasa. This 
way, complex dialogs are managed by Rasa, with a configurable NLU 
pipeline, a dialog manager based on rules and probabilistic models, 
and a fulfillment server performing custom actions via Python code. 
Rasa fulfills user intents by executing code and accessing external data 
sources. Rasa action server uses the data exchange services responses 
(i.e., semi-structured data from analytics service) to build a human-
readable response message, which is sent to the user via Mycroft. The 

FIGURE 1

High-level architecture.
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Google Text-to-Speech (TTS) service generates audio from text in the 
Android app.

3.2 Analytics service

The Analytics Service takes advantage of the AutoML process in 
order to minimize human intervention while constructing and 
configuring ML within specific computational limits. In this way, it 
tackles effectively with the challenge of developing appropriate ML 
models for the problem at hand since the ML model suitability 
depends on the available dataset, its preprocessing, as well as the 
configuration of algorithms’ parameters. Further, these computing 
skills and ML knowledge do not usually exist in the manufacturing 
workforce. The architecture of the Analytics Service is distinguished 
to the Design Phase and the Runtime Phase, as depicted in Figure 3.

In the Design phase, the data analyst selects and configures the 
appropriate AutoML frameworks. In the Configuration component of 
the Design phase, the data analyst applies Data Processing Algorithms, 
retrieved from the Algorithms Library, on the dataset in order to 
pursue data cleaning and feature engineering. Then, he/ she defines 
and configures the AutoML framework to be used with regards to 
model parameters, evaluation metrics, and termination conditions. 
Any further configurations, such as model acceptance conditions and 
output formats, can be defined in the Model Specifications.

In the Runtime phase, the AutoML process is executed as soon as 
the data analyst defines new configurations or as soon as new data 
becomes available for the already configured AutoML models. In the 
first case, the algorithm evaluates several models and optimizes the 
candidate ones. The finally selected model feeds into the Model 
Management component in order either to be stored in the Model 

Warehouse or to be discarded according to the acceptance conditions 
that have been configured in the Design phase. In the second case, the 
models are automatically retrained or optimized by incorporating the 
new data that has become available. They are retrieved from the Model 
Warehouse in order to feed into the AutoML process. The new model 
feeds into the Model Management process in order to compare its 
performance with the one of the previous model. The best-performing 
model is stored, and the other one is discarded.

3.3 Use case infrastructure

The Voice Assistant and Analytics Service technologies need to 
be  integrated to the use case infrastructure in order to store and 
retrieve data that are required for the analyses. This data can 
be accessed through APIs or directly from the database.

4 Deployment in quality control 
operations

In this Section, we  describe the use case under examination, 
which is the quality control in the home appliances industry (Section 
4.1), and we present some indicative demonstration scenarios of the 
proposed solution (Section 4.2).

4.1 Home appliances use case

The use case under examination concerns the quality control 
procedures of Whirlpool, one of the leading companies in the home 

FIGURE 2

DIA core architecture.
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appliances industry, with around 92,000 employees and over 70 
manufacturing and technology research centers worldwide. The use 
case addresses the end-of-line quality, which involves quality testing 
in order to ensure a high standard level of product quality to final 
customers. To these testing actions, the Whirlpool Production system 
also adds some statistical quality check actions that are applied both 
on internal production parts on quality critical processes (statistical 
process control stations) and on finished goods after the packaging 
process. In particular, this last testing, called Zero Hour Testing (ZHT) 
(Figure  4) refers to the Statistical Quality Control applied in a 
dedicated laboratory out of production flow on some finished 
products retrieved from the quantities ready to be delivered to the 
markets. The main objectives of ZHT are to measure the quality level 
of the outgoing product from an aesthetic, functional, and normative 
point and to measure the effectiveness of process control. These tests 
are executed in a dedicated laboratory environment, created in each 
production site, and following a specific operating procedure. This 
testing method is designed to replicate the customer approach to the 
product, simulating the normal product usage conditions at the final 
customer’s first usage.

4.2 Demonstration scenarios

In this sub-section, we demonstrate indicative scenarios in the 
context of the aforementioned use case. The interaction can be done 
via voice or text input, and the dialogues are displayed on a tablet 
screen in order to, among others, investigate additional product-
related information and provide visualization capabilities, e.g., in case 
the user needs additional explanations on the generated outcomes of 
the algorithms. Figures 5, 6 demonstrate indicative dialogues between 
the user and the DIA during the end-of-line testing procedures, 
including the quality testing process and various analytics questions. 
The end-of-line quality testing process is designed to support 
operators with three expertise levels: novice, intermediate, and expert. 
Novice users receive more detailed instructions to perform the test, 
whereas experts receive high-level instructions. At each step, users can 

report a defect, and the DIA makes suggestions to assist with the 
defect recording process (Figure 5A).

In Tables 1, 2, we also present two example queries that facilitate 
the interaction of AutoML with the voice interface. In Table 1, to 
predict the number of orders that will manifest some defect in the 
following day, the user triggers the implemented analysis with the goal 
“PREDICT_NUMBER_OF_DEFECTS.” This analysis has been 
implemented using AUTOKERAS (created and trained) AutoML 
library. The prediction of the number of orders with defects in the 
following day can be used by the workers to get a glimpse of the work 
ahead. It can be used as an alarm mechanism for a failure in the 
production line, causing a greater number of defects than expected. 
An example conversation with the DIA using this query is presented 
in Figure 6B. In Table 2 the user wants to get information about the 
products affected by the defect with defect ID 3035, and the digital 
intelligent assistant is expected to return the list of the SKUs of the 
affected products. This scenario has been implemented by the analysis 
with analytics goal “GROUP_DEFECTS_BY_DEFECT_ID_AND_
SKU,” using the historical data of the recorded defect occurrences. In 
this case, the resultRequest query with the appropriate request and 
filters will return the list of affected products, where each record is 
described by three fields: the DefectID, the FGNum (or SKU), and the 
count. All the records have the requested Defect ID, a unique FGNum, 
and the number of recorded defects for the product (count). Based on 
the answer, the user can understand that multiple products are affected 
by the given Defect ID with varying recorded occurrences. An 
example conversation with the DIA using this query is presented in 
Figure 5C.

5 Evaluation in real-life manufacturing 
scenarios

In this Section, we describe the evaluation procedure and results 
in real-life manufacturing scenarios, in the context of the 
aforementioned home appliances industry. More specifically, 
we present our evaluation methodology for voice-enabled AI solutions 

FIGURE 3

Analytics service architecture for AutoML.
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FIGURE 4

Zero hour testing (ZHT) laboratory at whirlpool.

FIGURE 5

Demonstration of dialogues for end-of-line testing procedures (1). (A) End-of-line testing process execution in the left image, (B) Requesting top 5 
defects with SKU and date filter in the middle image, (C) Requesting most critical defect with SKU and date filter, requesting products affected by a 
specific defect, requesting number of defects with SKU filter in the right image.
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(Section 5.1), the evaluation setup (Section 5.2), the evaluation results 
(Section 5.3), and a discussion on the generalizability criteria that 
need to be considered (Section 5.4).

5.1 Evaluation methodology

Our evaluation methodology was based on the evaluation 
methodology for voice-enabled AI solutions, proposed by Bousdekis 
et al. (2022). In our adaptation, the methodology is structured across 
five dimensions: AI trustworthiness, system usability, cognitive 
workload, technical robustness, and lessons learned. Table 3 shows the 
methods and tools that were used to address each dimension. Below, 
we briefly present the methods that address these dimensions.

5.1.1 AI trustworthiness
The concept of Trustworthy AI (TAI) dictates that humans, 

organizations, and societies will achieve the full potential of AI if trust 

can be established in its development, deployment, and use (Mentzas 
et al., 2024; Bousdekis et al., 2022). In this realm, the High-Level 
Expert Group on Artificial Intelligence (AI-HLEG) has created the 
Assessment List for Trustworthy Artificial Intelligence (ALTAI) tool 
that helps organizations to self-assess the trustworthiness of their AI 
systems through a questionnaire (Artificial Intelligence, 2019). The 
ALTAI is structured according to seven high-level requirements for 
TAI: Human agency and oversight; Technical robustness and safety; 
Privacy and data governance; Transparency; Diversity, 
non-discrimination and fairness; Societal and environmental well-
being; Accountability.

5.1.2 System usability
The usability of voice-enabled AI solutions is evaluated through 

System Usability Scale (SUS) (Brooke, 1996) and Voice Usability 
Scale (VUS) (Murad et al., 2019). Both tools are needed due to the 
distinct characteristics of voice interfaces, which include: 
understanding of pauses during a conversation (Zwakman et al., 

FIGURE 6

Demonstration of dialogues for end-of-line testing procedures (2). (A) End-of-line testing process update recommendations based on critical defect 
occurrences in the left image, (B) Requesting predictions of the most probable defect group and number of orders with defect in the next day in the 
right image.
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2021), limitations to back-and-forth navigation (Holmes et  al., 
2019), not having a visualization of results (Cowan et al., 2017), 
user expectations about the structure of dialogues (Murad et al., 
2019), absence of familiarity with synthetic voice (Babel et  al., 
2014). Both tools include 10 items having declarative statements of 
opinion to which the participants will respond with their rate of 
agreement on a Likert scale.

5.1.3 Cognitive workload
The extent of human cognitive resources utilization is called 

cognitive load (Ninomiya et  al., 2024). The emergence of AI 
technologies in the manufacturing domain dictates the capability of 
adaptation to the new processes in terms of, among others, the 
efficient management of workload (Matt et al., 2015). The cognitive 
workload can be measured through subjective measures in order to 

TABLE 2 Example requesting the products affected by a specific defect.

TABLE 1 Example next day number of orders with defect prediction.
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overcome the challenges in assessing operators’ performance in 
complex and automated environments (Rubio et  al., 2004). This 
dimension is addressed by the NASA-TLX (Hart, 1988), a widely used 
subjective method, which includes six dimensions: Mental Demand; 
Physical Demand; Temporal Demand; Overall Performance; Effort; 
Frustration Level.

5.1.4 Technical robustness
Technical robustness is evaluated for the two main modules of the 

proposed solution, i.e., Analytics Service and Voice Assistant. 
Regarding the Analytics Service, its AutoML models are validated by 
using appropriate performance metrics. It should be noted that the 
selection of the evaluation metrics according to the algorithm used 
can be  automated by the AutoML process. Regarding the Voice 
Assistant, its performance is measured based on intent recognition 
accuracy for the recorded conversations.

5.1.5 Lessons learned
Based on workshops among the involved users and bilateral 

interviews, including also the management, in this dimension, 
we collect qualitative feedback at the end of the evaluation procedure 
in order to gather the business perspective and to conclude with 
lessons learned for the technological solution and its adoption by the 
manufacturing firm.

5.2 Evaluation setup

The evaluation procedure started on December 2022 and was 
being performed in parallel with the integration activities in order to 
continuously provide early feedback on the technical improvements. 
We separated the evaluation procedure in 4 rounds, engaging various 
roles of testers in the Whirlpool use case, as it is shown in Figure 7. 
During the 3rd round, we captured the last points to improve the 
solution, such as errors in response translations, data accuracy and 
quality in the quality control checklist database, etc., and we also 
provided training to the operators. It should be noted that the number 
of participants and their roles were subject to restrictions derived from 
the factory operations. The final evaluation was performed with 2 lab 
supervisors, 3 expert operators and 1 intermediate operator.

During the third and fourth evaluation rounds, the procedure 
consisted of several key steps. Initially, participants were required to sign 
a printed consent form to acknowledge their participation. Subsequently, 
in the case of the third evaluation round, participants underwent 
training, which involved the use of training materials and a personalized 
training session using the app. The participants were asked to go 
through an online questionnaire that involved the following sections: 
user role, a set of tasks to perform based on the user’s role, NASA-TLX 
questionnaire, SUS questionnaire, VUS questionnaire, personal factors 
questionnaire including items such as orientation towards using new 
technologies, gender, age, education, occupation, and work experience, 
two additional open questions regarding trust in the technological 
solution. Figure 8 depicts the average scores on the Likert scale (1–5) of 
personal factor questions per user role.

5.3 Evaluation results

In this sub-section, we  present the evaluation results per 
dimension of the evaluation methodology, i.e., AI trustworthiness 
(Section 5.3.1), system usability (Section 5.3.2), cognitive workload 

FIGURE 7

The timeline of the evaluation procedure in Whirlpool.

TABLE 3 Method/Tool per each evaluation dimension.

Dimension Method/Tool

AI Trustworthiness ALTAI

System usability SUS, VUS

Cognitive workload NASA-TLX

Technical robustness ML performance metrics, intent recognition accuracy

Lessons learned Workshops, interviews
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(Section 5.3.3), technical robustness (Section 5.3.4), and lessons 
learned (Section 5.3.5).

5.3.1 AI trustworthiness
AI trustworthiness was assessed by a multidisciplinary team of 

people with both business and technical background by using the 
web-based tool developed by EC.1 After completing the web-based 
questionnaire, based on the responses, the tool extracts a visualization 
of the self-assessed level of adherence of the AI system with the TAI 
requirements, and recommendations. Figure 9 depicts the results in 
the form of a Polar diagram for the seven requirements for 
Trustworthy AI, while Supplementary Table S1 presents the resulting 
recommendations per requirement.

Overall, the solution excels in “Privacy and Data Governance,” 
while it performs very well with regards to “Accountability,” “Technical 
Robustness and Safety,” “Transparency,” and “Diversity, 
Non-discrimination and Fairness.” The dimensions “Human Agency 
and Oversight” and “Societal and Environmental Well-being” gather 
a lower score, although no recommendations are generated by the 
tool. This may be caused by some limitations of ALTAI, having been 
identified in the literature (Radclyffe et al., 2023; Stahl and Leach, 
2023), such as the fact that some questions are not applicable in all the 

1 https://altai.insight-centre.org/

application domains or the candidate responses that are provided do 
not accurately represent its status, but they affect the resulting score.

Regarding the recommendations that ALTAI provides, one 
should take into account its limitations that have been already 
mentioned in the literature (Bousdekis et al., 2024). ALTAI has been 
designed for end products; it does not address the various phases of 
software development lifecycle. It incorporates generic questions 
aiming at addressing every AI system; however, the AI system may 
refer to a business environment with expert and qualified users. In 
addition, ALTAI considers as “AI system” the software and does not 
treat it as a socio-technical system, potentially leading to disregard 
of unforeseen challenges. For some questions, no alternative 
response is accurate, while its current structure hinders its  
applicability.

5.3.2 System usability
The assessment of system usability was undertaken by determining 

the SUS and VUS scores, which were derived from the questionnaires 
completed by the users. Each scale encompassed a section of 10 
questions, which are cited in Table 4. The findings for each scale are 
depicted through three bar plots representing the average scores per 
user, per question, and per user role. The plots that illustrate the scores 
per question are scaled from 1 to 5, whereas the remaining plots 
feature percentile scores ranging from 0 to 100.

Figure 10 presents the average scores per user. The findings reveal 
that the system earned an ‘Excellent’ rating (>80.3) from two users and 

FIGURE 8

Personal factors questions per user role in Whirlpool.
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a ‘Good’ rating (68–80.3) from another two, while the remainder 
assigned it a ‘Poor’ rating (51–68). A notable variation is evident 
among the Expert Operators, with scores ranging from 65 to 92.5, 
whereas the scores of the two Supervisors are more closely aligned.

In Figure 11, the average scores (ranging from 1 to 5) for each SUS 
question are illustrated. Notably, there is unanimity in the scores for 
questions 4, 7, and 10, which pertain, respectively, to the perceived 
need for technical support to use the system, the general consensus 
that most people would learn to use it quickly, and the anticipated 

necessity for users to learn a lot of things to operate the system. This 
uniformity in responses might stem from the users’ limited experience 
and interaction with the system. Moreover, it is evident that the lowest 
score was garnered by question 2, which probes into the perceived 
complexity of the system (Figure 12).

The same types of graphs are presented for the VUS scores. Table 5 
cites the VUS questions. In Figure 13, the plot illustrates the average 
VUS score per user. Initially, it is observed that the VUS scores are 
generally higher compared to the SUS scores, with all users awarding 
an ‘Excellent’ rating (>80.3), except for one user whose score is 
marginally below, at 80. This suggests a generally favorable user 
response to voice usability as compared to overall system usability.

In Figure 14, the average scores (1–5) for each VUS question are 
depicted. Within this scale, four questions received unanimous ratings 
with the maximum score. These questions, numbered 1, 6, 8, and 10, 
address, respectively, the ease of understanding the voice, the level of 
frustration experienced using the assistant in a noisy environment, the 
difficulty in customizing the voice assistant, and the difficulty in using 
the voice assistant. It’s important to note that the questions with even 
numbering (6, 8, 10) are phrased with a negative sentiment, but the 
scores are inverted, meaning high values indicate a positive user 
experience. Additionally, all the scores are above the midpoint value 
of 3, suggesting a generally positive user response to these aspects of 
voice usability.

In the final plot for VUS, depicted in Figure 15, the average 
scores per user role are illustrated. The initial observation drawn 
from the bar values is that all user roles have, on average, rated the 
VUS above 80. Additionally, there is a slight variation in the scores 
among the Expert users, and an even smaller variation among the 

FIGURE 9

The results of the 7 requirements score as derived from ALTAI.

TABLE 4 SUS items.

Code SUS Items

SUS_1 I think that I would like to use this system frequently.

SUS_2 I found the system unnecessarily complex.

SUS_3 I thought the system was easy to use.

SUS_4 I think that I would need the support of a technical person to 

be able to use this system.

SUS_5 I found the various functions in this system were well integrated.

SUS_6 I thought there was too much inconsistency in this system.

SUS_7 I would imagine that most people would learn to use this system 

very quickly.

SUS_8 I found the system very cumbersome to use.

SUS_9 I felt very confident using the system.

SUS_10 I needed to learn a lot of things before I could get going with this 

system.
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Supervisors, as indicated by the vertical black lines atop the 
bar plots.

Finally, Figure 16 illustrates a comparison of each user’s average 
scores between the SUS and VUS. As previously observed, 
variations in scores among the Expert Operators are evident, with 

two of them also recording the highest VUS scores. Moreover, the 
two Supervisors, along with one of the Expert Operators, appear to 
occupy the lower spectrum of scores for both scales, indicating a 
less favorable assessment of usability. Intriguingly, the Intermediate 
Operator showcased consistent ratings across the two scales, 

FIGURE 10

Average SUS score per user.

FIGURE 11

Average scores for SUS questions.
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reflecting a uniform perception of both system and voice usability. 
This Figure also serves as a comparison between SUS and VUS, 
since the variation between them demonstrates the complexity 
while evaluating voice interface-based systems compared to 
GUI-based systems.

5.3.3 Cognitive workload
In Figure  17, the average scores for each question of the 

NASA-TLX questionnaire are presented. The most noticeable 
observation initially is the difference in score between the question 
regarding perceived performance and all other questions. The former 
has unanimously the highest score, reaching 21. In contrast, the 
questions about the perceived mental, physical, and temporal 
demands, along with the one regarding effort, all exhibit low scores 
under 2.5. This suggests that the system was not perceived as 
particularly demanding by the users. A slightly higher value is 
observed for perceived frustration, with a score of 4.33. This could 
potentially be  derived from the users’ lack of familiarity with 
voice assistants.

5.3.4 Technical robustness
In this sub-section, we present the results related to the technical 

validation of the solution’s main components. As far as the Analytics 
Service is concerned, we present metrics related to the accuracy of the 
AutoML models. The datasets used in these experiments were tabular 
containing datetime, numeric, categorical and text values. During 
preprocessing, text values were manually discarded due to 
inconsistencies and entries with missing values were removed. In this 
setting, we  incorporated the Python libraries AutoKeras and 
FEDOT. The AutoKeras library generates Neural Networks (NN) 
and performs a Neural Architecture Search (NAS) guided by 
Bayesian Optimization and Gaussian processes. In our 
experiments, we  employed the StructuredDataClassifier and the 
StructuredDataRegressor for the classification and regression tasks, 
respectively. They were also configured with the respective metrics 

FIGURE 12

Average percentile SUS score for each user role.

TABLE 5 VUS items.

Code VUS Items

VUS_1 I thought the response from the voice assistant was easy to 

understand.

VUS_2 I thought the information provided by the voice assistant was not 

relevant to what I asked.

VUS_3 I felt the response from the voice assistant was sufficient.

VUS_4 I thought the voice assistant had difficulty in understanding what 

I asked it to do.

VUS_5 I felt the voice assistant enabled me to successfully complete my tasks 

when I required help.

VUS_6 I found it frustrating to use the voice assistant in a noisy and loud 

environment.

VUS_7 The voice assistant had all the functions and capabilities that 

I expected it to have.

VUS_8 I found it difficult to customize the voice assistant according to my 

needs and preferences.

VUS_9 Overall, I am satisfied with using the voice assistant.

VUS_10 I found the voice assistant difficult to use.
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and the maximum number of trails to perform was set to 20. For the 
FEDOT library, the Fedot pipeline was employed with task-specific 
parameters in each task. For the classification task, the task and 

problem types were set to classification while for the regression task, it 
was set to time series forecasting. In both tasks, the optimization was 
conducted simultaneously with the maximum number of tuning 

FIGURE 13

Average VUS score per user.

FIGURE 14

Average scores for VUS questions.
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iterations set to 100. We implemented three models per algorithm: (i) 
an initial model trained with the 80% of the dataset; (ii) a retrained 
model, with the whole dataset; and (iii) a new model which executes 
the AutoML process on the whole dataset from the beginning. 
Moreover, it should be noted that the execution time depends on the 
pre-configured stopping conditions.

Table 6 presents the results of the Defect Group Prediction case. 
The data processing algorithms selected 6 features (i.e., Date Created, 
Product Type (SKU), Defect Source, Station ID, Part Family) and the 
performance of the AutoML models was evaluated by measuring 
F1-macro, F1-micro, Receiver Operating Characteristic Area Under 
Curve (ROC-AUC), and execution time. Table 7 presents the results 
of the Defective Orders Prediction case. The data processing 
algorithms summed the Defect Instances were on the attribute Date 
Created to produce the necessary timeseries, and the performance of 
the AutoML models was evaluated by measuring the Mean Square 
Error (MSE), the Mean Absolute Error (MAE), and the execution 
time. The FEDOT AutoML framework selected the Extreme Gradient 
Boosting (XGBoost) ML algorithm, while the AutoKeras AutoML 
framework selected the Neural Network ML algorithm.

Throughout the evaluation period, as it was presented in Section 
5.2, we  were continuously improving the technical developments 
activities. In order to increase the intent recognition accuracy, 
we performed elimination of unusual words, streamline of sentences, 
usage of keywords, as well as usage of selection button on the tablet. 
These improvements drove the high accuracy in the user’s intention 

understanding. The intent recognition accuracy for the conversations 
in September 2023, with 402 conversation turns, was 95.30%, as 
depicted in Figure 18.

5.3.5 Discussion on lessons learned and 
managerial implications

We performed workshops among the involved users and bilateral 
interviews in order to acquire qualitative feedback and to draw the 
main lessons learned. Below, we summarize the main conclusions 
derived from this procedure.

The solution provided the general validation of the cognitive 
worker assistance technology as one of the key enablers of a relevant 
change in the execution of industrial operations: the possibility of 
being assisted by an intelligent system, with a voice interface, which 
may drive the workers through the execution of complex operation, 
has been very appreciated by the users who confirmed the potential 
application not only in “off-line” working places, like laboratories or 
indirect activities (quality control, product repair, maintenance, 
logistics, material management) but also in “on-line” tasks execution 
like the quality control on the assembly where the pace has to 
be respected. A great advantage of the solution is the possibility to 
leave the hands free to execute tasks while the cognitive support 
understands the request, collects the right information, and provides 
it in a user-friendly format.

The possibility of having a unique interface to get access to all 
the information is very important as it boosts the efficiency in the 

FIGURE 15

Average percentile VUS score for each user role.
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navigation among the different systems of the IT landscape, 
ensuring the right information to the right person at the 
right time.

Mobile devices, such as tablets, are not the best equipment 
solution: tablets have to be  managed by hand, interrupting task 
execution, and introducing inefficiency. The best solution has been 
identified in the usage of a headset and touch big screen, fixed in front 
of the operator to be  easily seen and touched for the manual 
commands input, connected to a simple barcode scanner for SKU 
barcode reading. However, the adoption of wearable devices such as 
headsets introduces some constraints from a personnel management 
point of view: any wearable has to be strictly individual for safety and 
health reasons, and this may inflate the deployment cost of the 
solution in the factory.

The intensity of the information support and level of detail 
provided to the different people has been appreciated. However, the 
text referring to domain knowledge (e.g., quality checklists) includes 
long sentences, repetition, and wrong or incorrect words. This element 
highlighted the need to completely review the information content 
that has to be designed to be used in these types of digital systems and 

cannot replicate the structure that currently is used for the description 
on paper. The key reason behind this is that there was the need for a 
long knowledge acquisition period in order to simplify and create 
more robust relations for the syntax to be used.

The functionality to provide different services according to the 
user’s profile has been appreciated, as well as the deployment of the 
learning path through the different users’ skills profile (from novice to 
intermediate to expert). One remark has arisen by users related to this 
topic: the risk of having operators who can pass from novice to expert 
level faster than today could be  penalized by the fact that these 
operators can be more “passive” towards the task execution as it is 
always suggested by the system. In this way, the risk of a passive 
approach will drive to the lack of “real expert” operators who are not 
able to execute without the system. The risk has to be mitigated by the 
real shift of the operator’s attention from the pure mechanical execution 
of tasks to the interpretation of the information provided. To achieve 
this objective, an intensive, focused training action has to be put in 
place, combined with the collection of ideas and rewarding management.

The quality risk assessment functionality has been much 
appreciated, and, for the first time in the factory, there is clear visibility 

FIGURE 16

Average SUS vs. VUS scores.
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FIGURE 18

Intent recognition accuracy and fallback summary.

TABLE 6 Results for the defect group prediction.

AutoML models Metrics

F1-macro F1-micro ROC-AUC Execution time (s)

Initial models FEDOT 0.5055 0.8363 0.9023 1212.50

AutoKeras 0.4509 0.7813 0.7141 1019.81

Retrained models FEDOT 0.4969 0.8368 0.9019 9.35

AutoKeras 0.4510 0.7813 0.7141 0.58

New models FEDOT 0.4909 0.8277 0.8722 91.96

AutoKeras 0.4631 0.7681 0.7177 953.36

TABLE 7 Results for the defective orders prediction.

AutoML models Metrics

MSE MAE Execution time (s)

Initial models FEDOT 0.2338 0.2017 101.88

AutoKeras 0.0402 0.1624 187.39

Retrained models FEDOT 0.1361 0.1002 0.32

AutoKeras 0.0201 0.1082 2.57

New models FEDOT 0.1391 0.0988 127.48

AutoKeras 0.0191 0.1036 11.17

FIGURE 17

Perceived workload using NASA-TLX scores for the white goods production.
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of predictive quality analytics results. The good quality of the 
prediction has also been confirmed by users who got access to 
predictive results and confirmed them with real experience on the 
various defective parts and products in the actual production process.

The huge amount of data with poor quality is one of the most 
common cases in the IT landscape of manufacturing companies, 
which, for years, have been collecting data from the shop floor without 
real and effective usage of them. This element forces the IT 
organization to create a stronger link with the shop floor to deploy a 
more effective solution: for Whirlpool this will pass through a redesign 
of the data architecture in the cloud in order to more effectively and 
efficiently support the analytics functionalities deployment. Therefore, 
the need for a deep review of the actual data management strategy has 
arisen: the need to count on a high-quality database, real-time 
updated, and designed to be  efficiently integrated with digital 
functionalities proved to be one of the higher priorities in digital 
transformation. Whirlpool identified that they need to be based upon 
a completely different quality control data model.

A focused change management strategy has been defined, and 
it has been used as the backbone for the creation and deployment 
of communication and training actions not only toward the 
involved users but also engaging the overall factory organization 
at different levels. These activities put evidence on the need for 
great attention on how these types of technology are presented and 
deployed to the impacted population in order to create the right 
level of awareness on potential and risks and enable the real 
adoption of the solution.

The adoption of the solution seriously and structurally faces 
privacy and GDPR compliance management in the deployment of 
voice assistance applications. The execution of the change management 
actions and the “privacy by design” effort spent for system 
development and consensus form finalization, put evidence on the 
real poor level of awareness of people on the potential impact of this 
technology in the working environment, and, in parallel, also at home 
and in their personal life.

5.4 Discussion on generalizability criteria

The evaluation results showed that the integration of voice 
assistance technology with AutoML has the potential to significantly 
contribute to the increase of operational efficiency. In order to apply 
the proposed approach to different manufacturing use cases, the 
challenges of AutoML when it uses a voice interface for user 
interaction should be taken into account. Therefore, the following 
criteria need to be considered by manufacturers, software developers, 
data scientists, and practitioners:

Accuracy: It should achieve high prediction accuracy. It should 
be taken into account that higher accuracy may need more 
computational resources.

Efficiency: It should be efficient in terms of time and 
computational resources. The automated processes should be designed 
to optimize the use of resources and reduce the overall time required 
to train models and make predictions. This particularly applies to 
applications that are critical in terms of time (high sampling time). In 
these cases, prediction accuracy may negatively be affected.

Scalability: It should be capable of scaling up to handle large 
datasets and complex ML tasks and pipelines. They should be able to 

handle increasing amounts of data and computational demands 
without compromising performance or efficiency.

Flexibility: It should provide flexibility by supporting several ML 
algorithms. It should allow users to experiment with different 
approaches and customize the automated processes according to their 
specific requirements and preferences.

Explainability: It should be accompanied with explainability 
mechanisms, suitable for voice interfaces, in order to enable the 
human to understand the inner working and the outcomes of the 
“black-box” AutoML pipelines.

Transparency: It should be able to provide evidence about the ML 
models and pipelines that were used for generating some specific 
insights in order to contribute to the increase of user trust.

Robustness: It should be robust against unexpected inputs and 
real-world industrial data challenges, such as noise, missing values, 
and imbalances. This is particularly important in safety-critical tasks.

Adaptability: It should be capable of adapting across various 
domains and use cases covering diverse business requirements and 
manufacturing operations.

Integration with existing IT systems: It should incorporate 
interfaces, based on related standards, for facilitating the integration 
with existing IT infrastructures and production systems, i.e., legacy 
systems, Enterprise Resource Planning (ERP), Manufacturing 
Execution Systems (MES), quality management systems, etc., 
according to the application domain and the manufacturing operation 
at hand. It should also support both a cloud-based integration and an 
on-premise integration, providing sufficient documentation.

Cost-effectiveness: It should minimize the additional effort 
required for installing and configuring the solution.

Compliance with ethical and regulatory standards: It should be 
compliant with trustworthy and ethical Artificial Intelligence (AI) 
principles, taking into account related regulations, such as ALTAI and 
EU AI Act.

6 Conclusion and future work

Augmented intelligence puts together human and artificial agents 
to create a socio-technological system so that they co-evolve by 
learning and optimizing decisions through intuitive interfaces, such 
as conversational, voice-enabled interfaces. However, existing research 
works on voice assistants rely on knowledge management and 
simulation methods instead of data-driven algorithms in order to take 
advantage of the large amounts of data existing in modern 
manufacturing environments. In addition, practical application and 
evaluation in real-life scenarios are scarce and limited in scope due to 
the aforementioned challenges.

In this paper, we proposed the integration of voice assistance 
technology with AutoML in order to enable the realization of the 
augmented intelligence paradigm in the context of Industry 5.0. 
AutoML automates the building and deployment of ML pipelines 
without requiring ML knowledge, while the voice interface exposes 
the data analytics outcomes to the user in an intuitive way. On the 
other hand, the user is able to interact with the assistant, and 
consequently with the ML models, through voice in order to receive 
immediate insights while performing their task. The proposed 
approach was evaluated in a real manufacturing environment. 
We followed a structured evaluation methodology and analyzed the 
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results, which demonstrate the effectiveness of our proposed  
approach.

Our future work will move towards the following directions: (i) 
We  will extend the proposed solution by utilizing LLM for user 
interaction in order to enhance the scalability and adaptability of the 
DIA to various industrial settings with less human effort at the design 
time of the solution; (ii) We will evaluate the proposed solution in 
additional real-life manufacturing scenarios from various sectors 
taking into account the generalizability criteria that were derived from 
the current research work.; and, (iii) We  will focus on how 
transparency and explainability approaches for AutoML can 
be incorporated when there is a voice user interface instead of a GUI.

Data availability statement

The datasets for this article are not publicly available due to legal 
and privacy-related restrictions in relation to confidential human data. 
Requests to access the datasets should be directed to the 
corresponding author.

Ethics statement

The studies involving humans were approved by Professor 
Nicholas Asher - Centre National de Recherche Scientifique (CNRS), 
Enrica Bosani - Whirlpool EMEA, Professor Gregoris Mentzas - 
National Technical University of Athens, Dr. Alexandros Bousdekis 
- Institute of Communication and Computer Systems (ICCS), Dr. 
Stefan Wellsandt - BIBA (Bremer Institut für Produktion und Logistik 
GmbH), Karl Hribernik - BIBA (Bremer Institut für Produktion und 
Logistik GmbH). The studies were conducted in accordance with the 
local legislation and institutional requirements. The participants 
provided their written informed consent to participate in these studies.

Author contributions

AB: Conceptualization, Methodology, Software, Writing – original 
draft, Writing – review & editing. MFo: Conceptualization, Data 
curation, Methodology, Software, Validation, Writing – original draft, 
Writing – review & editing. MFi: Data curation, Software, Validation, 
Writing – original draft, Writing – review & editing. SW: 
Conceptualization, Methodology, Software, Writing – original draft, 
Writing – review & editing. KL: Methodology, Software, Writing – 
original draft, Writing – review & editing. EB: Investigation, 
Resources, Validation, Writing – original draft, Writing – review & 
editing. GM: Funding acquisition, Methodology, Supervision, Writing 
– original draft, Writing – review & editing. K-DT: Funding 

acquisition, Supervision, Writing – original draft, Writing – review & 
editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This work was 
funded by the European Union’s Horizon 2020 project COALA 
“Cognitive Assisted agile manufacturing for a Labor force supported 
by trustworthy Artificial Intelligence” (Grant agreement No 957296). 
The work presented here reflects only the authors’ view and the 
European Commission is not responsible for any use that may 
be made of the information it contains.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member 
of Frontiers, at the time of submission. This had no impact on the peer 
review process and the final decision.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of 
this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/frai.2025.1538840/
full#supplementary-material

SUPPLEMENTARY TABLE S1

Resulting ALTAI recommendations for each out of the 7 requirements.

References
Abner, B., Rabelo, R. J., Zambiasi, S. P., and Romero, D. (2020). Production management 

as-a-service: a softbot approach. In B. Lalic, V. Majstorovic, U. Marjanovic, CieminskiG. von 
and D. Romero Advances in production management systems towards smart and digital 
manufacturing: Part II (pp. 19–30). Cham: Springer International Publishing.

Afanasev, M. Y., Fedosov, Y. V., Andreev, Y. S., Krylova, A. A., Shorokhov, S. A., 
Zimenko, K. V., et al. (2019) A concept for integration of voice assistant and modular 

cyber-physical production system. In 2019 IEEE 17th international conference on 
industrial informatics (INDIN), IEEE.

Amirian, M., Tuggener, L., Chavarriaga, R., Satyawan, Y. P., Schilling, F. P., 
Schwenker, F., et al. (2021). Two to trust: automl for safe modelling and interpretable 
deep learning for robustness. In Trustworthy AI-Integrating Learning, Optimization 
and Reasoning: First International Workshop, TAILOR 2020, Virtual Event, 

https://doi.org/10.3389/frai.2025.1538840
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/frai.2025.1538840/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2025.1538840/full#supplementary-material


Bousdekis et al. 10.3389/frai.2025.1538840

Frontiers in Artificial Intelligence 21 frontiersin.org

September 4–5, 2020, Revised Selected Papers 1 (pp. 268–275). Springer International 
Publishing.

Artificial Intelligence High-level independent group on artificial intelligence (AI HLEG).
Ethics Guidelines for Trustworthy AI. (2019) European Commission.

Azevedo, K., Quaranta, L., Calefato, F., and Kalinowski, M. (2024). A multivocal 
literature review on the benefits and limitations of automated machine learning tools. 
arXiv preprint arXiv:2401.11366.

Babel, M., McGuire, G., and King, J. (2014). Towards a more nuanced view of vocal 
attractiveness. PLoS One 9:e88616. doi: 10.1371/journal.pone.0088616

Bangaru, S. S., Wang, C., Hassan, M., Jeon, H. W., and Ayiluri, T. (2019). Estimation 
of the degree of hydration of concrete through automated machine learning based 
microstructure analysis–a study on effect of image magnification. Adv. Eng. Inform. 
42:100975. doi: 10.1016/j.aei.2019.100975

Barbudo, R., Ventura, S., and Romero, J. R. (2023). Eight years of AutoML: categorisation, 
review and trends. Knowl. Inf. Syst. 65, 5097–5149. doi: 10.1007/s10115-023-01935-1

Bernard, D., and Arnold, A. (2019). Cognitive interaction with virtual assistants: from 
philosophical foundations to illustrative examples in aeronautics. Comput. Ind. 107, 
33–49. doi: 10.1016/j.compind.2019.01.010

Bousdekis, A., Apostolou, D., and Mentzas, G. (2020). A human cyber physical system 
framework for operator 4.0–artificial intelligence symbiosis. Manuf. Lett. 25, 10–15. doi: 
10.1016/j.mfglet.2020.06.001

Bousdekis, A., Mentzas, G., Apostolou, D., and Wellsandt, S. (2022). Evaluation of AI-
based digital assistants in smart manufacturing. In IFIP international conference on advances 
in production management systems (pp. 503–510). Cham: Springer Nature Switzerland.

Bousdekis, A., Mentzas, G., Apostolou, D., and Wellsandt, S. (2024). Assessing 
trustworthy artificial intelligence of voice-enabled intelligent assistants for the operator 
5.0. In IFIP international conference on advances in production management systems 
(pp. 220–234). Cham: Springer Nature Switzerland.

Bousdekis, A., Wellsandt, S., Bosani, E., Lepenioti, K., Apostolou, D., Hribernik, K., 
et al. (2021). Human-AI collaboration in quality control with augmented manufacturing 
analytics. In Advances in Production Management Systems. Artificial Intelligence for 
Sustainable and Resilient Production Systems: IFIP WG 5.7 International Conference, 
APMS 2021, Nantes, France, September 5–9, 2021, Proceedings, Part IV (pp. 303–310). 
Springer International Publishing.

Brooke, J. (1996). “SUS: A “quick and dirty” usability scale” in Usability Evaluation in 
industry. eds. P. W. Jordan, B. Thomas, B. A. Weerdmeester and I. L. McClelland (United 
Kingdom: Taylor and Francis).

Chaabi, M., Hamlich, M., and Garouani, M. (2022) Evaluation of AutoML tools for 
manufacturing applications. In International conference on integrated design and 
production (pp. 323–330). Cham: Springer International Publishing.

Colabianchi, S., Costantino, F., and Sabetta, N. (2024). Assessment of a large language 
model based digital intelligent assistant in assembly manufacturing. Comput. Ind. 
162:104129. doi: 10.1016/j.compind.2024.104129

Conrad, F., Mälzer, M., Lange, F., Wiemer, H., and Ihlenfeldt, S. (2024). AutoML 
applied to time series analysis tasks in production engineering. Proc. Comput. Sci. 232, 
849–860. doi: 10.1016/j.procs.2024.01.085

Cowan, B. R., Pantidi, N., Coyle, D., Morrissey, K., Clarke, P., Al-Shehri, S., et al. 
(2017). "What can i help you with?" infrequent users' experiences of intelligent personal 
assistants. In Proceedings of the 19th international conference on human-computer 
interaction with mobile devices and services (pp. 1–12).

Crisan, A., and Fiore-Gartland, B. (2021). Fits and starts: Enterprise use of automl and 
the role of humans in the loop. In Proceedings of the 2021 CHI Conference on human 
factors in computing systems (pp. 1–15).

de Assis Dornelles, J., Ayala, N. F., and Frank, A. G. (2022). Smart working in industry 
4.0: how digital technologies enhance manufacturing workers' activities. Comput. Ind. 
Eng. 163:107804. doi: 10.1016/j.cie.2021.107804

Denkena, B., Dittrich, M. A., Lindauer, M., Mainka, J., and Stürenburg, L. (2020). 
Using AutoML to optimize shape error prediction in milling processes. In Proceedings 
of the machining innovations conference (MIC).

Drozdal, J., Weisz, J., Wang, D., Dass, G., Yao, B., Zhao, C., et al. (2020). Trust in 
AutoML: exploring information needs for establishing trust in automated machine 
learning systems. In Proceedings of the 25th international conference on intelligent user 
interfaces (pp. 297–307).

Elshawi, R., Maher, M., and Sakr, S. (2019). Automated machine learning: state-of-
the-art and open challenges. arXiv preprint arXiv:1906.02287.

Fikardos, M., Lepenioti, K., Bousdekis, A., Bosani, E., Apostolou, D., and Mentzas, G. 
(2022) An automated machine learning framework for predictive analytics in quality 
control. In IFIP international conference on advances in production management 
systems (pp. 19–26). Cham: Springer Nature Switzerland.

Freire, S. K., Panicker, S. S., Ruiz-Arenas, S., Rusák, Z., and Niforatos, E. (2022). A 
cognitive assistant for operators: Ai-powered knowledge sharing on complex systems. 
IEEE Pervasive Comput 22, 50–58. doi: 10.1109/MPRV.2022.3218600

Garouani, M., Ahmad, A., Bouneffa, M., Hamlich, M., Bourguin, G., and 
Lewandowski, A. (2022). Towards big industrial data mining through explainable 

automated machine learning. Int. J. Adv. Manuf. Technol. 120, 1169–1188. doi: 
10.1007/s00170-022-08761-9

Gärtler, M., and Schmidt, B. (2021). Proceedings of the 54th Hawaii International 
Conference on System Sciences. (Hawali, USA), 4063–4072.

Gerling, A., Ziekow, H., Hess, A., Schreier, U., Seiffer, C., and Abdeslam, D. O. (2022). 
Comparison of algorithms for error prediction in manufacturing with AutoML and a 
cost-based metric. J. Intell. Manuf. 33, 555–573. doi: 10.1007/s10845-021-01890-0

Ghofrani, J., and Reichelt, D. (2019). Using voice assistants as HMI for robots in smart 
production systems. In CEUR Workshop Proceedings

Hart, S. (1988). “Development of NASA-TLX (task load index): results of empirical 
and theoretical research” in Human mental workload. eds. P. A. Hancock and N. 
Meshkati (Amsterdam: Elsevier).

He, X., Zhao, K., and Chu, X. (2021). AutoML: a survey of the state-of-the-art. Knowl. 
Based Syst. 212:106622. doi: 10.1016/j.knosys.2020.106622

Holmes, S., Moorhead, A., Bond, R., Zheng, H., Coates, V., and McTear, M. (2019). 
Usability testing of a healthcare chatbot: can we use conventional methods to assess 
conversational user interfaces?. In Proceedings of the 31st European Conference on 
Cognitive Ergonomics (pp. 207–214).

Hutter, F., Kotthoff, L., and Vanschoren, J. (2019). Automated machine learning: 
Methods, systems, challenges. Cham: Springer Nature.

Ionescu, T. B., and Schlund, S. (2021). Programming cobots by voice: a human-
centered, web-based approach. Proc. CIRP 97, 123–129. doi: 
10.1016/j.procir.2020.05.213

Jayasurya, B., Suguna, M., Saravanan, P., and Revathi, M. (2024) AutoML as a catalyst 
for predictive maintenance innovation: strategies and outcomes. In 2024 3rd 
international conference on artificial intelligence for internet of things (AIIoT) (pp. 1–
6). IEEE.

Jwo, J. S., Lin, C. S., and Lee, C. H. (2021). An interactive dashboard using a virtual 
assistant for visualizing smart manufacturing. Mob. Inf. Syst. 2021, 1–9. doi: 
10.1155/2021/5578239

Karmaker, S. K., Hassan, M. M., Smith, M. J., Xu, L., Zhai, C., and Veeramachaneni, K. 
(2021). Automl to date and beyond: challenges and opportunities. ACM Comput. Surv. 
54, 1–36. doi: 10.1145/3470918

Krauß, J., Pacheco, B. M., Zang, H. M., and Schmitt, R. H. (2020). Automated machine 
learning for predictive quality in production. Proc. CIRP 93, 443–448. doi: 
10.1016/j.procir.2020.04.039

Leng, J., Sha, W., Wang, B., Zheng, P., Zhuang, C., Liu, Q., et al. (2022). Industry 5.0: 
Prospect and retrospect. J. Manuf. Syst. 65, 279–295. doi: 10.1016/j.jmsy.2022.09.017

Lepenioti, K., Bousdekis, A., Apostolou, D., and Mentzas, G. (2020). Prescriptive 
analytics: literature review and research challenges. Int. J. Inf. Manag. 50, 57–70. doi: 
10.1016/j.ijinfomgt.2019.04.003

Li, C., Chrysostomou, D., and Yang, H. (2023). A speech-enabled virtual assistant for 
efficient human–robot interaction in industrial environments. J. Syst. Softw. 205:111818. 
doi: 10.1016/j.jss.2023.111818

Li, C., and Yang, H. J. (2021). Bot-x: an AI-based virtual assistant for intelligent 
manufacturing. Multiag. Grid Syst. 17, 1–14. doi: 10.3233/MGS-210340

Liang, D., and Xue, F. (2023). Integrating automated machine learning and 
interpretability analysis in architecture, engineering and construction industry: a case 
of identifying failure modes of reinforced concrete shear walls. Comput. Ind. 147:103883. 
doi: 10.1016/j.compind.2023.103883

Linares-Garcia, D. A., Roofigari-Esfahan, N., Pratt, K., and Jeon, M. (2022). Voice-
based intelligent virtual agents (VIVA) to support construction worker productivity. 
Autom. Constr. 143:104554. doi: 10.1016/j.autcon.2022.104554

Longo, F., and Padovano, A. (2020). Voice-enabled assistants of the operator 4.0 in the 
social smart factory: prospective role and challenges for an advanced human–machine 
interaction. Manuf. Lett. 26, 12–16. doi: 10.1016/j.mfglet.2020.09.001

Ludwig, H., Schmidt, T., and Kühn, M. (2023). Voice user interfaces in manufacturing 
logistics: a literature review. Int. J. Speech Technol. 26, 627–639. doi: 
10.1007/s10772-023-10036-x

Maddikunta, P. K. R., Pham, Q. V., Prabadevi, B., Deepa, N., Dev, K., Gadekallu, T. R., 
et al. (2022). Industry 5.0: a survey on enabling technologies and potential applications. 
J. Ind. Inf. Integr. 26:100257. doi: 10.1016/j.jii.2021.100257

Mallouk, I., Sallez, Y., and El Majd, B. A. (2023) AutoML approach for decision 
making in a manufacturing context. In International workshop on service orientation 
in Holonic and multi-agent manufacturing (pp. 151–163). Cham: Springer Nature 
Switzerland.

Matt, C., Hess, T., and Benlian, A. (2015). Digital transformation strategies. Bus. Inf. 
Syst. Eng. 57, 339–343. doi: 10.1007/s12599-015-0401-5

Mentzas, G., Fikardos, M., Lepenioti, K., and Apostolou, D. (2024). Exploring the 
landscape of trustworthy artificial intelligence: status and challenges. Intellig. Decis. 
Technol. 18, 837–854. doi: 10.3233/IDT-240366

Mirbabaie, M., Stieglitz, S., Brünker, F., Hofeditz, L., Ross, B., and Frick, N. R. (2021). 
Understanding collaboration with virtual assistants–the role of social identity and  

https://doi.org/10.3389/frai.2025.1538840
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1371/journal.pone.0088616
https://doi.org/10.1016/j.aei.2019.100975
https://doi.org/10.1007/s10115-023-01935-1
https://doi.org/10.1016/j.compind.2019.01.010
https://doi.org/10.1016/j.mfglet.2020.06.001
https://doi.org/10.1016/j.compind.2024.104129
https://doi.org/10.1016/j.procs.2024.01.085
https://doi.org/10.1016/j.cie.2021.107804
https://doi.org/10.1109/MPRV.2022.3218600
https://doi.org/10.1007/s00170-022-08761-9
https://doi.org/10.1007/s10845-021-01890-0
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1016/j.procir.2020.05.213
https://doi.org/10.1155/2021/5578239
https://doi.org/10.1145/3470918
https://doi.org/10.1016/j.procir.2020.04.039
https://doi.org/10.1016/j.jmsy.2022.09.017
https://doi.org/10.1016/j.ijinfomgt.2019.04.003
https://doi.org/10.1016/j.jss.2023.111818
https://doi.org/10.3233/MGS-210340
https://doi.org/10.1016/j.compind.2023.103883
https://doi.org/10.1016/j.autcon.2022.104554
https://doi.org/10.1016/j.mfglet.2020.09.001
https://doi.org/10.1007/s10772-023-10036-x
https://doi.org/10.1016/j.jii.2021.100257
https://doi.org/10.1007/s12599-015-0401-5
https://doi.org/10.3233/IDT-240366


Bousdekis et al. 10.3389/frai.2025.1538840

Frontiers in Artificial Intelligence 22 frontiersin.org

the extended self. Bus. Inf. Syst. Eng. 63, 21–37. doi: 10.1007/s12599-020- 
00672-x

Mukherjee, A., Mertes, J., Glatt, M., and Aurich, J. C. (2024). Voice user Interface 
based control for industrial machine tools. Proc. CIRP 121, 121–126. doi: 
10.1016/j.procir.2023.09.238

Murad, C., Munteanu, C., Cowan, B. R., and Clark, L. (2019). Revolution or evolution? 
Speech interaction and HCI design guidelines. IEEE Pervasive Comput 18, 33–45. doi: 
10.1109/MPRV.2019.2906991

Nguyen Ngoc, H., Lasa, G., and Iriarte, I. (2022). Human-centred design in industry 
4.0: case study review and opportunities for future research. J. Intell. Manuf. 33, 35–76. 
doi: 10.1007/s10845-021-01796-x

Nikitin, N. O., Vychuzhanin, P., Sarafanov, M., Polonskaia, I. S., Revin, I., 
Barabanova, I. V., et al. (2022). Automated evolutionary approach for the design of 
composite machine learning pipelines. Futur. Gener. Comput. Syst. 127, 109–125. doi: 
10.1016/j.future.2021.08.022

Ninomiya, Y., Iwata, T., Terai, H., and Miwa, K. (2024). Effect of cognitive load and 
working memory capacity on the efficiency of discovering better alternatives: a survival 
analysis. Mem. Cogn. 52, 115–131. doi: 10.3758/s13421-023-01448-w

Norda, M., Engel, C., Rennies, J., Appell, J. E., Lange, S. C., and Hahn, A. 
(2023). Evaluating the efficiency of voice control as human machine 
interface in production. IEEE Trans. Autom. Sci. Eng. 99, 1–12. doi: 10.1109/TASE.2023. 
3302951

Rabelo, R. J., Romero, D., and Zambiasi, S. P. (2018). Advances in production 
management systems. smart manufacturing for industry 4.0: IFIP WG 5.7 international 
conference, APMS 2018, Seoul, Korea, august 26–30, 2018, proceedings, part IISoftbots 
supporting the operator 4.0 at smart factory environments. In (pp. 456–464). Springer 
International Publishing.

Radclyffe, C., Ribeiro, M., and Wortham, R. H. (2023). The assessment list for 
trustworthy artificial intelligence: a review and recommendations. Front. Art. Intellig. 
6:1020592. doi: 10.3389/frai.2023.1020592

Rooney, S., Pitz, E., and Pochiraju, K. (2024). AutoML-driven diagnostics of the feeder 
motor in fused filament fabrication machines from direct current signals. J. Intell. 
Manuf., 1–18. doi: 10.1007/s10845-024-02332-3

Rubio, S., Díaz, E., Martín, J., and Puente, J. M. (2004). Evaluation of subjective mental 
workload: a comparison of SWAT, NASA-TLX, and workload profile methods. Appl. 
Psychol. 53, 61–86. doi: 10.1111/j.1464-0597.2004.00161.x

Ruiz, E., Torres, M. I., and del Pozo, A. (2023). Question answering models for 
human–machine interaction in the manufacturing industry. Comput. Ind. 151:103988. 
doi: 10.1016/j.compind.2023.103988

Saka, A. B., Oyedele, L. O., Akanbi, L. A., Ganiyu, S. A., Chan, D. W., and Bello, S. A. 
(2023). Conversational artificial intelligence in the AEC industry: a review of present 
status, challenges and opportunities. Adv. Eng. Inform. 55:101869. doi: 
10.1016/j.aei.2022.101869

Salehin, I., Islam, M. S., Saha, P., Noman, S. M., Tuni, A., Hasan, M. M., et al. (2024). 
AutoML: a systematic review on automated machine learning with neural architecture 
search. J. Inform. Intellig. 2, 52–81. doi: 10.1016/j.jiixd.2023.10.002

Schuh, G., Stroh, M. F., and Benning, J. (2022) Case-study-based requirements 
analysis of manufacturing companies for auto-ML solutions. In IFIP international 

conference on advances in production management systems (pp. 43–50). Cham: 
Springer Nature Switzerland.

Sousa, A., Ferreira, L., Ribeiro, R., Xavier, J., Pilastri, A., and Cortez, P. (2022) 
Production time prediction for contract manufacturing industries using automated 
machine learning. In IFIP international conference on artificial intelligence applications 
and innovations (pp. 262–273). Cham: Springer International Publishing.

Stahl, B. C., and Leach, T. (2023). Assessing the ethical and social concerns of artificial 
intelligence in neuroinformatics research: an empirical test of the European Union 
assessment list for trustworthy AI (ALTAI). AI Ethics 3, 745–767. doi: 
10.1007/s43681-022-00201-4

Wang, D., Andres, J., Weisz, J. D., Oduor, E., and Dugan, C. (2021). Autods: towards 
human-centered automation of data science. In Proceedings of the 2021 CHI conference 
on human factors in computing systems (pp. 1–12).

Wang, B., Zheng, P., Yin, Y., Shih, A., and Wang, L. (2022). Toward human-centric 
smart manufacturing: a human-cyber-physical systems (HCPS) perspective. J. Manuf. 
Syst. 63, 471–490. doi: 10.1016/j.jmsy.2022.05.005

Wellsandt, S., Klein, K., Hribernik, K., Lewandowski, M., Bousdekis, A., Mentzas, G., 
et al. (2022). Hybrid-augmented intelligence in predictive maintenance with digital 
intelligent assistants. Annu. Rev. Control. 53, 382–390. doi: 10.1016/j.arcontrol.2022.04.001

Wellsandt, S., Rusak, Z., Ruiz Arenas, S., Aschenbrenner, D., Hribernik, K. A., and 
Thoben, K. D. (2020). Concept of a voice-enabled digital assistant for predictive 
maintenance in manufacturing. Cranfield, UK: Proceedings of the TESConf 2020 - 9th 
International Conference on Through-life Engineering Services.

Xu, X., Lu, Y., Vogel-Heuser, B., and Wang, L. (2021). Industry 4.0 and industry 5.0—
inception, conception and perception. J. Manuf. Syst. 61, 530–535. doi: 
10.1016/j.jmsy.2021.10.006

Yu, T., and Zhu, H. (2020). Hyper-parameter optimization: a review of algorithms and 
applications. arXiv preprint arXiv:2003.05689.

Zambiasi, L. P., Rabelo, R. J., Zambiasi, S. P., and Lizot, R. (2022) Supporting resilient 
operator 5.0: an augmented softbot approach. In IFIP international conference on 
advances in production management systems (pp. 494–502). Cham: Springer Nature 
Switzerland.

Zhai, W., Shi, X., Wong, Y. D., Han, Q., and Chen, L. (2024). Explainable AutoML 
(xAutoML) with adaptive modeling for yield enhancement in semiconductor smart 
manufacturing. arXiv preprint arXiv:2403.12381.

Zhai, W., Shi, X., and Zeng, Z. (2023) Adaptive modelling for anomaly detection and 
defect diagnosis in semiconductor smart manufacturing: a domain-specific AutoML. In 
2023 IEEE international conference on cybernetics and intelligent systems (CIS) and 
IEEE conference on robotics, automation and mechatronics (RAM) (pp. 198–203). IEEE.

Zheng, T., Grosse, E. H., Morana, S., and Glock, C. H. (2024). A review of digital 
assistants in production and logistics: applications, benefits, and challenges. Int. J. Prod. 
Res. 62, 8022–8048. doi: 10.1080/00207543.2024.2330631

Zöller, M. A., Titov, W., Schlegel, T., and Huber, M. F. (2023). Xautoml: a visual 
analytics tool for understanding and validating automated machine learning. ACM 
Trans. Interact. Intellig. Syst. 13, 1–39. doi: 10.1145/3625240

Zwakman, D. S., Pal, D., and Arpnikanondt, C. (2021). Usability evaluation of artificial 
intelligence-based voice assistants: the case of Amazon Alexa. SN Comput. Sci. 2:28. doi: 
10.1007/s42979-020-00424-4

https://doi.org/10.3389/frai.2025.1538840
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1007/s12599-020-00672-x
https://doi.org/10.1007/s12599-020-00672-x
https://doi.org/10.1016/j.procir.2023.09.238
https://doi.org/10.1109/MPRV.2019.2906991
https://doi.org/10.1007/s10845-021-01796-x
https://doi.org/10.1016/j.future.2021.08.022
https://doi.org/10.3758/s13421-023-01448-w
https://doi.org/10.1109/TASE.2023.3302951
https://doi.org/10.1109/TASE.2023.3302951
https://doi.org/10.3389/frai.2023.1020592
https://doi.org/10.1007/s10845-024-02332-3
https://doi.org/10.1111/j.1464-0597.2004.00161.x
https://doi.org/10.1016/j.compind.2023.103988
https://doi.org/10.1016/j.aei.2022.101869
https://doi.org/10.1016/j.jiixd.2023.10.002
https://doi.org/10.1007/s43681-022-00201-4
https://doi.org/10.1016/j.jmsy.2022.05.005
https://doi.org/10.1016/j.arcontrol.2022.04.001
https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/10.1080/00207543.2024.2330631
https://doi.org/10.1145/3625240
https://doi.org/10.1007/s42979-020-00424-4

	Augmented intelligence with voice assistance and automated machine learning in Industry 5.0
	1 Introduction
	2 Literature review
	3 The proposed solution for augmented intelligence with voice assistance and automated machine learning
	3.1 Voice assistant
	3.2 Analytics service
	3.3 Use case infrastructure

	4 Deployment in quality control operations
	4.1 Home appliances use case
	4.2 Demonstration scenarios

	5 Evaluation in real-life manufacturing scenarios
	5.1 Evaluation methodology
	5.1.1 AI trustworthiness
	5.1.2 System usability
	5.1.3 Cognitive workload
	5.1.4 Technical robustness
	5.1.5 Lessons learned
	5.2 Evaluation setup
	5.3 Evaluation results
	5.3.1 AI trustworthiness
	5.3.2 System usability
	5.3.3 Cognitive workload
	5.3.4 Technical robustness
	5.3.5 Discussion on lessons learned and managerial implications
	5.4 Discussion on generalizability criteria

	6 Conclusion and future work

	References

